target.py 26.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np
import paddle
from ..bbox_utils import bbox2delta, bbox_overlaps


def rpn_anchor_target(anchors,
                      gt_boxes,
                      rpn_batch_size_per_im,
                      rpn_positive_overlap,
                      rpn_negative_overlap,
                      rpn_fg_fraction,
                      use_random=True,
                      batch_size=1,
28 29
                      ignore_thresh=-1,
                      is_crowd=None,
W
wangguanzhong 已提交
30 31
                      weights=[1., 1., 1., 1.],
                      assign_on_cpu=False):
32 33 34 35 36
    tgt_labels = []
    tgt_bboxes = []
    tgt_deltas = []
    for i in range(batch_size):
        gt_bbox = gt_boxes[i]
37
        is_crowd_i = is_crowd[i] if is_crowd else None
38
        # Step1: match anchor and gt_bbox
W
wangguanzhong 已提交
39
        matches, match_labels = label_box(
40
            anchors, gt_bbox, rpn_positive_overlap, rpn_negative_overlap, True,
W
wangguanzhong 已提交
41
            ignore_thresh, is_crowd_i, assign_on_cpu)
42 43 44 45 46
        # Step2: sample anchor 
        fg_inds, bg_inds = subsample_labels(match_labels, rpn_batch_size_per_im,
                                            rpn_fg_fraction, 0, use_random)
        # Fill with the ignore label (-1), then set positive and negative labels
        labels = paddle.full(match_labels.shape, -1, dtype='int32')
47 48 49 50
        if bg_inds.shape[0] > 0:
            labels = paddle.scatter(labels, bg_inds, paddle.zeros_like(bg_inds))
        if fg_inds.shape[0] > 0:
            labels = paddle.scatter(labels, fg_inds, paddle.ones_like(fg_inds))
51
        # Step3: make output  
52
        if gt_bbox.shape[0] == 0:
53 54
            matched_gt_boxes = paddle.zeros([matches.shape[0], 4])
            tgt_delta = paddle.zeros([matches.shape[0], 4])
55 56 57 58 59
        else:
            matched_gt_boxes = paddle.gather(gt_bbox, matches)
            tgt_delta = bbox2delta(anchors, matched_gt_boxes, weights)
            matched_gt_boxes.stop_gradient = True
            tgt_delta.stop_gradient = True
60 61 62 63 64 65 66 67
        labels.stop_gradient = True
        tgt_labels.append(labels)
        tgt_bboxes.append(matched_gt_boxes)
        tgt_deltas.append(tgt_delta)

    return tgt_labels, tgt_bboxes, tgt_deltas


68 69 70 71 72 73
def label_box(anchors,
              gt_boxes,
              positive_overlap,
              negative_overlap,
              allow_low_quality,
              ignore_thresh,
W
wangguanzhong 已提交
74 75 76
              is_crowd=None,
              assign_on_cpu=False):
    if assign_on_cpu:
77
        device = paddle.device.get_device()
W
wangguanzhong 已提交
78 79
        paddle.set_device("cpu")
        iou = bbox_overlaps(gt_boxes, anchors)
80 81
        paddle.set_device(device)

W
wangguanzhong 已提交
82 83
    else:
        iou = bbox_overlaps(gt_boxes, anchors)
84 85 86 87 88 89 90
    n_gt = gt_boxes.shape[0]
    if n_gt == 0 or is_crowd is None:
        n_gt_crowd = 0
    else:
        n_gt_crowd = paddle.nonzero(is_crowd).shape[0]
    if iou.shape[0] == 0 or n_gt_crowd == n_gt:
        # No truth, assign everything to background
91
        default_matches = paddle.full((iou.shape[1], ), 0, dtype='int64')
92
        default_match_labels = paddle.full((iou.shape[1], ), 0, dtype='int32')
93
        return default_matches, default_match_labels
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
    # if ignore_thresh > 0, remove anchor if it is closed to 
    # one of the crowded ground-truth
    if n_gt_crowd > 0:
        N_a = anchors.shape[0]
        ones = paddle.ones([N_a])
        mask = is_crowd * ones

        if ignore_thresh > 0:
            crowd_iou = iou * mask
            valid = (paddle.sum((crowd_iou > ignore_thresh).cast('int32'),
                                axis=0) > 0).cast('float32')
            iou = iou * (1 - valid) - valid

        # ignore the iou between anchor and crowded ground-truth
        iou = iou * (1 - mask) - mask

110 111
    matched_vals, matches = paddle.topk(iou, k=1, axis=0)
    match_labels = paddle.full(matches.shape, -1, dtype='int32')
112 113 114 115
    # set ignored anchor with iou = -1
    neg_cond = paddle.logical_and(matched_vals > -1,
                                  matched_vals < negative_overlap)
    match_labels = paddle.where(neg_cond,
116 117 118 119 120
                                paddle.zeros_like(match_labels), match_labels)
    match_labels = paddle.where(matched_vals >= positive_overlap,
                                paddle.ones_like(match_labels), match_labels)
    if allow_low_quality:
        highest_quality_foreach_gt = iou.max(axis=1, keepdim=True)
121 122 123
        pred_inds_with_highest_quality = paddle.logical_and(
            iou > 0, iou == highest_quality_foreach_gt).cast('int32').sum(
                0, keepdim=True)
124 125 126 127 128 129
        match_labels = paddle.where(pred_inds_with_highest_quality > 0,
                                    paddle.ones_like(match_labels),
                                    match_labels)

    matches = matches.flatten()
    match_labels = match_labels.flatten()
130

W
wangguanzhong 已提交
131
    return matches, match_labels
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146


def subsample_labels(labels,
                     num_samples,
                     fg_fraction,
                     bg_label=0,
                     use_random=True):
    positive = paddle.nonzero(
        paddle.logical_and(labels != -1, labels != bg_label))
    negative = paddle.nonzero(labels == bg_label)

    fg_num = int(num_samples * fg_fraction)
    fg_num = min(positive.numel(), fg_num)
    bg_num = num_samples - fg_num
    bg_num = min(negative.numel(), bg_num)
147 148 149 150 151
    if fg_num == 0 and bg_num == 0:
        fg_inds = paddle.zeros([0], dtype='int32')
        bg_inds = paddle.zeros([0], dtype='int32')
        return fg_inds, bg_inds

152
    # randomly select positive and negative examples
153 154

    negative = negative.cast('int32').flatten()
155 156 157 158 159 160
    bg_perm = paddle.randperm(negative.numel(), dtype='int32')
    bg_perm = paddle.slice(bg_perm, axes=[0], starts=[0], ends=[bg_num])
    if use_random:
        bg_inds = paddle.gather(negative, bg_perm)
    else:
        bg_inds = paddle.slice(negative, axes=[0], starts=[0], ends=[bg_num])
161 162 163 164 165 166 167 168 169 170 171 172
    if fg_num == 0:
        fg_inds = paddle.zeros([0], dtype='int32')
        return fg_inds, bg_inds

    positive = positive.cast('int32').flatten()
    fg_perm = paddle.randperm(positive.numel(), dtype='int32')
    fg_perm = paddle.slice(fg_perm, axes=[0], starts=[0], ends=[fg_num])
    if use_random:
        fg_inds = paddle.gather(positive, fg_perm)
    else:
        fg_inds = paddle.slice(positive, axes=[0], starts=[0], ends=[fg_num])

173 174 175 176 177 178 179 180 181 182 183
    return fg_inds, bg_inds


def generate_proposal_target(rpn_rois,
                             gt_classes,
                             gt_boxes,
                             batch_size_per_im,
                             fg_fraction,
                             fg_thresh,
                             bg_thresh,
                             num_classes,
184 185
                             ignore_thresh=-1.,
                             is_crowd=None,
186
                             use_random=True,
W
wangguanzhong 已提交
187
                             is_cascade=False,
W
wangguanzhong 已提交
188
                             cascade_iou=0.5,
189 190
                             assign_on_cpu=False,
                             add_gt_as_proposals=True):
191 192 193 194 195 196 197

    rois_with_gt = []
    tgt_labels = []
    tgt_bboxes = []
    tgt_gt_inds = []
    new_rois_num = []

W
wangguanzhong 已提交
198 199
    # In cascade rcnn, the threshold for foreground and background
    # is used from cascade_iou
W
wangguanzhong 已提交
200 201
    fg_thresh = cascade_iou if is_cascade else fg_thresh
    bg_thresh = cascade_iou if is_cascade else bg_thresh
202 203
    for i, rpn_roi in enumerate(rpn_rois):
        gt_bbox = gt_boxes[i]
204
        is_crowd_i = is_crowd[i] if is_crowd else None
205 206
        gt_class = paddle.squeeze(gt_classes[i], axis=-1)

207
        # Concat RoIs and gt boxes except cascade rcnn or none gt
208
        if add_gt_as_proposals and gt_bbox.shape[0] > 0:
W
wangguanzhong 已提交
209 210 211 212 213 214
            bbox = paddle.concat([rpn_roi, gt_bbox])
        else:
            bbox = rpn_roi

        # Step1: label bbox
        matches, match_labels = label_box(bbox, gt_bbox, fg_thresh, bg_thresh,
W
wangguanzhong 已提交
215 216
                                          False, ignore_thresh, is_crowd_i,
                                          assign_on_cpu)
217 218
        # Step2: sample bbox 
        sampled_inds, sampled_gt_classes = sample_bbox(
219
            matches, match_labels, gt_class, batch_size_per_im, fg_fraction,
W
wangguanzhong 已提交
220
            num_classes, use_random, is_cascade)
221 222

        # Step3: make output 
W
wangguanzhong 已提交
223 224 225 226
        rois_per_image = bbox if is_cascade else paddle.gather(bbox,
                                                               sampled_inds)
        sampled_gt_ind = matches if is_cascade else paddle.gather(matches,
                                                                  sampled_inds)
227 228 229
        if gt_bbox.shape[0] > 0:
            sampled_bbox = paddle.gather(gt_bbox, sampled_gt_ind)
        else:
230 231
            num = rois_per_image.shape[0]
            sampled_bbox = paddle.zeros([num, 4], dtype='float32')
232 233 234 235 236 237 238 239 240 241

        rois_per_image.stop_gradient = True
        sampled_gt_ind.stop_gradient = True
        sampled_bbox.stop_gradient = True
        tgt_labels.append(sampled_gt_classes)
        tgt_bboxes.append(sampled_bbox)
        rois_with_gt.append(rois_per_image)
        tgt_gt_inds.append(sampled_gt_ind)
        new_rois_num.append(paddle.shape(sampled_inds)[0])
    new_rois_num = paddle.concat(new_rois_num)
W
wangguanzhong 已提交
242
    return rois_with_gt, tgt_labels, tgt_bboxes, tgt_gt_inds, new_rois_num
243 244


W
wangguanzhong 已提交
245 246 247 248 249 250 251 252
def sample_bbox(matches,
                match_labels,
                gt_classes,
                batch_size_per_im,
                fg_fraction,
                num_classes,
                use_random=True,
                is_cascade=False):
253 254 255 256 257 258 259 260 261 262 263 264 265

    n_gt = gt_classes.shape[0]
    if n_gt == 0:
        # No truth, assign everything to background
        gt_classes = paddle.ones(matches.shape, dtype='int32') * num_classes
        #return matches, match_labels + num_classes
    else:
        gt_classes = paddle.gather(gt_classes, matches)
        gt_classes = paddle.where(match_labels == 0,
                                  paddle.ones_like(gt_classes) * num_classes,
                                  gt_classes)
        gt_classes = paddle.where(match_labels == -1,
                                  paddle.ones_like(gt_classes) * -1, gt_classes)
W
wangguanzhong 已提交
266
    if is_cascade:
267 268
        index = paddle.arange(matches.shape[0])
        return index, gt_classes
269 270 271 272
    rois_per_image = int(batch_size_per_im)

    fg_inds, bg_inds = subsample_labels(gt_classes, rois_per_image, fg_fraction,
                                        num_classes, use_random)
273 274 275 276 277 278
    if fg_inds.shape[0] == 0 and bg_inds.shape[0] == 0:
        # fake output labeled with -1 when all boxes are neither
        # foreground nor background
        sampled_inds = paddle.zeros([1], dtype='int32')
    else:
        sampled_inds = paddle.concat([fg_inds, bg_inds])
279 280 281 282 283 284
    sampled_gt_classes = paddle.gather(gt_classes, sampled_inds)
    return sampled_inds, sampled_gt_classes


def polygons_to_mask(polygons, height, width):
    """
W
wangguanzhong 已提交
285 286
    Convert the polygons to mask format

287 288
    Args:
        polygons (list[ndarray]): each array has shape (Nx2,)
W
wangguanzhong 已提交
289 290
        height (int): mask height
        width (int): mask width
291 292 293 294 295 296 297 298 299 300 301 302
    Returns:
        ndarray: a bool mask of shape (height, width)
    """
    import pycocotools.mask as mask_util
    assert len(polygons) > 0, "COCOAPI does not support empty polygons"
    rles = mask_util.frPyObjects(polygons, height, width)
    rle = mask_util.merge(rles)
    return mask_util.decode(rle).astype(np.bool)


def rasterize_polygons_within_box(poly, box, resolution):
    w, h = box[2] - box[0], box[3] - box[1]
303
    polygons = [np.asarray(p, dtype=np.float64) for p in poly]
304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
    for p in polygons:
        p[0::2] = p[0::2] - box[0]
        p[1::2] = p[1::2] - box[1]

    ratio_h = resolution / max(h, 0.1)
    ratio_w = resolution / max(w, 0.1)

    if ratio_h == ratio_w:
        for p in polygons:
            p *= ratio_h
    else:
        for p in polygons:
            p[0::2] *= ratio_w
            p[1::2] *= ratio_h

    # 3. Rasterize the polygons with coco api
    mask = polygons_to_mask(polygons, resolution, resolution)
    mask = paddle.to_tensor(mask, dtype='int32')
    return mask


def generate_mask_target(gt_segms, rois, labels_int32, sampled_gt_inds,
                         num_classes, resolution):
    mask_rois = []
    mask_rois_num = []
    tgt_masks = []
    tgt_classes = []
    mask_index = []
    tgt_weights = []
    for k in range(len(rois)):
        labels_per_im = labels_int32[k]
W
wangguanzhong 已提交
335
        # select rois labeled with foreground
336 337 338
        fg_inds = paddle.nonzero(
            paddle.logical_and(labels_per_im != -1, labels_per_im !=
                               num_classes))
339
        has_fg = True
W
wangguanzhong 已提交
340
        # generate fake roi if foreground is empty
341 342
        if fg_inds.numel() == 0:
            has_fg = False
343
            fg_inds = paddle.ones([1, 1], dtype='int64')
344 345 346
        inds_per_im = sampled_gt_inds[k]
        inds_per_im = paddle.gather(inds_per_im, fg_inds)

347
        rois_per_im = rois[k]
348
        fg_rois = paddle.gather(rois_per_im, fg_inds)
W
wangguanzhong 已提交
349 350
        # Copy the foreground roi to cpu
        # to generate mask target with ground-truth
351 352
        boxes = fg_rois.numpy()
        gt_segms_per_im = gt_segms[k]
353

354 355
        new_segm = []
        inds_per_im = inds_per_im.numpy()
356 357 358
        if len(gt_segms_per_im) > 0:
            for i in inds_per_im:
                new_segm.append(gt_segms_per_im[i])
359 360
        fg_inds_new = fg_inds.reshape([-1]).numpy()
        results = []
361
        if len(gt_segms_per_im) > 0:
W
wangguanzhong 已提交
362
            for j in range(fg_inds_new.shape[0]):
363 364 365 366 367
                results.append(
                    rasterize_polygons_within_box(new_segm[j], boxes[j],
                                                  resolution))
        else:
            results.append(paddle.ones([resolution, resolution], dtype='int32'))
368

369 370 371
        fg_classes = paddle.gather(labels_per_im, fg_inds)
        weight = paddle.ones([fg_rois.shape[0]], dtype='float32')
        if not has_fg:
372 373 374 375
            # now all sampled classes are background
            # which will cause error in loss calculation,
            # make fake classes with weight of 0.
            fg_classes = paddle.zeros([1], dtype='int32')
376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394
            weight = weight - 1
        tgt_mask = paddle.stack(results)
        tgt_mask.stop_gradient = True
        fg_rois.stop_gradient = True

        mask_index.append(fg_inds)
        mask_rois.append(fg_rois)
        mask_rois_num.append(paddle.shape(fg_rois)[0])
        tgt_classes.append(fg_classes)
        tgt_masks.append(tgt_mask)
        tgt_weights.append(weight)

    mask_index = paddle.concat(mask_index)
    mask_rois_num = paddle.concat(mask_rois_num)
    tgt_classes = paddle.concat(tgt_classes, axis=0)
    tgt_masks = paddle.concat(tgt_masks, axis=0)
    tgt_weights = paddle.concat(tgt_weights, axis=0)

    return mask_rois, mask_rois_num, tgt_classes, tgt_masks, mask_index, tgt_weights
G
Guanghua Yu 已提交
395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678


def libra_sample_pos(max_overlaps, max_classes, pos_inds, num_expected):
    if len(pos_inds) <= num_expected:
        return pos_inds
    else:
        unique_gt_inds = np.unique(max_classes[pos_inds])
        num_gts = len(unique_gt_inds)
        num_per_gt = int(round(num_expected / float(num_gts)) + 1)

        sampled_inds = []
        for i in unique_gt_inds:
            inds = np.nonzero(max_classes == i)[0]
            before_len = len(inds)
            inds = list(set(inds) & set(pos_inds))
            after_len = len(inds)
            if len(inds) > num_per_gt:
                inds = np.random.choice(inds, size=num_per_gt, replace=False)
            sampled_inds.extend(list(inds))  # combine as a new sampler
        if len(sampled_inds) < num_expected:
            num_extra = num_expected - len(sampled_inds)
            extra_inds = np.array(list(set(pos_inds) - set(sampled_inds)))
            assert len(sampled_inds) + len(extra_inds) == len(pos_inds), \
                "sum of sampled_inds({}) and extra_inds({}) length must be equal with pos_inds({})!".format(
                    len(sampled_inds), len(extra_inds), len(pos_inds))
            if len(extra_inds) > num_extra:
                extra_inds = np.random.choice(
                    extra_inds, size=num_extra, replace=False)
            sampled_inds.extend(extra_inds.tolist())
        elif len(sampled_inds) > num_expected:
            sampled_inds = np.random.choice(
                sampled_inds, size=num_expected, replace=False)
        return paddle.to_tensor(sampled_inds)


def libra_sample_via_interval(max_overlaps, full_set, num_expected, floor_thr,
                              num_bins, bg_thresh):
    max_iou = max_overlaps.max()
    iou_interval = (max_iou - floor_thr) / num_bins
    per_num_expected = int(num_expected / num_bins)

    sampled_inds = []
    for i in range(num_bins):
        start_iou = floor_thr + i * iou_interval
        end_iou = floor_thr + (i + 1) * iou_interval

        tmp_set = set(
            np.where(
                np.logical_and(max_overlaps >= start_iou, max_overlaps <
                               end_iou))[0])
        tmp_inds = list(tmp_set & full_set)

        if len(tmp_inds) > per_num_expected:
            tmp_sampled_set = np.random.choice(
                tmp_inds, size=per_num_expected, replace=False)
        else:
            tmp_sampled_set = np.array(tmp_inds, dtype=np.int)
        sampled_inds.append(tmp_sampled_set)

    sampled_inds = np.concatenate(sampled_inds)
    if len(sampled_inds) < num_expected:
        num_extra = num_expected - len(sampled_inds)
        extra_inds = np.array(list(full_set - set(sampled_inds)))
        assert len(sampled_inds) + len(extra_inds) == len(full_set), \
            "sum of sampled_inds({}) and extra_inds({}) length must be equal with full_set({})!".format(
                len(sampled_inds), len(extra_inds), len(full_set))

        if len(extra_inds) > num_extra:
            extra_inds = np.random.choice(extra_inds, num_extra, replace=False)
        sampled_inds = np.concatenate([sampled_inds, extra_inds])

    return sampled_inds


def libra_sample_neg(max_overlaps,
                     max_classes,
                     neg_inds,
                     num_expected,
                     floor_thr=-1,
                     floor_fraction=0,
                     num_bins=3,
                     bg_thresh=0.5):
    if len(neg_inds) <= num_expected:
        return neg_inds
    else:
        # balance sampling for negative samples
        neg_set = set(neg_inds.tolist())
        if floor_thr > 0:
            floor_set = set(
                np.where(
                    np.logical_and(max_overlaps >= 0, max_overlaps < floor_thr))
                [0])
            iou_sampling_set = set(np.where(max_overlaps >= floor_thr)[0])
        elif floor_thr == 0:
            floor_set = set(np.where(max_overlaps == 0)[0])
            iou_sampling_set = set(np.where(max_overlaps > floor_thr)[0])
        else:
            floor_set = set()
            iou_sampling_set = set(np.where(max_overlaps > floor_thr)[0])
            floor_thr = 0

        floor_neg_inds = list(floor_set & neg_set)
        iou_sampling_neg_inds = list(iou_sampling_set & neg_set)

        num_expected_iou_sampling = int(num_expected * (1 - floor_fraction))
        if len(iou_sampling_neg_inds) > num_expected_iou_sampling:
            if num_bins >= 2:
                iou_sampled_inds = libra_sample_via_interval(
                    max_overlaps,
                    set(iou_sampling_neg_inds), num_expected_iou_sampling,
                    floor_thr, num_bins, bg_thresh)
            else:
                iou_sampled_inds = np.random.choice(
                    iou_sampling_neg_inds,
                    size=num_expected_iou_sampling,
                    replace=False)
        else:
            iou_sampled_inds = np.array(iou_sampling_neg_inds, dtype=np.int)
        num_expected_floor = num_expected - len(iou_sampled_inds)
        if len(floor_neg_inds) > num_expected_floor:
            sampled_floor_inds = np.random.choice(
                floor_neg_inds, size=num_expected_floor, replace=False)
        else:
            sampled_floor_inds = np.array(floor_neg_inds, dtype=np.int)
        sampled_inds = np.concatenate((sampled_floor_inds, iou_sampled_inds))
        if len(sampled_inds) < num_expected:
            num_extra = num_expected - len(sampled_inds)
            extra_inds = np.array(list(neg_set - set(sampled_inds)))
            if len(extra_inds) > num_extra:
                extra_inds = np.random.choice(
                    extra_inds, size=num_extra, replace=False)
            sampled_inds = np.concatenate((sampled_inds, extra_inds))
        return paddle.to_tensor(sampled_inds)


def libra_label_box(anchors, gt_boxes, gt_classes, positive_overlap,
                    negative_overlap, num_classes):
    # TODO: use paddle API to speed up
    gt_classes = gt_classes.numpy()
    gt_overlaps = np.zeros((anchors.shape[0], num_classes))
    matches = np.zeros((anchors.shape[0]), dtype=np.int32)
    if len(gt_boxes) > 0:
        proposal_to_gt_overlaps = bbox_overlaps(anchors, gt_boxes).numpy()
        overlaps_argmax = proposal_to_gt_overlaps.argmax(axis=1)
        overlaps_max = proposal_to_gt_overlaps.max(axis=1)
        # Boxes which with non-zero overlap with gt boxes
        overlapped_boxes_ind = np.where(overlaps_max > 0)[0]
        overlapped_boxes_gt_classes = gt_classes[overlaps_argmax[
            overlapped_boxes_ind]]

        for idx in range(len(overlapped_boxes_ind)):
            gt_overlaps[overlapped_boxes_ind[idx], overlapped_boxes_gt_classes[
                idx]] = overlaps_max[overlapped_boxes_ind[idx]]
            matches[overlapped_boxes_ind[idx]] = overlaps_argmax[
                overlapped_boxes_ind[idx]]

    gt_overlaps = paddle.to_tensor(gt_overlaps)
    matches = paddle.to_tensor(matches)

    matched_vals = paddle.max(gt_overlaps, axis=1)
    match_labels = paddle.full(matches.shape, -1, dtype='int32')
    match_labels = paddle.where(matched_vals < negative_overlap,
                                paddle.zeros_like(match_labels), match_labels)
    match_labels = paddle.where(matched_vals >= positive_overlap,
                                paddle.ones_like(match_labels), match_labels)

    return matches, match_labels, matched_vals


def libra_sample_bbox(matches,
                      match_labels,
                      matched_vals,
                      gt_classes,
                      batch_size_per_im,
                      num_classes,
                      fg_fraction,
                      fg_thresh,
                      bg_thresh,
                      num_bins,
                      use_random=True,
                      is_cascade_rcnn=False):
    rois_per_image = int(batch_size_per_im)
    fg_rois_per_im = int(np.round(fg_fraction * rois_per_image))
    bg_rois_per_im = rois_per_image - fg_rois_per_im

    if is_cascade_rcnn:
        fg_inds = paddle.nonzero(matched_vals >= fg_thresh)
        bg_inds = paddle.nonzero(matched_vals < bg_thresh)
    else:
        matched_vals_np = matched_vals.numpy()
        match_labels_np = match_labels.numpy()

        # sample fg
        fg_inds = paddle.nonzero(matched_vals >= fg_thresh).flatten()
        fg_nums = int(np.minimum(fg_rois_per_im, fg_inds.shape[0]))
        if (fg_inds.shape[0] > fg_nums) and use_random:
            fg_inds = libra_sample_pos(matched_vals_np, match_labels_np,
                                       fg_inds.numpy(), fg_rois_per_im)
        fg_inds = fg_inds[:fg_nums]

        # sample bg
        bg_inds = paddle.nonzero(matched_vals < bg_thresh).flatten()
        bg_nums = int(np.minimum(rois_per_image - fg_nums, bg_inds.shape[0]))
        if (bg_inds.shape[0] > bg_nums) and use_random:
            bg_inds = libra_sample_neg(
                matched_vals_np,
                match_labels_np,
                bg_inds.numpy(),
                bg_rois_per_im,
                num_bins=num_bins,
                bg_thresh=bg_thresh)
        bg_inds = bg_inds[:bg_nums]

        sampled_inds = paddle.concat([fg_inds, bg_inds])

        gt_classes = paddle.gather(gt_classes, matches)
        gt_classes = paddle.where(match_labels == 0,
                                  paddle.ones_like(gt_classes) * num_classes,
                                  gt_classes)
        gt_classes = paddle.where(match_labels == -1,
                                  paddle.ones_like(gt_classes) * -1, gt_classes)
        sampled_gt_classes = paddle.gather(gt_classes, sampled_inds)

        return sampled_inds, sampled_gt_classes


def libra_generate_proposal_target(rpn_rois,
                                   gt_classes,
                                   gt_boxes,
                                   batch_size_per_im,
                                   fg_fraction,
                                   fg_thresh,
                                   bg_thresh,
                                   num_classes,
                                   use_random=True,
                                   is_cascade_rcnn=False,
                                   max_overlaps=None,
                                   num_bins=3):

    rois_with_gt = []
    tgt_labels = []
    tgt_bboxes = []
    sampled_max_overlaps = []
    tgt_gt_inds = []
    new_rois_num = []

    for i, rpn_roi in enumerate(rpn_rois):
        max_overlap = max_overlaps[i] if is_cascade_rcnn else None
        gt_bbox = gt_boxes[i]
        gt_class = paddle.squeeze(gt_classes[i], axis=-1)
        if is_cascade_rcnn:
            rpn_roi = filter_roi(rpn_roi, max_overlap)
        bbox = paddle.concat([rpn_roi, gt_bbox])

        # Step1: label bbox
        matches, match_labels, matched_vals = libra_label_box(
            bbox, gt_bbox, gt_class, fg_thresh, bg_thresh, num_classes)

        # Step2: sample bbox
        sampled_inds, sampled_gt_classes = libra_sample_bbox(
            matches, match_labels, matched_vals, gt_class, batch_size_per_im,
            num_classes, fg_fraction, fg_thresh, bg_thresh, num_bins,
            use_random, is_cascade_rcnn)

        # Step3: make output
        rois_per_image = paddle.gather(bbox, sampled_inds)
        sampled_gt_ind = paddle.gather(matches, sampled_inds)
        sampled_bbox = paddle.gather(gt_bbox, sampled_gt_ind)
        sampled_overlap = paddle.gather(matched_vals, sampled_inds)

        rois_per_image.stop_gradient = True
        sampled_gt_ind.stop_gradient = True
        sampled_bbox.stop_gradient = True
        sampled_overlap.stop_gradient = True

        tgt_labels.append(sampled_gt_classes)
        tgt_bboxes.append(sampled_bbox)
        rois_with_gt.append(rois_per_image)
        sampled_max_overlaps.append(sampled_overlap)
        tgt_gt_inds.append(sampled_gt_ind)
        new_rois_num.append(paddle.shape(sampled_inds)[0])
    new_rois_num = paddle.concat(new_rois_num)
    # rois_with_gt, tgt_labels, tgt_bboxes, tgt_gt_inds, new_rois_num
    return rois_with_gt, tgt_labels, tgt_bboxes, tgt_gt_inds, new_rois_num