# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import paddle from ..bbox_utils import bbox2delta, bbox_overlaps def rpn_anchor_target(anchors, gt_boxes, rpn_batch_size_per_im, rpn_positive_overlap, rpn_negative_overlap, rpn_fg_fraction, use_random=True, batch_size=1, ignore_thresh=-1, is_crowd=None, weights=[1., 1., 1., 1.], assign_on_cpu=False): tgt_labels = [] tgt_bboxes = [] tgt_deltas = [] for i in range(batch_size): gt_bbox = gt_boxes[i] is_crowd_i = is_crowd[i] if is_crowd else None # Step1: match anchor and gt_bbox matches, match_labels = label_box( anchors, gt_bbox, rpn_positive_overlap, rpn_negative_overlap, True, ignore_thresh, is_crowd_i, assign_on_cpu) # Step2: sample anchor fg_inds, bg_inds = subsample_labels(match_labels, rpn_batch_size_per_im, rpn_fg_fraction, 0, use_random) # Fill with the ignore label (-1), then set positive and negative labels labels = paddle.full(match_labels.shape, -1, dtype='int32') if bg_inds.shape[0] > 0: labels = paddle.scatter(labels, bg_inds, paddle.zeros_like(bg_inds)) if fg_inds.shape[0] > 0: labels = paddle.scatter(labels, fg_inds, paddle.ones_like(fg_inds)) # Step3: make output if gt_bbox.shape[0] == 0: matched_gt_boxes = paddle.zeros([matches.shape[0], 4]) tgt_delta = paddle.zeros([matches.shape[0], 4]) else: matched_gt_boxes = paddle.gather(gt_bbox, matches) tgt_delta = bbox2delta(anchors, matched_gt_boxes, weights) matched_gt_boxes.stop_gradient = True tgt_delta.stop_gradient = True labels.stop_gradient = True tgt_labels.append(labels) tgt_bboxes.append(matched_gt_boxes) tgt_deltas.append(tgt_delta) return tgt_labels, tgt_bboxes, tgt_deltas def label_box(anchors, gt_boxes, positive_overlap, negative_overlap, allow_low_quality, ignore_thresh, is_crowd=None, assign_on_cpu=False): if assign_on_cpu: device = paddle.device.get_device() paddle.set_device("cpu") iou = bbox_overlaps(gt_boxes, anchors) paddle.set_device(device) else: iou = bbox_overlaps(gt_boxes, anchors) n_gt = gt_boxes.shape[0] if n_gt == 0 or is_crowd is None: n_gt_crowd = 0 else: n_gt_crowd = paddle.nonzero(is_crowd).shape[0] if iou.shape[0] == 0 or n_gt_crowd == n_gt: # No truth, assign everything to background default_matches = paddle.full((iou.shape[1], ), 0, dtype='int64') default_match_labels = paddle.full((iou.shape[1], ), 0, dtype='int32') return default_matches, default_match_labels # if ignore_thresh > 0, remove anchor if it is closed to # one of the crowded ground-truth if n_gt_crowd > 0: N_a = anchors.shape[0] ones = paddle.ones([N_a]) mask = is_crowd * ones if ignore_thresh > 0: crowd_iou = iou * mask valid = (paddle.sum((crowd_iou > ignore_thresh).cast('int32'), axis=0) > 0).cast('float32') iou = iou * (1 - valid) - valid # ignore the iou between anchor and crowded ground-truth iou = iou * (1 - mask) - mask matched_vals, matches = paddle.topk(iou, k=1, axis=0) match_labels = paddle.full(matches.shape, -1, dtype='int32') # set ignored anchor with iou = -1 neg_cond = paddle.logical_and(matched_vals > -1, matched_vals < negative_overlap) match_labels = paddle.where(neg_cond, paddle.zeros_like(match_labels), match_labels) match_labels = paddle.where(matched_vals >= positive_overlap, paddle.ones_like(match_labels), match_labels) if allow_low_quality: highest_quality_foreach_gt = iou.max(axis=1, keepdim=True) pred_inds_with_highest_quality = paddle.logical_and( iou > 0, iou == highest_quality_foreach_gt).cast('int32').sum( 0, keepdim=True) match_labels = paddle.where(pred_inds_with_highest_quality > 0, paddle.ones_like(match_labels), match_labels) matches = matches.flatten() match_labels = match_labels.flatten() return matches, match_labels def subsample_labels(labels, num_samples, fg_fraction, bg_label=0, use_random=True): positive = paddle.nonzero( paddle.logical_and(labels != -1, labels != bg_label)) negative = paddle.nonzero(labels == bg_label) fg_num = int(num_samples * fg_fraction) fg_num = min(positive.numel(), fg_num) bg_num = num_samples - fg_num bg_num = min(negative.numel(), bg_num) if fg_num == 0 and bg_num == 0: fg_inds = paddle.zeros([0], dtype='int32') bg_inds = paddle.zeros([0], dtype='int32') return fg_inds, bg_inds # randomly select positive and negative examples negative = negative.cast('int32').flatten() bg_perm = paddle.randperm(negative.numel(), dtype='int32') bg_perm = paddle.slice(bg_perm, axes=[0], starts=[0], ends=[bg_num]) if use_random: bg_inds = paddle.gather(negative, bg_perm) else: bg_inds = paddle.slice(negative, axes=[0], starts=[0], ends=[bg_num]) if fg_num == 0: fg_inds = paddle.zeros([0], dtype='int32') return fg_inds, bg_inds positive = positive.cast('int32').flatten() fg_perm = paddle.randperm(positive.numel(), dtype='int32') fg_perm = paddle.slice(fg_perm, axes=[0], starts=[0], ends=[fg_num]) if use_random: fg_inds = paddle.gather(positive, fg_perm) else: fg_inds = paddle.slice(positive, axes=[0], starts=[0], ends=[fg_num]) return fg_inds, bg_inds def generate_proposal_target(rpn_rois, gt_classes, gt_boxes, batch_size_per_im, fg_fraction, fg_thresh, bg_thresh, num_classes, ignore_thresh=-1., is_crowd=None, use_random=True, is_cascade=False, cascade_iou=0.5, assign_on_cpu=False, add_gt_as_proposals=True): rois_with_gt = [] tgt_labels = [] tgt_bboxes = [] tgt_gt_inds = [] new_rois_num = [] # In cascade rcnn, the threshold for foreground and background # is used from cascade_iou fg_thresh = cascade_iou if is_cascade else fg_thresh bg_thresh = cascade_iou if is_cascade else bg_thresh for i, rpn_roi in enumerate(rpn_rois): gt_bbox = gt_boxes[i] is_crowd_i = is_crowd[i] if is_crowd else None gt_class = paddle.squeeze(gt_classes[i], axis=-1) # Concat RoIs and gt boxes except cascade rcnn or none gt if add_gt_as_proposals and gt_bbox.shape[0] > 0: bbox = paddle.concat([rpn_roi, gt_bbox]) else: bbox = rpn_roi # Step1: label bbox matches, match_labels = label_box(bbox, gt_bbox, fg_thresh, bg_thresh, False, ignore_thresh, is_crowd_i, assign_on_cpu) # Step2: sample bbox sampled_inds, sampled_gt_classes = sample_bbox( matches, match_labels, gt_class, batch_size_per_im, fg_fraction, num_classes, use_random, is_cascade) # Step3: make output rois_per_image = bbox if is_cascade else paddle.gather(bbox, sampled_inds) sampled_gt_ind = matches if is_cascade else paddle.gather(matches, sampled_inds) if gt_bbox.shape[0] > 0: sampled_bbox = paddle.gather(gt_bbox, sampled_gt_ind) else: num = rois_per_image.shape[0] sampled_bbox = paddle.zeros([num, 4], dtype='float32') rois_per_image.stop_gradient = True sampled_gt_ind.stop_gradient = True sampled_bbox.stop_gradient = True tgt_labels.append(sampled_gt_classes) tgt_bboxes.append(sampled_bbox) rois_with_gt.append(rois_per_image) tgt_gt_inds.append(sampled_gt_ind) new_rois_num.append(paddle.shape(sampled_inds)[0]) new_rois_num = paddle.concat(new_rois_num) return rois_with_gt, tgt_labels, tgt_bboxes, tgt_gt_inds, new_rois_num def sample_bbox(matches, match_labels, gt_classes, batch_size_per_im, fg_fraction, num_classes, use_random=True, is_cascade=False): n_gt = gt_classes.shape[0] if n_gt == 0: # No truth, assign everything to background gt_classes = paddle.ones(matches.shape, dtype='int32') * num_classes #return matches, match_labels + num_classes else: gt_classes = paddle.gather(gt_classes, matches) gt_classes = paddle.where(match_labels == 0, paddle.ones_like(gt_classes) * num_classes, gt_classes) gt_classes = paddle.where(match_labels == -1, paddle.ones_like(gt_classes) * -1, gt_classes) if is_cascade: index = paddle.arange(matches.shape[0]) return index, gt_classes rois_per_image = int(batch_size_per_im) fg_inds, bg_inds = subsample_labels(gt_classes, rois_per_image, fg_fraction, num_classes, use_random) if fg_inds.shape[0] == 0 and bg_inds.shape[0] == 0: # fake output labeled with -1 when all boxes are neither # foreground nor background sampled_inds = paddle.zeros([1], dtype='int32') else: sampled_inds = paddle.concat([fg_inds, bg_inds]) sampled_gt_classes = paddle.gather(gt_classes, sampled_inds) return sampled_inds, sampled_gt_classes def polygons_to_mask(polygons, height, width): """ Convert the polygons to mask format Args: polygons (list[ndarray]): each array has shape (Nx2,) height (int): mask height width (int): mask width Returns: ndarray: a bool mask of shape (height, width) """ import pycocotools.mask as mask_util assert len(polygons) > 0, "COCOAPI does not support empty polygons" rles = mask_util.frPyObjects(polygons, height, width) rle = mask_util.merge(rles) return mask_util.decode(rle).astype(np.bool) def rasterize_polygons_within_box(poly, box, resolution): w, h = box[2] - box[0], box[3] - box[1] polygons = [np.asarray(p, dtype=np.float64) for p in poly] for p in polygons: p[0::2] = p[0::2] - box[0] p[1::2] = p[1::2] - box[1] ratio_h = resolution / max(h, 0.1) ratio_w = resolution / max(w, 0.1) if ratio_h == ratio_w: for p in polygons: p *= ratio_h else: for p in polygons: p[0::2] *= ratio_w p[1::2] *= ratio_h # 3. Rasterize the polygons with coco api mask = polygons_to_mask(polygons, resolution, resolution) mask = paddle.to_tensor(mask, dtype='int32') return mask def generate_mask_target(gt_segms, rois, labels_int32, sampled_gt_inds, num_classes, resolution): mask_rois = [] mask_rois_num = [] tgt_masks = [] tgt_classes = [] mask_index = [] tgt_weights = [] for k in range(len(rois)): labels_per_im = labels_int32[k] # select rois labeled with foreground fg_inds = paddle.nonzero( paddle.logical_and(labels_per_im != -1, labels_per_im != num_classes)) has_fg = True # generate fake roi if foreground is empty if fg_inds.numel() == 0: has_fg = False fg_inds = paddle.ones([1, 1], dtype='int64') inds_per_im = sampled_gt_inds[k] inds_per_im = paddle.gather(inds_per_im, fg_inds) rois_per_im = rois[k] fg_rois = paddle.gather(rois_per_im, fg_inds) # Copy the foreground roi to cpu # to generate mask target with ground-truth boxes = fg_rois.numpy() gt_segms_per_im = gt_segms[k] new_segm = [] inds_per_im = inds_per_im.numpy() if len(gt_segms_per_im) > 0: for i in inds_per_im: new_segm.append(gt_segms_per_im[i]) fg_inds_new = fg_inds.reshape([-1]).numpy() results = [] if len(gt_segms_per_im) > 0: for j in range(fg_inds_new.shape[0]): results.append( rasterize_polygons_within_box(new_segm[j], boxes[j], resolution)) else: results.append(paddle.ones([resolution, resolution], dtype='int32')) fg_classes = paddle.gather(labels_per_im, fg_inds) weight = paddle.ones([fg_rois.shape[0]], dtype='float32') if not has_fg: # now all sampled classes are background # which will cause error in loss calculation, # make fake classes with weight of 0. fg_classes = paddle.zeros([1], dtype='int32') weight = weight - 1 tgt_mask = paddle.stack(results) tgt_mask.stop_gradient = True fg_rois.stop_gradient = True mask_index.append(fg_inds) mask_rois.append(fg_rois) mask_rois_num.append(paddle.shape(fg_rois)[0]) tgt_classes.append(fg_classes) tgt_masks.append(tgt_mask) tgt_weights.append(weight) mask_index = paddle.concat(mask_index) mask_rois_num = paddle.concat(mask_rois_num) tgt_classes = paddle.concat(tgt_classes, axis=0) tgt_masks = paddle.concat(tgt_masks, axis=0) tgt_weights = paddle.concat(tgt_weights, axis=0) return mask_rois, mask_rois_num, tgt_classes, tgt_masks, mask_index, tgt_weights def libra_sample_pos(max_overlaps, max_classes, pos_inds, num_expected): if len(pos_inds) <= num_expected: return pos_inds else: unique_gt_inds = np.unique(max_classes[pos_inds]) num_gts = len(unique_gt_inds) num_per_gt = int(round(num_expected / float(num_gts)) + 1) sampled_inds = [] for i in unique_gt_inds: inds = np.nonzero(max_classes == i)[0] before_len = len(inds) inds = list(set(inds) & set(pos_inds)) after_len = len(inds) if len(inds) > num_per_gt: inds = np.random.choice(inds, size=num_per_gt, replace=False) sampled_inds.extend(list(inds)) # combine as a new sampler if len(sampled_inds) < num_expected: num_extra = num_expected - len(sampled_inds) extra_inds = np.array(list(set(pos_inds) - set(sampled_inds))) assert len(sampled_inds) + len(extra_inds) == len(pos_inds), \ "sum of sampled_inds({}) and extra_inds({}) length must be equal with pos_inds({})!".format( len(sampled_inds), len(extra_inds), len(pos_inds)) if len(extra_inds) > num_extra: extra_inds = np.random.choice( extra_inds, size=num_extra, replace=False) sampled_inds.extend(extra_inds.tolist()) elif len(sampled_inds) > num_expected: sampled_inds = np.random.choice( sampled_inds, size=num_expected, replace=False) return paddle.to_tensor(sampled_inds) def libra_sample_via_interval(max_overlaps, full_set, num_expected, floor_thr, num_bins, bg_thresh): max_iou = max_overlaps.max() iou_interval = (max_iou - floor_thr) / num_bins per_num_expected = int(num_expected / num_bins) sampled_inds = [] for i in range(num_bins): start_iou = floor_thr + i * iou_interval end_iou = floor_thr + (i + 1) * iou_interval tmp_set = set( np.where( np.logical_and(max_overlaps >= start_iou, max_overlaps < end_iou))[0]) tmp_inds = list(tmp_set & full_set) if len(tmp_inds) > per_num_expected: tmp_sampled_set = np.random.choice( tmp_inds, size=per_num_expected, replace=False) else: tmp_sampled_set = np.array(tmp_inds, dtype=np.int) sampled_inds.append(tmp_sampled_set) sampled_inds = np.concatenate(sampled_inds) if len(sampled_inds) < num_expected: num_extra = num_expected - len(sampled_inds) extra_inds = np.array(list(full_set - set(sampled_inds))) assert len(sampled_inds) + len(extra_inds) == len(full_set), \ "sum of sampled_inds({}) and extra_inds({}) length must be equal with full_set({})!".format( len(sampled_inds), len(extra_inds), len(full_set)) if len(extra_inds) > num_extra: extra_inds = np.random.choice(extra_inds, num_extra, replace=False) sampled_inds = np.concatenate([sampled_inds, extra_inds]) return sampled_inds def libra_sample_neg(max_overlaps, max_classes, neg_inds, num_expected, floor_thr=-1, floor_fraction=0, num_bins=3, bg_thresh=0.5): if len(neg_inds) <= num_expected: return neg_inds else: # balance sampling for negative samples neg_set = set(neg_inds.tolist()) if floor_thr > 0: floor_set = set( np.where( np.logical_and(max_overlaps >= 0, max_overlaps < floor_thr)) [0]) iou_sampling_set = set(np.where(max_overlaps >= floor_thr)[0]) elif floor_thr == 0: floor_set = set(np.where(max_overlaps == 0)[0]) iou_sampling_set = set(np.where(max_overlaps > floor_thr)[0]) else: floor_set = set() iou_sampling_set = set(np.where(max_overlaps > floor_thr)[0]) floor_thr = 0 floor_neg_inds = list(floor_set & neg_set) iou_sampling_neg_inds = list(iou_sampling_set & neg_set) num_expected_iou_sampling = int(num_expected * (1 - floor_fraction)) if len(iou_sampling_neg_inds) > num_expected_iou_sampling: if num_bins >= 2: iou_sampled_inds = libra_sample_via_interval( max_overlaps, set(iou_sampling_neg_inds), num_expected_iou_sampling, floor_thr, num_bins, bg_thresh) else: iou_sampled_inds = np.random.choice( iou_sampling_neg_inds, size=num_expected_iou_sampling, replace=False) else: iou_sampled_inds = np.array(iou_sampling_neg_inds, dtype=np.int) num_expected_floor = num_expected - len(iou_sampled_inds) if len(floor_neg_inds) > num_expected_floor: sampled_floor_inds = np.random.choice( floor_neg_inds, size=num_expected_floor, replace=False) else: sampled_floor_inds = np.array(floor_neg_inds, dtype=np.int) sampled_inds = np.concatenate((sampled_floor_inds, iou_sampled_inds)) if len(sampled_inds) < num_expected: num_extra = num_expected - len(sampled_inds) extra_inds = np.array(list(neg_set - set(sampled_inds))) if len(extra_inds) > num_extra: extra_inds = np.random.choice( extra_inds, size=num_extra, replace=False) sampled_inds = np.concatenate((sampled_inds, extra_inds)) return paddle.to_tensor(sampled_inds) def libra_label_box(anchors, gt_boxes, gt_classes, positive_overlap, negative_overlap, num_classes): # TODO: use paddle API to speed up gt_classes = gt_classes.numpy() gt_overlaps = np.zeros((anchors.shape[0], num_classes)) matches = np.zeros((anchors.shape[0]), dtype=np.int32) if len(gt_boxes) > 0: proposal_to_gt_overlaps = bbox_overlaps(anchors, gt_boxes).numpy() overlaps_argmax = proposal_to_gt_overlaps.argmax(axis=1) overlaps_max = proposal_to_gt_overlaps.max(axis=1) # Boxes which with non-zero overlap with gt boxes overlapped_boxes_ind = np.where(overlaps_max > 0)[0] overlapped_boxes_gt_classes = gt_classes[overlaps_argmax[ overlapped_boxes_ind]] for idx in range(len(overlapped_boxes_ind)): gt_overlaps[overlapped_boxes_ind[idx], overlapped_boxes_gt_classes[ idx]] = overlaps_max[overlapped_boxes_ind[idx]] matches[overlapped_boxes_ind[idx]] = overlaps_argmax[ overlapped_boxes_ind[idx]] gt_overlaps = paddle.to_tensor(gt_overlaps) matches = paddle.to_tensor(matches) matched_vals = paddle.max(gt_overlaps, axis=1) match_labels = paddle.full(matches.shape, -1, dtype='int32') match_labels = paddle.where(matched_vals < negative_overlap, paddle.zeros_like(match_labels), match_labels) match_labels = paddle.where(matched_vals >= positive_overlap, paddle.ones_like(match_labels), match_labels) return matches, match_labels, matched_vals def libra_sample_bbox(matches, match_labels, matched_vals, gt_classes, batch_size_per_im, num_classes, fg_fraction, fg_thresh, bg_thresh, num_bins, use_random=True, is_cascade_rcnn=False): rois_per_image = int(batch_size_per_im) fg_rois_per_im = int(np.round(fg_fraction * rois_per_image)) bg_rois_per_im = rois_per_image - fg_rois_per_im if is_cascade_rcnn: fg_inds = paddle.nonzero(matched_vals >= fg_thresh) bg_inds = paddle.nonzero(matched_vals < bg_thresh) else: matched_vals_np = matched_vals.numpy() match_labels_np = match_labels.numpy() # sample fg fg_inds = paddle.nonzero(matched_vals >= fg_thresh).flatten() fg_nums = int(np.minimum(fg_rois_per_im, fg_inds.shape[0])) if (fg_inds.shape[0] > fg_nums) and use_random: fg_inds = libra_sample_pos(matched_vals_np, match_labels_np, fg_inds.numpy(), fg_rois_per_im) fg_inds = fg_inds[:fg_nums] # sample bg bg_inds = paddle.nonzero(matched_vals < bg_thresh).flatten() bg_nums = int(np.minimum(rois_per_image - fg_nums, bg_inds.shape[0])) if (bg_inds.shape[0] > bg_nums) and use_random: bg_inds = libra_sample_neg( matched_vals_np, match_labels_np, bg_inds.numpy(), bg_rois_per_im, num_bins=num_bins, bg_thresh=bg_thresh) bg_inds = bg_inds[:bg_nums] sampled_inds = paddle.concat([fg_inds, bg_inds]) gt_classes = paddle.gather(gt_classes, matches) gt_classes = paddle.where(match_labels == 0, paddle.ones_like(gt_classes) * num_classes, gt_classes) gt_classes = paddle.where(match_labels == -1, paddle.ones_like(gt_classes) * -1, gt_classes) sampled_gt_classes = paddle.gather(gt_classes, sampled_inds) return sampled_inds, sampled_gt_classes def libra_generate_proposal_target(rpn_rois, gt_classes, gt_boxes, batch_size_per_im, fg_fraction, fg_thresh, bg_thresh, num_classes, use_random=True, is_cascade_rcnn=False, max_overlaps=None, num_bins=3): rois_with_gt = [] tgt_labels = [] tgt_bboxes = [] sampled_max_overlaps = [] tgt_gt_inds = [] new_rois_num = [] for i, rpn_roi in enumerate(rpn_rois): max_overlap = max_overlaps[i] if is_cascade_rcnn else None gt_bbox = gt_boxes[i] gt_class = paddle.squeeze(gt_classes[i], axis=-1) if is_cascade_rcnn: rpn_roi = filter_roi(rpn_roi, max_overlap) bbox = paddle.concat([rpn_roi, gt_bbox]) # Step1: label bbox matches, match_labels, matched_vals = libra_label_box( bbox, gt_bbox, gt_class, fg_thresh, bg_thresh, num_classes) # Step2: sample bbox sampled_inds, sampled_gt_classes = libra_sample_bbox( matches, match_labels, matched_vals, gt_class, batch_size_per_im, num_classes, fg_fraction, fg_thresh, bg_thresh, num_bins, use_random, is_cascade_rcnn) # Step3: make output rois_per_image = paddle.gather(bbox, sampled_inds) sampled_gt_ind = paddle.gather(matches, sampled_inds) sampled_bbox = paddle.gather(gt_bbox, sampled_gt_ind) sampled_overlap = paddle.gather(matched_vals, sampled_inds) rois_per_image.stop_gradient = True sampled_gt_ind.stop_gradient = True sampled_bbox.stop_gradient = True sampled_overlap.stop_gradient = True tgt_labels.append(sampled_gt_classes) tgt_bboxes.append(sampled_bbox) rois_with_gt.append(rois_per_image) sampled_max_overlaps.append(sampled_overlap) tgt_gt_inds.append(sampled_gt_ind) new_rois_num.append(paddle.shape(sampled_inds)[0]) new_rois_num = paddle.concat(new_rois_num) # rois_with_gt, tgt_labels, tgt_bboxes, tgt_gt_inds, new_rois_num return rois_with_gt, tgt_labels, tgt_bboxes, tgt_gt_inds, new_rois_num