config_parser.py 131.3 KB
Newer Older
1
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
Z
zhangjinchao01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function
'''
The following functions are available in the config file:

Bias: define bias. To be used as value of bias argument in Layer().

Data: define data provider.

Input: define input layer for a layer. To be used as element of inputs argument
       in Layer().

Conv: define a convolution operation for an input of a layer.

Norm: define a normalization operation for an input of a layer.

Pool: define a pooling operation for an input of a layer.

Layer: define a layer.

Parameter: define a parameter.

Import: import another config file. If the imported config file name is
        a relative path, then it will be searched under the directory of the
        current config file.

Inputs(layer_names...):
    Define the name of the input layers of the NeuralNetwork.
    The type of these layers must be "data".
    These layers will be provided with the DataBatch obtained
    from DataProvider. The data streams from DataProvider must
    have the same order.

Outputs(layer_names...):
    Define the name of the output layers of the NeuralNetwork.
    Usually the output is simply the cost layer.
    You can specify other layers as outputs and  calculate the
    cost (and its derivative) yourself.


default_initial_std(val)
default_initial_mean(val)
default_momentum(val):
default_decay_rate(val): Set the default value for these parameters


get_config_arg(name, type, default): Get the value for a config parameter.


*** customized extension to config_parser ***
The functionality of the config_parser can be extended.
If the config_arg_str for parse_config() contains
extension_module_name=[MODULE_NAME], then config_parser will call
MODULE_NAME.get_config_funcs(g_config)
MODULE_NAME.get_config_funcs() should return a dictionary of name to functions,
those functions will be available in the config file.
See trainer/tests/config_parser_test.py for example

To use this from paddle_trainer, paddle_trainer should be called with
--config_args=extension_module_name=[MODULE_NAME]

'''
import copy
import logging
import os
import sys
import traceback
import math
import shutil

try:
    from paddle.proto.DataConfig_pb2 import DataConfig
    from paddle.proto.ModelConfig_pb2 import ModelConfig
    from paddle.proto.ModelConfig_pb2 import LayerConfig
    from paddle.proto.ModelConfig_pb2 import LayerInputConfig
    from paddle.proto.ModelConfig_pb2 import ProjectionConfig
    from paddle.proto.ModelConfig_pb2 import OperatorConfig
    from paddle.proto.ModelConfig_pb2 import GeneratorConfig
    from paddle.proto.ModelConfig_pb2 import LinkConfig
    from paddle.proto.ParameterConfig_pb2 import ParameterConfig
    from paddle.proto.ParameterConfig_pb2 import ParameterUpdaterHookConfig
    from paddle.proto.TrainerConfig_pb2 import TrainerConfig

except Exception as e:
    traceback.print_exc()
    raise

logging.basicConfig(
Q
qijun 已提交
102
    format='[%(levelname)s %(asctime)s %(filename)s:%(lineno)s] %(message)s', )
Z
zhangjinchao01 已提交
103 104 105
logger = logging.getLogger('paddle')
logger.setLevel(logging.INFO)
__real_print__ = print
Q
qijun 已提交
106
print = logger.info
Z
zhangjinchao01 已提交
107 108 109 110

# from layer type name to layer class
g_layer_type_map = {}

Q
qijun 已提交
111

Z
zhangjinchao01 已提交
112 113 114
# Initialize global variables. We use this function so that we can
# call parse_config() multiple times
def init_config_environment(
Q
qijun 已提交
115 116 117 118 119 120 121 122 123 124 125 126 127 128
        g_default_momentum=None,
        g_default_decay_rate=None,
        g_default_initial_mean=0.,
        g_default_initial_std=0.01,
        g_default_num_batches_regularization=None,
        g_default_initial_strategy=0,
        g_default_initial_smart=False,
        g_default_gradient_clipping_threshold=None,
        g_default_device=None,
        g_default_update_hooks=None,
        g_default_compact_func=None,
        g_config=TrainerConfig(),
        g_layer_map={},
        g_parameter_map={},
X
xuwei06 已提交
129
        g_parameter_initializer_map={},
Q
qijun 已提交
130
        g_extended_config_funcs={},
Z
zhangjinchao01 已提交
131 132

        # store command args of paddle_trainer
Q
qijun 已提交
133
        g_command_config_args={},
Z
zhangjinchao01 已提交
134 135

        # Used for PyDataProvider to avoid duplicate module name
Q
qijun 已提交
136 137 138 139 140
        g_py_module_name_list=[],
        g_current_submodel=None,
        g_root_submodel=None,
        g_submodel_map={},
        g_submodel_stack=[],
141
        g_add_submodel_suffix=False, ):
Z
zhangjinchao01 已提交
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157

    for k, v in locals().iteritems():
        globals()[k] = copy.deepcopy(v)


# Because type is widely used as a variable name in this code.
# we need a different function name for the builtin type()
def type_of(x):
    return type(x)


# Check a condition derived config file
def config_assert(b, msg):
    if not b:
        logger.fatal(msg)

Q
qijun 已提交
158

Z
zhangjinchao01 已提交
159 160
g_config_funcs = {}

Q
qijun 已提交
161

Z
zhangjinchao01 已提交
162 163 164 165 166
# decorator for indicating a function which can be used in config file
def config_func(func):
    g_config_funcs[func.func_name] = func
    return func

Q
qijun 已提交
167

Z
zhangjinchao01 已提交
168 169 170 171 172
# decorator for indicating a class which can be used in config file
def config_class(cls):
    g_config_funcs[cls.__name__] = cls
    return cls

Q
qijun 已提交
173

Z
zhangjinchao01 已提交
174 175 176 177 178 179
# decorator for indicating a class for a layer type
def config_layer(layer_type):
    def wrap(cls):
        g_config_funcs[cls.__name__] = cls
        g_layer_type_map[layer_type] = cls
        return cls
Q
qijun 已提交
180

Z
zhangjinchao01 已提交
181 182
    return wrap

Q
qijun 已提交
183

Z
zhangjinchao01 已提交
184 185 186
def gen_parameter_name(layer_name, input_index):
    return '_%s.w%d' % (layer_name, input_index)

Q
qijun 已提交
187

Z
zhangjinchao01 已提交
188 189 190
def gen_bias_parameter_name(layer_name):
    return '_%s.wbias' % layer_name

Q
qijun 已提交
191

Z
zhangjinchao01 已提交
192 193 194
def default(x, default_value):
    return default_value if x is None else x

Q
qijun 已提交
195

Z
zhangjinchao01 已提交
196 197 198 199 200 201
class Cfg(object):
    def add_keys(self, locals):
        for k, v in locals.iteritems():
            if not k.startswith('_'):
                self.__setattr__(k, v)

Q
qijun 已提交
202

Z
zhangjinchao01 已提交
203 204
# functions available in config file

Q
qijun 已提交
205

Z
zhangjinchao01 已提交
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
# Define the name of the input layers of the NeuralNetwork.
# The type of these layers must be "data".
# These layers will be provided with the DataBatch obtained
# from DataProvider. The data streams from DataProvider must
# have the same order.
@config_func
def Inputs(*args):
    for name in args:
        name = MakeLayerNameInSubmodel(name)
        global g_current_submodel, g_root_submodel
        if g_current_submodel.is_recurrent_layer_group:
            config_assert(False, "Do not set Inputs in recurrent layer group")
        else:
            g_current_submodel.input_layer_names.append(name)

        if g_current_submodel is g_root_submodel:
            g_config.model_config.input_layer_names.append(name)

Q
qijun 已提交
224

225 226
@config_func
def HasInputsSet():
227
    return len(g_current_submodel.input_layer_names) != 0
228

Z
zhangjinchao01 已提交
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252

# Define the name of the output layers of the NeuralNetwork.
# Usually the output is simply the cost layer.
# You can specify other layers as outputs and calculate the
# cost (and its derivative) yourself.
@config_func
def Outputs(*args):
    for name in args:
        name = MakeLayerNameInSubmodel(name)
        global g_current_submodel, g_root_submodel
        if g_current_submodel.is_recurrent_layer_group:
            config_assert(False, "Do not set Outputs in recurrent layer group")
        else:
            g_current_submodel.output_layer_names.append(name)

        if g_current_submodel is g_root_submodel:
            g_config.model_config.output_layer_names.append(name)


@config_func
def SubModelBegin(name):
    global g_current_submodel, g_root_submodel, g_submodel_stack
    g_submodel_stack.append(g_current_submodel)

Q
qijun 已提交
253
    name = MakeLayerNameInParentSubmodel(name)  #rename in nested submodel
Z
zhangjinchao01 已提交
254 255 256 257 258 259 260 261 262

    config_assert(name not in g_submodel_map,
                  'Duplicated submodel name: %s' % name)

    sub_model = g_config.model_config.sub_models.add()
    sub_model.name = name
    g_submodel_map[name] = sub_model
    g_current_submodel = sub_model

Q
qijun 已提交
263

Z
zhangjinchao01 已提交
264
@config_func
Q
qijun 已提交
265
def SubModelEnd(name=None):
Z
zhangjinchao01 已提交
266
    global g_current_submodel, g_root_submodel, g_submodel_stack
Q
qijun 已提交
267 268
    config_assert(g_current_submodel is not g_root_submodel,
                  "submodel not begin")
Z
zhangjinchao01 已提交
269
    if name is not None:
Q
qijun 已提交
270 271 272
        config_assert(
            g_current_submodel.name == MakeLayerNameInParentSubmodel(name),
            "submodel name error")
Z
zhangjinchao01 已提交
273 274 275

    g_current_submodel = g_submodel_stack.pop()

Q
qijun 已提交
276

Z
zhangjinchao01 已提交
277 278
def MakeLayerNameInParentSubmodel(name):
    suffix = ""
279 280
    if len(g_submodel_stack) > 1:
        suffix = "@" + g_submodel_stack[-1].name
Z
zhangjinchao01 已提交
281 282
    return name + suffix

Q
qijun 已提交
283

Z
zhangjinchao01 已提交
284 285 286
def GetLayerBaseName(name):
    return name.split('@')[0]

Q
qijun 已提交
287 288

def MakeLayerNameInSubmodel(name, submodel_name=None):
Z
zhangjinchao01 已提交
289 290
    global g_current_submodel
    global g_add_submodel_suffix
Q
qijun 已提交
291 292
    if (submodel_name is None and not g_add_submodel_suffix and
            not g_current_submodel.is_recurrent_layer_group):
Z
zhangjinchao01 已提交
293 294 295 296 297
        return name
    if submodel_name is None:
        submodel_name = g_current_submodel.name
    return name + "@" + submodel_name

Q
qijun 已提交
298

Z
zhangjinchao01 已提交
299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
# Define a recurrent layer group begin with RecurrentLayerGroupBegin
# and end with RecurrentLayerGroupEnd.
# A recurrent layer group forward/backward one frame after previous frame
# forward/backward through all layers in layer group.
# in_links are names of layer used as input layer in the layer group.
# out_links are names of layer in layer group used as outside layer's input.
#
# If generator is set, the layer group need one or more than one outlinks.
# The first outlink should always be the generated token ids.
# If generator.num_results_per_sample is not set, the output for one sample is
# a ids sequence. Else if num_results_per_sample is more than one,
# the output for one sample is up to #num_results_per_sample generated
# sequences, which are packed in one sequence in output ids vector. Each
# generated sequence has a generation probability. The probabilities for one
# sample are stored in one row of output value matrix.
# Packed generated sequences format, for each i:
#   seq_i_length: one interger, seq_i content length,
#   [seq_i content], length = seq_i_length
#   seq_i_end_mark: one interger, for format check, always -1
# You can use "seq_text_printer" to print the output of the generator.
@config_func
def RecurrentLayerGroupWithoutOutLinksBegin(name,
                                            in_links,
322 323
                                            seq_reversed=False,
                                            target_inlinkname=""):
Z
zhangjinchao01 已提交
324 325 326 327 328 329 330
    global g_current_submodel
    config_assert(g_config.model_config.type == "recurrent_nn",
                  "RecurrentLayerGroup should be used only in recurrent_nn")
    RecurrentLayerGroup(name=name)  # add to father model
    SubModelBegin(name)
    g_current_submodel.is_recurrent_layer_group = True
    g_current_submodel.reversed = seq_reversed
331
    g_current_submodel.target_inlinkid = -1
Z
zhangjinchao01 已提交
332
    in_links_count = 0
333
    for linkid, link in enumerate(in_links):
Z
zhangjinchao01 已提交
334 335 336 337 338 339
        if isinstance(link, basestring):
            name = link
            has_subseq = False
        else:
            name = link.link_name
            has_subseq = link.has_subseq
340 341 342 343
        # assign target_inlinkid according to target_inlinkname
        if target_inlinkname == name:
            g_current_submodel.target_inlinkid = linkid

Z
zhangjinchao01 已提交
344 345 346
        if in_links_count == 0:
            in_links_has_subseq = has_subseq
        else:
Q
qijun 已提交
347 348 349 350
            config_assert(
                in_links_has_subseq == has_subseq,
                "The sequence type of in_links should be the same in RecurrentLayerGroup"
            )
Z
zhangjinchao01 已提交
351 352 353 354 355 356 357
        in_links_count += 1
        layer_name = MakeLayerNameInParentSubmodel(name)
        layer = g_layer_map[layer_name]
        if has_subseq:
            SequenceScatterAgentLayer(name=name, size=layer.size)
        else:
            ScatterAgentLayer(name=name, size=layer.size)
358

Z
zhangjinchao01 已提交
359 360 361 362 363
        pair = g_current_submodel.in_links.add()
        pair.layer_name = layer_name
        pair.link_name = MakeLayerNameInSubmodel(name)
        pair.has_subseq = has_subseq

Q
qijun 已提交
364

Z
zhangjinchao01 已提交
365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380
@config_func
def RecurrentLayerGroupSetOutLink(link):
    if isinstance(link, basestring):
        name = link
        has_subseq = False
    else:
        name = link.link_name
        has_subseq = link.has_subseq
    layer_name = MakeLayerNameInParentSubmodel(name)
    pair = g_current_submodel.out_links.add()
    pair.layer_name = MakeLayerNameInSubmodel(name)
    pair.link_name = layer_name
    pair.has_subseq = has_subseq


def RecurrentLayerGroupSetGenerator(generator=None):
Q
qijun 已提交
381
    generator.eos_layer_name = MakeLayerNameInSubmodel(generator.eos_layer_name)
Z
zhangjinchao01 已提交
382 383 384 385 386 387 388 389
    g_current_submodel.generator.CopyFrom(generator)


@config_func
def RecurrentLayerGroupBegin(name,
                             in_links,
                             out_links,
                             generator=None,
390
                             target_inlinkname="",
Z
zhangjinchao01 已提交
391
                             seq_reversed=False):
Q
qijun 已提交
392
    RecurrentLayerGroupWithoutOutLinksBegin(name, in_links, seq_reversed,
393
                                            target_inlinkname)
Z
zhangjinchao01 已提交
394 395 396 397 398
    for link in out_links:
        RecurrentLayerGroupSetOutLink(link)

    if generator is not None:
        RecurrentLayerGroupSetGenerator(generator)
Q
qijun 已提交
399 400 401 402 403
        config_assert(
            len(in_links) == 0, "no in_links should be passed to generator")
        config_assert(
            len(out_links) >= 1,
            "one or more than one out_links should be passed to generator")
Z
zhangjinchao01 已提交
404 405 406 407 408 409 410


@config_func
def RecurrentLayerGroupEnd(name):
    global g_current_submodel
    config_assert(g_current_submodel.is_recurrent_layer_group,
                  "RecurrentLayerGroup not begin")
Q
qijun 已提交
411
    for pair in g_current_submodel.memories:  #check exist
Z
zhangjinchao01 已提交
412
        layer = g_layer_map[pair.layer_name]
Y
Yu Yang 已提交
413 414
        config_assert(layer is not None,
                      "memory declare wrong name:%s" % pair.layer_name)
Z
zhangjinchao01 已提交
415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
        memory_link = g_layer_map[pair.link_name]
        config_assert(layer.size == memory_link.size,
                      "memory declare wrong size:%d" % memory_link.size)

    prev_submodel = g_current_submodel
    SubModelEnd(name)

    for pair in prev_submodel.out_links:
        layer = g_layer_map[pair.layer_name]
        # add out agent to father model
        agent_name = GetLayerBaseName(pair.link_name)
        if prev_submodel.HasField("generator"):
            DataLayer(name=agent_name, size=layer.size)
        elif pair.has_subseq:
            SequenceGatherAgentLayer(name=agent_name, size=layer.size)
        else:
            GatherAgentLayer(name=agent_name, size=layer.size)

Q
qijun 已提交
433

Z
zhangjinchao01 已提交
434 435 436 437 438 439
# Define the model type
# currently, the paddle supports "nn", "recurrent_nn", "recursive_nn" and "multi_nn"
@config_func
def model_type(name):
    g_config.model_config.type = name

Q
qijun 已提交
440

Z
zhangjinchao01 已提交
441 442
@config_class
class Bias(Cfg):
X
xuwei06 已提交
443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458
    def __init__(self,
                 parameter_name=None,
                 learning_rate=None,
                 momentum=None,
                 decay_rate=None,
                 decay_rate_l1=None,
                 initial_mean=None,
                 initial_std=None,
                 initial_strategy=None,
                 initial_smart=None,
                 num_batches_regularization=None,
                 sparse_remote_update=None,
                 gradient_clipping_threshold=None,
                 is_static=None,
                 is_shared=None,
                 initializer=None):
Z
zhangjinchao01 已提交
459 460
        self.add_keys(locals())

Q
qijun 已提交
461

Z
zhangjinchao01 已提交
462 463 464 465 466 467 468
# Define one input for a layer
@config_class
class Input(Cfg):
    def __init__(
            self,
            input_layer_name,
            parameter_name=None,
X
xuwei06 已提交
469
            initializer=None,
Z
zhangjinchao01 已提交
470 471 472 473 474 475 476 477 478 479 480 481 482
            learning_rate=None,
            momentum=None,
            decay_rate=None,
            decay_rate_l1=None,
            initial_mean=None,
            initial_std=None,
            initial_strategy=None,
            initial_smart=None,
            num_batches_regularization=None,
            sparse_remote_update=None,
            sparse_update=None,
            gradient_clipping_threshold=None,
            conv=None,
L
liaogang 已提交
483
            bilinear_interp=None,
Z
zhangjinchao01 已提交
484 485 486 487
            norm=None,
            pool=None,
            image=None,
            block_expand=None,
488
            maxout=None,
Q
qijun 已提交
489
            spp=None,
D
dangqingqing 已提交
490
            pad=None,
Z
zhangjinchao01 已提交
491 492 493 494 495
            format=None,
            nnz=None,
            is_static=None,
            is_shared=None,
            update_hooks=None,
496
            input_layer_argument=None,
D
dangqingqing 已提交
497 498 499 500 501
            make_layer_name_in_submodel=True, ):
        """
        @param make_layer_name_in_submodel True by defalut, you might need to
        set it carefully when adding Input in config_parser.py.
        """
Z
zhangjinchao01 已提交
502
        self.add_keys(locals())
D
dangqingqing 已提交
503 504 505
        self.input_layer_name = MakeLayerNameInSubmodel(
            input_layer_name
        ) if make_layer_name_in_submodel else input_layer_name
Z
zhangjinchao01 已提交
506

Q
qijun 已提交
507

Z
zhangjinchao01 已提交
508 509 510
# Define a projection for iexed layer
@config_class
class Projection(Input):
Q
qijun 已提交
511 512
    type = None  # subclass should set it correctly

Z
zhangjinchao01 已提交
513 514 515
    def __init__(
            self,
            input_layer_name,
Q
qijun 已提交
516
            size=0,  # projection output size
Z
zhangjinchao01 已提交
517 518 519 520 521 522 523 524 525
            parameter_name=None,
            learning_rate=None,
            momentum=None,
            decay_rate=None,
            decay_rate_l1=None,
            initial_mean=None,
            initial_std=None,
            initial_strategy=None,
            initial_smart=None,
X
xuwei06 已提交
526
            initializer=None,
Z
zhangjinchao01 已提交
527 528 529 530 531 532 533 534 535 536
            num_batches_regularization=None,
            sparse_remote_update=None,
            sparse_update=None,
            gradient_clipping_threshold=None,
            ptype=None,
            format=None,
            nnz=None,
            is_static=None,
            is_shared=None,
            update_hooks=None,
Q
qijun 已提交
537
            input_layer_argument=None, ):
Z
zhangjinchao01 已提交
538 539 540 541 542 543 544 545 546 547 548 549 550
        self.add_keys(locals())
        self.input_layer_name = MakeLayerNameInSubmodel(input_layer_name)

        self.proj_conf = ProjectionConfig()
        if ptype is not None:
            self.proj_conf.type = ptype
        else:
            self.proj_conf.type = self.type

    # calculate the output_size given input_size. return 0
    # to indicate using the size from Layer config
    def calc_output_size(self, input_layer_config):
        return self.size
Q
qijun 已提交
551

Z
zhangjinchao01 已提交
552 553
    def calc_parameter_size(self, input_size, output_size):
        raise NotimplementedError
Q
qijun 已提交
554

Z
zhangjinchao01 已提交
555 556 557 558 559 560 561 562 563 564
    def calc_parameter_dims(self, input_size, output_size):
        raise NotimplementedError


@config_class
class IdentityProjection(Projection):
    type = 'identity'

    def calc_output_size(self, input_layer_config):
        return input_layer_config.size
Q
qijun 已提交
565

Z
zhangjinchao01 已提交
566 567
    def calc_parameter_size(self, input_size, output_size):
        return 0
Q
qijun 已提交
568

Z
zhangjinchao01 已提交
569 570 571
    def calc_parameter_dims(self, input_size, output_size):
        return []

Q
qijun 已提交
572

Z
zhangjinchao01 已提交
573 574 575 576 577 578
# Like IdentityProjection, but layer size may smaller than input size,
# the projection select dimesions [offset, offset+layer_size) from input
@config_class
class IdentityOffsetProjection(Projection):
    type = 'identity_offset'

Q
qijun 已提交
579 580 581
    def __init__(self, input_layer_name, offset, **xargs):
        super(IdentityOffsetProjection, self).__init__(input_layer_name,
                                                       **xargs)
Z
zhangjinchao01 已提交
582 583 584 585
        self.proj_conf.offset = offset

    def calc_parameter_size(self, input_size, output_size):
        return 0
Q
qijun 已提交
586

Z
zhangjinchao01 已提交
587 588 589
    def calc_parameter_dims(self, input_size, output_size):
        return []

Q
qijun 已提交
590

Z
zhangjinchao01 已提交
591 592 593 594 595 596 597
# DotMulProjection performs element-wise multiplication with weight
@config_class
class DotMulProjection(Projection):
    type = 'dot_mul'

    def calc_output_size(self, input_layer_config):
        return input_layer_config.size
Q
qijun 已提交
598

Z
zhangjinchao01 已提交
599 600
    def calc_parameter_size(self, input_size, output_size):
        return output_size
Q
qijun 已提交
601

Z
zhangjinchao01 已提交
602 603 604
    def calc_parameter_dims(self, input_size, output_size):
        return [1, output_size]

L
Luo Tao 已提交
605

X
xuwei06 已提交
606 607 608 609 610 611 612 613 614 615 616 617 618 619
# ScalingProjection
@config_class
class ScalingProjection(Projection):
    type = 'scaling'

    def calc_output_size(self, input_layer_config):
        return input_layer_config.size

    def calc_parameter_size(self, input_size, output_size):
        return 1

    def calc_parameter_dims(self, input_size, output_size):
        return [1, 1]

Q
qijun 已提交
620

Z
zhangjinchao01 已提交
621 622 623 624 625 626
@config_class
class TableProjection(Projection):
    type = 'table'

    def calc_parameter_size(self, input_size, output_size):
        return input_size * output_size
Q
qijun 已提交
627

Z
zhangjinchao01 已提交
628 629 630
    def calc_parameter_dims(self, input_size, output_size):
        return [input_size, output_size]

Q
qijun 已提交
631

Z
zhangjinchao01 已提交
632 633 634 635 636 637
@config_class
class FullMatrixProjection(Projection):
    type = 'fc'

    def calc_parameter_size(self, input_size, output_size):
        return input_size * output_size
Q
qijun 已提交
638

Z
zhangjinchao01 已提交
639 640 641
    def calc_parameter_dims(self, input_size, output_size):
        return [input_size, output_size]

Q
qijun 已提交
642

Z
zhangjinchao01 已提交
643 644 645 646 647 648
@config_class
class TransposedFullMatrixProjection(Projection):
    type = 'trans_fc'

    def calc_parameter_size(self, input_size, output_size):
        return input_size * output_size
Q
qijun 已提交
649

Z
zhangjinchao01 已提交
650 651 652
    def calc_parameter_dims(self, input_size, output_size):
        return [output_size, input_size]

Q
qijun 已提交
653

Z
zhangjinchao01 已提交
654 655 656 657
@config_class
class ContextProjection(Projection):
    type = 'context'

Q
qijun 已提交
658 659
    def __init__(self, input_layer_name, context_start, context_length,
                 trainable_padding, **xargs):
Z
zhangjinchao01 已提交
660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682
        super(ContextProjection, self).__init__(input_layer_name, **xargs)
        self.proj_conf.context_start = context_start
        self.proj_conf.context_length = context_length
        self.proj_conf.trainable_padding = trainable_padding
        self._total_pad = max(0, -self.proj_conf.context_start) \
                          + max(0, self.proj_conf.context_start \
                                + self.proj_conf.context_length - 1)

    def calc_output_size(self, input_layer_config):
        return input_layer_config.size * self.proj_conf.context_length

    def calc_parameter_size(self, input_size, output_size):
        if self.proj_conf.trainable_padding == False:
            return 0
        else:
            return input_size * self._total_pad

    def calc_parameter_dims(self, input_size, output_size):
        return [self._total_pad, input_size]

    _total_pad = 0


683
@config_class
684
class ConvBaseProjection(Projection):
Q
qijun 已提交
685 686 687 688 689
    def __init__(self,
                 input_layer_name,
                 num_filters=None,
                 conv_conf=None,
                 **xargs):
690
        super(ConvBaseProjection, self).__init__(input_layer_name, **xargs)
691 692 693 694 695 696 697 698 699 700 701 702

        if num_filters is not None:
            self.proj_conf.num_filters = num_filters

    def calc_output_size(self, input_layer_config):
        return self.proj_conf.output_size

    def calc_parameter_size(self, input_size, output_size):
        co = self.proj_conf.num_filters
        ci = self.proj_conf.conv_conf.channels
        fh = self.proj_conf.conv_conf.filter_size
        fw = self.proj_conf.conv_conf.filter_size_y
703 704
        gr = self.proj_conf.conv_conf.groups
        return co * ci * fh * fw / gr
705 706 707 708 709 710 711

    def calc_bias_size(self):
        return self.proj_conf.num_filters

    def calc_parameter_dims(self, input_size, output_size):
        return None

Q
qijun 已提交
712

713 714 715 716 717 718 719 720 721
@config_class
class ConvProjection(ConvBaseProjection):
    type = 'conv'

    def __init__(self,
                 input_layer_name,
                 num_filters=None,
                 conv_conf=None,
                 **xargs):
722 723
        super(ConvProjection, self).__init__(input_layer_name, num_filters,
                                             conv_conf, **xargs)
724

725
        parse_conv(conv_conf, self.input_layer_name, self.proj_conf.conv_conf,
726 727 728 729 730 731 732 733 734 735 736 737 738 739 740
                   num_filters)
        self.proj_conf.output_size = self.proj_conf.conv_conf.output_x * \
                                     self.proj_conf.conv_conf.output_y * \
                                     num_filters


@config_class
class ConvTransProjection(ConvBaseProjection):
    type = 'convt'

    def __init__(self,
                 input_layer_name,
                 num_filters=None,
                 conv_conf=None,
                 **xargs):
741 742
        super(ConvTransProjection, self).__init__(input_layer_name, num_filters,
                                                  conv_conf, **xargs)
743 744 745

        parse_conv(
            conv_conf,
746
            self.input_layer_name,
747 748 749 750 751 752 753 754
            self.proj_conf.conv_conf,
            num_filters,
            trans=True)
        self.proj_conf.output_size = self.proj_conf.conv_conf.img_size_y * \
                                     self.proj_conf.conv_conf.img_size * \
                                     num_filters


Z
zhangjinchao01 已提交
755 756 757
# Define a operator for mixed layer
@config_class
class Operator(Cfg):
Q
qijun 已提交
758 759
    type = None  # subclass should set it correctly

Z
zhangjinchao01 已提交
760 761
    def __init__(
            self,
Q
qijun 已提交
762
            input_layer_names, ):
Z
zhangjinchao01 已提交
763 764 765 766 767 768 769 770 771 772
        self.add_keys(locals())
        self.operator_conf = OperatorConfig()
        self.operator_conf.type = self.type

    def check_dims(self):
        pass

    def calc_output_size(self, input_sizes):
        return 0

Q
qijun 已提交
773

Z
zhangjinchao01 已提交
774 775 776
@config_class
class DotMulOperator(Operator):
    type = 'dot_mul'
Q
qijun 已提交
777 778 779

    def __init__(self, input_layer_names, scale=None, **xargs):
        super(DotMulOperator, self).__init__(input_layer_names, **xargs)
Z
zhangjinchao01 已提交
780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797
        if scale is not None:
            self.operator_conf.dotmul_scale = scale

        config_assert(len(input_layer_names) == 2, "DotMul is binary operator")

    def check_dims(self):
        for i in range(2):
            config_assert(self.operator_conf.input_sizes[i] ==
                          self.operator_conf.output_size,
                          "DotMul input_size != output_size")

    def calc_output_size(self, input_sizes):
        return input_sizes[0]


@config_class
class ConvOperator(Operator):
    type = 'conv'
Q
qijun 已提交
798 799 800 801 802 803 804

    def __init__(self,
                 input_layer_names,
                 num_filters=None,
                 conv_conf=None,
                 **xargs):
        super(ConvOperator, self).__init__(input_layer_names, **xargs)
Z
zhangjinchao01 已提交
805 806 807
        if num_filters is not None:
            self.operator_conf.num_filters = num_filters

808 809
        parse_conv(conv_conf,
                   MakeLayerNameInSubmodel(input_layer_names[0]),
Q
qijun 已提交
810
                   self.operator_conf.conv_conf, num_filters)
L
Luo Tao 已提交
811 812 813
        self.operator_conf.output_size = self.operator_conf.conv_conf.output_x * \
                                         self.operator_conf.conv_conf.output_y * \
                                         num_filters
Z
zhangjinchao01 已提交
814 815 816

        config_assert(len(input_layer_names) == 2, "Conv is binary operator")

817 818
    def calc_output_size(self, input_sizes):
        return self.operator_conf.output_size
Z
zhangjinchao01 已提交
819 820


821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850
@config_class
class ConvTransOperator(Operator):
    type = 'convt'

    def __init__(self,
                 input_layer_names,
                 num_filters=None,
                 conv_conf=None,
                 **xargs):
        super(ConvTransOperator, self).__init__(input_layer_names, **xargs)
        if num_filters is not None:
            self.operator_conf.num_filters = num_filters

        parse_conv(
            conv_conf,
            MakeLayerNameInSubmodel(input_layer_names[0]),
            self.operator_conf.conv_conf,
            num_filters,
            trans=True)
        self.operator_conf.output_size = \
            self.operator_conf.conv_conf.img_size * \
            self.operator_conf.conv_conf.img_size_y * \
            num_filters

        config_assert(len(input_layer_names) == 2, "Conv is binary operator")

    def calc_output_size(self, input_sizes):
        return self.operator_conf.output_size


Z
zhangjinchao01 已提交
851 852 853
# please refer to the comments in proto/ModelConfig.proto
@config_class
class Conv(Cfg):
Q
qijun 已提交
854 855 856 857 858 859 860 861 862 863 864 865 866
    def __init__(self,
                 filter_size,
                 channels,
                 padding=None,
                 stride=None,
                 groups=None,
                 filter_channels=None,
                 output_x=None,
                 img_size=None,
                 caffe_mode=True,
                 filter_size_y=None,
                 padding_y=None,
                 stride_y=None):
Z
zhangjinchao01 已提交
867 868
        self.add_keys(locals())
        if filter_size_y is None:
Q
qijun 已提交
869
            self.filter_size_y = filter_size
Z
zhangjinchao01 已提交
870
        if padding_y is None:
Q
qijun 已提交
871
            self.padding_y = padding
Z
zhangjinchao01 已提交
872
        if stride_y is None:
Q
qijun 已提交
873
            self.stride_y = stride
Z
zhangjinchao01 已提交
874
        if output_x is not None:
Q
qijun 已提交
875 876
            config_assert(output_x <= 0)

Z
zhangjinchao01 已提交
877

L
liaogang 已提交
878 879
@config_class
class BilinearInterp(Cfg):
L
Luo Tao 已提交
880
    def __init__(self, out_size_x=None, out_size_y=None, channels=None):
L
liaogang 已提交
881 882
        self.add_keys(locals())

Q
qijun 已提交
883

Z
zhangjinchao01 已提交
884 885
@config_class
class Pool(Cfg):
D
dangqingqing 已提交
886 887 888 889 890 891 892 893 894 895 896
    def __init__(
            self,
            pool_type,
            channels,
            size_x,
            size_y=None,
            start=None,
            stride=None,  # 1 by defalut in protobuf
            stride_y=None,
            padding=None,  # 0 by defalut in protobuf
            padding_y=None):
Z
zhangjinchao01 已提交
897
        self.add_keys(locals())
Q
qijun 已提交
898 899


Q
qijun 已提交
900
@config_class
Q
qijun 已提交
901
class SpatialPyramidPool(Cfg):
L
Luo Tao 已提交
902
    def __init__(self, pool_type, pyramid_height, channels):
Q
qijun 已提交
903
        self.add_keys(locals())
Z
zhangjinchao01 已提交
904

Q
qijun 已提交
905

D
dangqingqing 已提交
906 907 908 909 910 911
@config_class
class Pad(Cfg):
    def __init__(self, channels, pad_c, pad_h, pad_w):
        self.add_keys(locals())


Z
zhangjinchao01 已提交
912 913
@config_class
class Norm(Cfg):
Q
qijun 已提交
914 915 916 917 918 919 920 921 922
    def __init__(self,
                 norm_type,
                 channels,
                 size,
                 scale,
                 pow,
                 output_x=None,
                 img_size=None,
                 blocked=None):
Z
zhangjinchao01 已提交
923 924
        self.add_keys(locals())

Q
qijun 已提交
925

Z
zhangjinchao01 已提交
926 927
@config_class
class Image(Cfg):
Q
qijun 已提交
928
    def __init__(self, channels, img_size=None):
Z
zhangjinchao01 已提交
929 930
        self.add_keys(locals())

Q
qijun 已提交
931

Z
zhangjinchao01 已提交
932 933
@config_class
class BlockExpand(Cfg):
Q
qijun 已提交
934 935 936 937 938 939 940 941 942 943 944 945
    def __init__(self,
                 channels,
                 padding_x=0,
                 padding_y=0,
                 stride_x=0,
                 stride_y=0,
                 block_x=0,
                 block_y=0,
                 img_size_x=0,
                 img_size_y=0,
                 output_x=0,
                 output_y=0):
Z
zhangjinchao01 已提交
946 947
        self.add_keys(locals())

Q
qijun 已提交
948

949 950
@config_class
class MaxOut(Cfg):
Q
qijun 已提交
951
    def __init__(self, channels, groups, img_size_x=0, img_size_y=0):
952 953
        self.add_keys(locals())

Q
qijun 已提交
954

955
def create_data_config_proto(async_load_data=False,
956
                             constant_slots=None,
王益 已提交
957 958 959
                             data_ratio=1,
                             is_main_data=True,
                             usage_ratio=None):
Z
zhangjinchao01 已提交
960 961 962 963 964 965 966 967
    # default: all sub dataproviders are treat as "main data".
    # see proto/DataConfig.proto for is_main_data
    data_config = DataConfig()

    data_config.async_load_data = async_load_data

    if constant_slots:
        data_config.constant_slots.extend(constant_slots)
Q
qijun 已提交
968 969
    data_config.data_ratio = data_ratio
    data_config.is_main_data = is_main_data
Z
zhangjinchao01 已提交
970

Q
qijun 已提交
971
    usage_ratio = default(usage_ratio, settings_deprecated["usage_ratio"])
Z
zhangjinchao01 已提交
972 973 974 975 976 977
    config_assert(usage_ratio >= 0 and usage_ratio <= 1,
                  "The range of usage_ratio is [0, 1]")
    data_config.usage_ratio = usage_ratio

    return data_config

Q
qijun 已提交
978

Z
zhangjinchao01 已提交
979
@config_func
Q
qijun 已提交
980 981 982 983 984
def SimpleData(files=None,
               feat_dim=None,
               context_len=None,
               buffer_capacity=None,
               **xargs):
985
    data_config = create_data_config_proto(**xargs)
Z
zhangjinchao01 已提交
986 987 988 989 990 991 992 993 994
    data_config.type = 'simple'
    data_config.files = files
    data_config.feat_dim = feat_dim
    if context_len is not None:
        data_config.context_len = context_len
    if buffer_capacity:
        data_config.buffer_capacity = buffer_capacity
    return data_config

Q
qijun 已提交
995

Z
zhangjinchao01 已提交
996
@config_func
Q
qijun 已提交
997 998 999 1000 1001 1002 1003 1004 1005 1006
def PyData(files=None,
           type=None,
           file_group_queue_capacity=None,
           load_data_module=None,
           load_data_object=None,
           load_data_args="",
           load_file_count=None,
           constant_slots=None,
           load_thread_num=None,
           **xargs):
1007
    data_config = create_data_config_proto(**xargs)
Z
zhangjinchao01 已提交
1008 1009
    data_config.type = 'py'
    if load_data_module in g_py_module_name_list:
Q
qijun 已提交
1010

Z
zhangjinchao01 已提交
1011 1012 1013
        def get_path(module):
            m = __import__(load_data_module)
            return os.path.split(os.path.realpath(m.__file__))[0]
Q
qijun 已提交
1014

Z
zhangjinchao01 已提交
1015 1016 1017
        # python C-api is not thread safe, one module can only be import once,
        # so here we nedd to copy the module with different names if it has to be
        # imported several times.
Q
qijun 已提交
1018 1019
        module_new_name = "%s_copy_%d" % (load_data_module,
                                          len(g_py_module_name_list))
Z
zhangjinchao01 已提交
1020
        g_py_module_name_list.append(module_new_name)
Q
qijun 已提交
1021 1022 1023 1024
        module_path = "%s/%s.py" % (get_path(load_data_module),
                                    load_data_module)
        new_module_path = "%s/%s.py" % (get_path(load_data_module),
                                        module_new_name)
Z
zhangjinchao01 已提交
1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048
        if os.path.isfile(module_path) == False:
            raise Exception("File %s is not exist." % module_path)
        shutil.copy2(module_path, new_module_path)
        load_data_module = module_new_name
    else:
        g_py_module_name_list.append(load_data_module)
    if load_data_module is not None and load_data_object is not None:
        data_config.load_data_module = load_data_module
        data_config.load_data_object = load_data_object
    else:
        raise ValueError('load_data_module, load_data_object is not defined.')
    data_config.load_data_args = load_data_args

    data_config.files = files or ''
    if file_group_queue_capacity is not None:
        data_config.file_group_conf.queue_capacity = file_group_queue_capacity
    if load_file_count is not None:
        data_config.file_group_conf.load_file_count = load_file_count
    if load_thread_num is not None:
        data_config.file_group_conf.load_thread_num = load_thread_num
    if constant_slots:
        data_config.constant_slots.extend(constant_slots)
    return data_config

Q
qijun 已提交
1049

Z
zhangjinchao01 已提交
1050
@config_func
Q
qijun 已提交
1051 1052 1053 1054 1055 1056 1057
def ProtoData(files=None,
              type=None,
              file_group_queue_capacity=None,
              load_file_count=None,
              constant_slots=None,
              load_thread_num=None,
              **xargs):
1058
    data_config = create_data_config_proto(**xargs)
Z
zhangjinchao01 已提交
1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077
    if type is None:
        data_config.type = 'proto'
    else:
        data_config.type = type
    data_config.files = files

    # When type="proto_group", one data provider contains at most
    # load_file_count files, and there are at most
    # (queue_capacity + load_thread_num + 1) data providers in memory
    if file_group_queue_capacity is not None:
        data_config.file_group_conf.queue_capacity = file_group_queue_capacity
    if load_file_count is not None:
        data_config.file_group_conf.load_file_count = load_file_count
    if load_thread_num is not None:
        data_config.file_group_conf.load_thread_num = load_thread_num
    if constant_slots:
        data_config.constant_slots.extend(constant_slots)
    return data_config

Q
qijun 已提交
1078

Z
zhangjinchao01 已提交
1079 1080
#real data for training is actually provided by "sub_data" data providers.
@config_func
Q
qijun 已提交
1081
def MultiData(sub_data=[]):
Z
zhangjinchao01 已提交
1082 1083 1084 1085 1086
    data_config = DataConfig()
    data_config.type = 'multi'
    data_config.sub_data_configs.extend(sub_data)
    return data_config

Q
qijun 已提交
1087

Z
zhangjinchao01 已提交
1088
@config_func
Q
qijun 已提交
1089 1090 1091 1092 1093 1094 1095
def Data(type,
         files=None,
         feat_dim=None,
         slot_dims=None,
         context_len=None,
         buffer_capacity=None,
         **xargs):
Z
zhangjinchao01 已提交
1096

1097
    data_config = create_data_config_proto(**xargs)
Z
zhangjinchao01 已提交
1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130
    data_config.type = type
    data_config.files = files
    data_config.feat_dim = feat_dim
    data_config.slot_dims.extend(slot_dims)
    if context_len is not None:
        data_config.context_len = context_len
    data_config.buffer_capacity = buffer_capacity
    return data_config


@config_func
def TrainData(data_config, async_load_data=None):
    config_assert(not g_config.HasField('data_config'),
                  'Only one TrainData definition is allowed')
    g_config.data_config.CopyFrom(data_config)
    g_config.data_config.for_test = False
    if async_load_data is not None:
        logger.warning("Deprecated: async_load_data should be used inside"
                       " Data definition")
        g_config.data_config.async_load_data = async_load_data


@config_func
def TestData(data_config, async_load_data=None):
    config_assert(not g_config.HasField('test_data_config'),
                  'Only one TestData definition is allowed')
    g_config.test_data_config.CopyFrom(data_config)
    g_config.test_data_config.for_test = True
    if async_load_data is not None:
        logger.warning("Deprecated: async_load_data should be used inside"
                       " Data definition")
        g_config.test_data_config.async_load_data = async_load_data

Q
qijun 已提交
1131

L
Luo Tao 已提交
1132 1133
#caffe_mode: compute the output size using floor instead of ceil,
#            which is consistent of caffe and CuDNN's convention.
1134 1135 1136 1137 1138 1139 1140
def cnn_output_size(img_size, filter_size, padding, stride, caffe_mode):
    output = (2 * padding + img_size - filter_size) / float(stride)
    if caffe_mode:
        return 1 + int(math.floor(output))
    else:
        return 1 + int(math.ceil(output))

Q
qijun 已提交
1141

1142
#calcualte image_size based on output_size for de-convolution (ConvTransLayer).
L
Luo Tao 已提交
1143
#It is the reverse function of cnn_output_size
1144
def cnn_image_size(output_size, filter_size, padding, stride, caffe_mode):
L
Luo Tao 已提交
1145 1146 1147
    img_size = (output_size - 1) * stride + filter_size - 2 * padding
    if not caffe_mode:
        img_size = img_size + 1
1148 1149
    return img_size

Q
qijun 已提交
1150

L
Luo Tao 已提交
1151
def get_img_size(input_layer_name, channels):
L
Luo Tao 已提交
1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169
    input = g_layer_map[input_layer_name]
    img_pixels = input.size / channels
    img_size = input.width if input.width > 0 else int(img_pixels**0.5)
    img_size_y = input.height if input.height > 0 else int(img_pixels /
                                                           img_size)
    config_assert(
        img_size * img_size_y == img_pixels,
        "Input layer %s: Incorrect input image size %d * %d for input image pixels %d"
        % (input_layer_name, img_size, img_size_y, img_pixels))
    return img_size, img_size_y


def parse_bilinear(bilinear, input_layer_name, bilinear_conf):
    parse_image(bilinear, input_layer_name, bilinear_conf.image_conf)
    bilinear_conf.out_size_x = bilinear.out_size_x
    bilinear_conf.out_size_y = bilinear.out_size_y


1170
def parse_pool(pool, input_layer_name, pool_conf, ceil_mode):
Z
zhangjinchao01 已提交
1171
    pool_conf.pool_type = pool.pool_type
Q
qijun 已提交
1172 1173 1174
    config_assert(pool.pool_type in [
        'max-projection', 'avg-projection', 'cudnn-max-pool', 'cudnn-avg-pool'
    ], "pool-type %s is not in "
Z
zhangjinchao01 已提交
1175
                  "['max-projection', 'avg-projection', "
Q
qijun 已提交
1176
                  "'cudnn-max-pool', 'cudnn-avg-pool']" % pool.pool_type)
Z
zhangjinchao01 已提交
1177 1178 1179 1180 1181 1182

    pool_conf.channels = pool.channels
    pool_conf.size_x = pool.size_x
    pool_conf.stride = pool.stride

    pool_conf.size_y = default(pool.size_y, pool_conf.size_x)
Q
qijun 已提交
1183
    pool_conf.stride_y = default(pool.stride_y, pool_conf.stride)
Z
zhangjinchao01 已提交
1184

L
Luo Tao 已提交
1185
    pool_conf.img_size, pool_conf.img_size_y = \
L
Luo Tao 已提交
1186
        get_img_size(input_layer_name, pool.channels)
Z
zhangjinchao01 已提交
1187

1188
    config_assert(not pool.start, "start is deprecated in pooling.")
Z
zhangjinchao01 已提交
1189

1190
    if pool.padding is not None:
Z
zhangjinchao01 已提交
1191
        pool_conf.padding = pool.padding
1192
    pool_conf.padding_y = default(pool.padding_y, pool_conf.padding)
D
dangqingqing 已提交
1193 1194
    pool_conf.output_x = cnn_output_size(pool_conf.img_size, pool_conf.size_x,
                                         pool_conf.padding, pool_conf.stride,
1195
                                         not ceil_mode)
D
dangqingqing 已提交
1196 1197
    pool_conf.output_y = cnn_output_size(pool_conf.img_size_y, pool_conf.size_y,
                                         pool_conf.padding_y,
1198
                                         pool_conf.stride_y, not ceil_mode)
Q
qijun 已提交
1199

Z
zhangjinchao01 已提交
1200

Q
qijun 已提交
1201
def parse_spp(spp, input_layer_name, spp_conf):
L
Luo Tao 已提交
1202
    parse_image(spp, input_layer_name, spp_conf.image_conf)
Q
qijun 已提交
1203 1204
    spp_conf.pool_type = spp.pool_type
    config_assert(spp.pool_type in ['max-projection', 'avg-projection'],
Q
qijun 已提交
1205 1206
                  "pool-type %s is not in "
                  "['max-projection', 'avg-projection']" % spp.pool_type)
Q
qijun 已提交
1207
    spp_conf.pyramid_height = spp.pyramid_height
Q
qijun 已提交
1208

Q
qijun 已提交
1209

Z
zhangjinchao01 已提交
1210 1211
def parse_image(image, input_layer_name, image_conf):
    image_conf.channels = image.channels
L
Luo Tao 已提交
1212
    image_conf.img_size, image_conf.img_size_y = \
L
Luo Tao 已提交
1213
        get_img_size(input_layer_name, image_conf.channels)
Q
qijun 已提交
1214

Z
zhangjinchao01 已提交
1215 1216 1217

def parse_norm(norm, input_layer_name, norm_conf):
    norm_conf.norm_type = norm.norm_type
1218 1219 1220 1221 1222
    config_assert(
        norm.norm_type in
        ['rnorm', 'cmrnorm-projection', 'cross-channel-norm'],
        "norm-type %s is not in [rnorm, cmrnorm-projection, cross-channel-norm]"
        % norm.norm_type)
Z
zhangjinchao01 已提交
1223 1224 1225 1226 1227 1228
    norm_conf.channels = norm.channels
    norm_conf.size = norm.size
    norm_conf.scale = norm.scale
    norm_conf.pow = norm.pow
    norm_conf.blocked = norm.blocked

L
Luo Tao 已提交
1229
    norm_conf.img_size, norm_conf.img_size_y = \
L
Luo Tao 已提交
1230
        get_img_size(input_layer_name, norm.channels)
Z
zhangjinchao01 已提交
1231
    norm_conf.output_x = norm_conf.img_size
L
Luo Tao 已提交
1232
    norm_conf.output_y = norm_conf.img_size_y
Z
zhangjinchao01 已提交
1233 1234 1235
    if norm.norm_type in ['cmrnorm-projection']:
        norm_conf.scale /= norm.size
    else:
Q
qijun 已提交
1236 1237
        norm_conf.scale /= norm.size**2

1238

L
Luo Tao 已提交
1239 1240
#caffe_mode: compute the output size using floor instead of ceil,
#            which is consistent of caffe and CuDNN's convention.
1241
def parse_conv(conv, input_layer_name, conv_conf, num_filters, trans=False):
Z
zhangjinchao01 已提交
1242 1243 1244 1245 1246 1247 1248 1249 1250
    conv_conf.filter_size = conv.filter_size
    conv_conf.filter_size_y = conv.filter_size_y
    conv_conf.channels = conv.channels
    conv_conf.padding = conv.padding
    conv_conf.padding_y = conv.padding_y
    conv_conf.stride = conv.stride
    conv_conf.stride_y = conv.stride_y
    conv_conf.groups = conv.groups
    conv_conf.caffe_mode = conv.caffe_mode
Q
qijun 已提交
1251

1252
    if not trans:
1253
        conv_conf.filter_channels = conv.channels / conv.groups
L
Luo Tao 已提交
1254
        conv_conf.img_size, conv_conf.img_size_y = \
L
Luo Tao 已提交
1255
            get_img_size(input_layer_name, conv.channels)
1256
        conv_conf.output_x = cnn_output_size(
Q
qijun 已提交
1257 1258
            conv_conf.img_size, conv_conf.filter_size, conv_conf.padding,
            conv_conf.stride, conv_conf.caffe_mode)
L
Luo Tao 已提交
1259 1260 1261
        conv_conf.output_y = cnn_output_size(
            conv_conf.img_size_y, conv_conf.filter_size_y, conv_conf.padding_y,
            conv_conf.stride_y, conv_conf.caffe_mode)
1262
    else:
1263
        conv_conf.filter_channels = num_filters / conv.groups
L
Luo Tao 已提交
1264
        conv_conf.output_x, conv_conf.output_y = \
L
Luo Tao 已提交
1265
            get_img_size(input_layer_name, conv.channels)
1266
        conv_conf.img_size = cnn_image_size(
Q
qijun 已提交
1267 1268
            conv_conf.output_x, conv_conf.filter_size, conv_conf.padding,
            conv_conf.stride, conv_conf.caffe_mode)
L
Luo Tao 已提交
1269
        conv_conf.img_size_y = cnn_image_size(
L
Luo Tao 已提交
1270 1271
            conv_conf.output_y, conv_conf.filter_size_y, conv_conf.padding_y,
            conv_conf.stride_y, conv_conf.caffe_mode)
Q
qijun 已提交
1272

1273

Z
zhangjinchao01 已提交
1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286
def parse_block_expand(block_expand, input_layer_name, block_expand_conf):
    block_expand_conf.channels = block_expand.channels
    block_expand_conf.stride_x = block_expand.stride_x
    block_expand_conf.stride_y = block_expand.stride_y
    block_expand_conf.padding_x = block_expand.padding_x
    block_expand_conf.padding_y = block_expand.padding_y
    block_expand_conf.block_x = block_expand.block_x
    block_expand_conf.block_y = block_expand.block_y
    block_expand_conf.img_size_x = block_expand.img_size_x
    block_expand_conf.img_size_y = block_expand.img_size_y
    if block_expand_conf.img_size_x == 0:
        block_expand_conf.output_x = 0
    else:
1287
        block_expand_conf.output_x = cnn_output_size(
1288
            block_expand.img_size_x, block_expand.block_x,
1289
            block_expand.padding_x, block_expand.stride_x, False)
Z
zhangjinchao01 已提交
1290 1291

    if block_expand_conf.img_size_y == 0:
1292
        block_expand_conf.output_y = 0
Z
zhangjinchao01 已提交
1293
    else:
1294
        block_expand_conf.output_y = cnn_output_size(
1295
            block_expand.img_size_y, block_expand.block_y,
1296
            block_expand.padding_y, block_expand.stride_y, False)
Z
zhangjinchao01 已提交
1297

Q
qijun 已提交
1298

1299
def parse_maxout(maxout, input_layer_name, maxout_conf):
L
Luo Tao 已提交
1300
    parse_image(maxout, input_layer_name, maxout_conf.image_conf)
1301
    maxout_conf.groups = maxout.groups
1302

Q
qijun 已提交
1303

Z
zhangjinchao01 已提交
1304 1305 1306 1307 1308 1309
# Define an evaluator
@config_func
def Evaluator(
        name,
        type,
        inputs,
Q
qijun 已提交
1310 1311 1312 1313 1314 1315 1316
        chunk_scheme=None,
        num_chunk_types=None,
        classification_threshold=None,
        positive_label=None,
        dict_file=None,
        result_file=None,
        num_results=None,
L
Liang Zhao 已提交
1317
        top_k=None,
1318 1319
        delimited=None,
        excluded_chunk_types=None, ):
Z
zhangjinchao01 已提交
1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333
    evaluator = g_config.model_config.evaluators.add()
    evaluator.type = type
    evaluator.name = MakeLayerNameInSubmodel(name)
    if type_of(inputs) == str:
        inputs = [inputs]

    evaluator.input_layers.extend(
        [MakeLayerNameInSubmodel(name) for name in inputs])

    if chunk_scheme is not None:
        evaluator.chunk_scheme = chunk_scheme
        evaluator.num_chunk_types = num_chunk_types
    g_current_submodel.evaluator_names.append(evaluator.name)

1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344
    if classification_threshold is not None:
        evaluator.classification_threshold = classification_threshold
    if positive_label is not None:
        evaluator.positive_label = positive_label
    if dict_file is not None:
        evaluator.dict_file = dict_file

    if result_file is not None:
        evaluator.result_file = result_file
    if num_results is not None:
        evaluator.num_results = num_results
L
Liang Zhao 已提交
1345 1346
    if top_k is not None:
        evaluator.top_k = top_k
1347 1348
    if delimited is not None:
        evaluator.delimited = delimited
Z
zhangjinchao01 已提交
1349

1350 1351 1352
    if excluded_chunk_types:
        evaluator.excluded_chunk_types.extend(excluded_chunk_types)

Q
qijun 已提交
1353

Z
zhangjinchao01 已提交
1354 1355 1356 1357 1358
class LayerBase(object):
    def __init__(
            self,
            name,
            type,
Q
qijun 已提交
1359
            size,  # size can be 0. In this case, subclass should set it.
Z
zhangjinchao01 已提交
1360 1361 1362 1363
            inputs,
            device=None,
            active_type="",
            drop_rate=0.,
1364
            coeff=None):
Z
zhangjinchao01 已提交
1365
        config_assert('@' not in name,
Q
qijun 已提交
1366
                      "layer name: %s contain special character @" % name)
Z
zhangjinchao01 已提交
1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381
        global g_current_submodel
        name = MakeLayerNameInSubmodel(name)

        config_assert(name not in g_layer_map,
                      'Duplicated layer name: %s' % name)

        self.inputs = copy.deepcopy(inputs)
        self.operators = []

        if self.inputs is None:
            self.inputs = []
        elif type_of(self.inputs) != list:
            self.inputs = [self.inputs]

        self.config = g_config.model_config.layers.add()
1382
        assert isinstance(self.config, LayerConfig)
Z
zhangjinchao01 已提交
1383 1384 1385
        self.config.name = name
        self.config.type = type
        self.config.active_type = active_type
1386 1387
        if coeff is not None:
            self.config.coeff = float(coeff)
Z
zhangjinchao01 已提交
1388 1389 1390 1391 1392 1393 1394
        if size != 0:
            self.config.size = size
        if drop_rate != 0:
            self.config.drop_rate = drop_rate

        if device is not None:
            self.config.device = device
1395
        elif g_default_device is not None:
Z
zhangjinchao01 已提交
1396 1397 1398 1399 1400 1401 1402 1403 1404
            self.config.device = g_default_device

        for input_index in xrange(len(self.inputs)):
            input = self.inputs[input_index]
            input_config = None
            input_layer_name = ''
            if type_of(input) == str:
                input_layer_name = input
                input_config = Input(
Q
qijun 已提交
1405 1406
                    input_layer_name=input,
                    parameter_name=gen_parameter_name(name, input_index))
Z
zhangjinchao01 已提交
1407 1408 1409 1410 1411 1412 1413 1414
                input_layer_name = input_config.input_layer_name
            elif isinstance(input, Input):
                input_layer_name = input.input_layer_name
                input_config = input
                if input_config.parameter_name is None:
                    input_config.parameter_name = \
                        gen_parameter_name(name, input_index)
            elif isinstance(input, Operator):
Q
qijun 已提交
1415
                self.operators.append(input)
Z
zhangjinchao01 已提交
1416 1417 1418 1419
                input.operator_conf.input_indices.append(input_index)
                input_config = Input(input.input_layer_names[0])
                input_layer_name = input_config.input_layer_name
            else:
Q
qijun 已提交
1420
                raise ValueError('Wrong type for inputs: %s' % type_of(input))
Z
zhangjinchao01 已提交
1421
            config_assert(input_layer_name in g_layer_map,
Q
qijun 已提交
1422 1423
                          "Unknown input layer '%s' for layer %s" %
                          (input_layer_name, name))
Z
zhangjinchao01 已提交
1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440
            self.inputs[input_index] = input_config
            layer_input = self.config.inputs.add()
            layer_input.input_layer_name = input_config.input_layer_name
            if input_config.input_layer_argument is not None:
                layer_input.input_layer_argument = \
                    input_config.input_layer_argument

        g_layer_map[name] = self.config

        g_current_submodel.layer_names.append(self.config.name)

    def get_input_layer(self, input_index):
        return g_layer_map[self.config.inputs[input_index].input_layer_name]

    # will return the bias created if not *for_self*
    def create_bias_parameter(
            self,
Q
qijun 已提交
1441
            bias,  # True/False or BiasCfg
Z
zhangjinchao01 已提交
1442
            size,
Q
qijun 已提交
1443 1444 1445
            dims=None,
            for_self=True,  # whether create bias for layer self
    ):
Z
zhangjinchao01 已提交
1446 1447 1448 1449 1450 1451

        if size == 0:
            return
        if dims is None:
            dims = [1, size]

Q
qijun 已提交
1452 1453 1454
        config_assert(
            type_of(bias) == bool or type_of(bias) == Bias,
            'Incorrect type for bias: %s' % type_of(bias))
Z
zhangjinchao01 已提交
1455 1456 1457 1458 1459 1460 1461 1462 1463

        if type_of(bias) == bool:
            if bias:
                bias = Bias()

        if type_of(bias) == Bias:
            if bias.parameter_name is None:
                bias.parameter_name = gen_bias_parameter_name(self.config.name)
            if bias.parameter_name not in g_parameter_map:
1464 1465
                assert isinstance(self.config, LayerConfig)

Z
zhangjinchao01 已提交
1466 1467 1468
                Parameter(
                    bias.parameter_name,
                    size,
Q
qijun 已提交
1469 1470
                    self.config.device
                    if self.config.HasField('device') else None,
Z
zhangjinchao01 已提交
1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481
                    dims,
                    bias.learning_rate,
                    bias.momentum,
                    decay_rate=bias.decay_rate,
                    decay_rate_l1=bias.decay_rate_l1,
                    initial_mean=bias.initial_mean,
                    initial_std=bias.initial_std,
                    initial_strategy=bias.initial_strategy,
                    initial_smart=bias.initial_smart,
                    num_batches_regularization=bias.num_batches_regularization,
                    sparse_remote_update=bias.sparse_remote_update,
Q
qijun 已提交
1482 1483
                    gradient_clipping_threshold=bias.
                    gradient_clipping_threshold,
Z
zhangjinchao01 已提交
1484
                    is_static=bias.is_static,
X
xuwei06 已提交
1485 1486
                    is_shared=bias.is_shared,
                    initializer=bias.initializer)
Z
zhangjinchao01 已提交
1487 1488 1489 1490 1491
            if for_self:
                self.config.bias_parameter_name = bias.parameter_name
            else:
                return bias.parameter_name

Q
qijun 已提交
1492 1493 1494 1495 1496 1497
    def create_input_parameter(self,
                               input_index,
                               size,
                               dims=None,
                               sparse=None,
                               format=None):
Z
zhangjinchao01 已提交
1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511
        if dims is None:
            # TODO(yuyang18): print warning and callstack here!
            dims = list()

        if size == 0:
            return

        input_config = self.inputs[input_index]

        self.config.inputs[input_index].input_parameter_name = \
            input_config.parameter_name

        if input_config.parameter_name in g_parameter_map:
            para = g_parameter_map[input_config.parameter_name]
Q
qijun 已提交
1512 1513
            config_assert(size == para.size, (
                'Shared parameter "%s" does not ' + 'have same size: %s vs. %s')
Z
zhangjinchao01 已提交
1514 1515
                          % (input_config.parameter_name, para.size, size))

Q
qijun 已提交
1516 1517
            config_assert(dims == para.dims, (
                'Shared parameter "%s" does not ' + 'have same dims: %s vs. %s')
Z
zhangjinchao01 已提交
1518 1519 1520 1521 1522 1523
                          % (input_config.parameter_name, para.dims, dims))
            return

        Parameter(
            input_config.parameter_name,
            size,
1524
            self.config.device if self.config.HasField("device") else None,
Z
zhangjinchao01 已提交
1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536
            dims,
            input_config.learning_rate,
            input_config.momentum,
            decay_rate=input_config.decay_rate,
            decay_rate_l1=input_config.decay_rate_l1,
            initial_mean=input_config.initial_mean,
            initial_std=input_config.initial_std,
            initial_strategy=input_config.initial_strategy,
            initial_smart=input_config.initial_smart,
            num_batches_regularization=input_config.num_batches_regularization,
            sparse_remote_update=input_config.sparse_remote_update,
            sparse_update=input_config.sparse_update,
Q
qijun 已提交
1537 1538
            gradient_clipping_threshold=input_config.
            gradient_clipping_threshold,
Z
zhangjinchao01 已提交
1539 1540 1541 1542
            sparse=sparse,
            format=format,
            is_static=input_config.is_static,
            is_shared=input_config.is_shared,
X
xuwei06 已提交
1543 1544
            update_hooks=input_config.update_hooks,
            initializer=input_config.initializer)
Z
zhangjinchao01 已提交
1545 1546 1547 1548 1549 1550 1551 1552 1553

    def set_layer_size(self, size):
        if self.config.size == 0:
            self.config.size = size
        else:
            config_assert(self.config.size == size,
                          'Different inputs result in' +
                          'different layer size at layer %s' % self.config.name)

L
Luo Tao 已提交
1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570
    def set_layer_height_width(self, height, width):
        self.config.height = height
        self.config.width = width

    def set_cnn_layer(self,
                      input_layer_name,
                      height,
                      width,
                      channels,
                      is_print=True):
        size = height * width * channels
        self.set_layer_size(size)
        self.set_layer_height_width(height, width)
        if is_print:
            print("output for %s: c = %d, h = %d, w = %d, size = %d" %
                  (input_layer_name, channels, height, width, size))

Q
qijun 已提交
1571

Z
zhangjinchao01 已提交
1572 1573
@config_layer('multi_class_cross_entropy_with_selfnorm')
class MultiClassCrossEntropySelfNormCostLayer(LayerBase):
Q
qijun 已提交
1574 1575 1576
    def __init__(self, name, inputs, softmax_selfnorm_alpha=0.1, **xargs):
        super(MultiClassCrossEntropySelfNormCostLayer, self).__init__(
            name, 'multi_class_cross_entropy_with_selfnorm', 0, inputs, **xargs)
Z
zhangjinchao01 已提交
1577 1578
        self.config.softmax_selfnorm_alpha = softmax_selfnorm_alpha

Q
qijun 已提交
1579

Z
zhangjinchao01 已提交
1580 1581
@config_layer('fc')
class FCLayer(LayerBase):
Q
qijun 已提交
1582
    def __init__(self, name, size, inputs, bias=True, **xargs):
Z
zhangjinchao01 已提交
1583 1584 1585 1586 1587 1588 1589 1590 1591 1592
        super(FCLayer, self).__init__(name, 'fc', size, inputs=inputs, **xargs)
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            psize = self.config.size * input_layer.size
            dims = [input_layer.size, self.config.size]
            format = self.inputs[input_index].format
            sparse = format == "csr" or format == "csc"

            if sparse:
                psize = self.inputs[input_index].nnz
1593 1594
            else:
                sparse = None
Z
zhangjinchao01 已提交
1595

Q
qijun 已提交
1596 1597
            self.create_input_parameter(input_index, psize, dims, sparse,
                                        format)
Z
zhangjinchao01 已提交
1598 1599
        self.create_bias_parameter(bias, self.config.size)

Q
qijun 已提交
1600

Z
zhangjinchao01 已提交
1601 1602
@config_layer('selective_fc')
class SelectiveFCLayer(LayerBase):
Q
qijun 已提交
1603 1604 1605 1606 1607 1608 1609 1610 1611 1612
    def __init__(self,
                 name,
                 size,
                 inputs,
                 bias=True,
                 selective_fc_pass_generation=False,
                 has_selected_colums=True,
                 selective_fc_full_mul_ratio=0.02,
                 selective_fc_parallel_plain_mul_thread_num=None,
                 **xargs):
Z
zhangjinchao01 已提交
1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632
        super(SelectiveFCLayer, self).__init__(
            name, 'selective_fc', size, inputs=inputs, **xargs)
        # user MUST know if selctive fc is used in training,
        # parameter matrices saved by this layer are automatically transposed,
        # BUT bias is not.

        # if selective_fc is used only in testing mode, and parameters for
        # this layer are trained by fully connected layers,
        # then TranposedFullMatrixProjectin MUST be used in training
        # to avoid manual transpose in testing.

        self.config.selective_fc_pass_generation = selective_fc_pass_generation
        self.config.has_selected_colums = has_selected_colums
        self.config.selective_fc_full_mul_ratio = selective_fc_full_mul_ratio
        if selective_fc_parallel_plain_mul_thread_num is not None:
            self.config.selective_fc_parallel_plain_mul_thread_num = selective_fc_parallel_plain_mul_thread_num

        input_num = len(self.inputs)
        if has_selected_colums:
            config_assert(input_num >= 2,
Q
qijun 已提交
1633 1634
                          ("if indices of selected columns are not specified, "
                           "selective_fc Layer has at least two inputs"))
Z
zhangjinchao01 已提交
1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646
            input_num -= 1

        for input_index in xrange(input_num):
            input_layer = self.get_input_layer(input_index)
            psize = self.config.size * input_layer.size
            dims = [input_layer.size, self.config.size]
            dims = dims[::-1]  # transpose the parameter
            format = self.inputs[input_index].format
            sparse = format == "csr" or format == "csc"
            if sparse:
                psize = self.inputs[input_index].nnz

Q
qijun 已提交
1647 1648
            self.create_input_parameter(input_index, psize, dims, sparse,
                                        format)
Z
zhangjinchao01 已提交
1649 1650
        self.create_bias_parameter(bias, self.config.size)

Q
qijun 已提交
1651

1652 1653
@config_layer('print')
class PrintLayer(LayerBase):
Q
qijun 已提交
1654
    def __init__(self, name, inputs):
1655 1656
        super(PrintLayer, self).__init__(name, 'print', 0, inputs)

Q
qijun 已提交
1657

Y
yuan 已提交
1658 1659
@config_layer('priorbox')
class PriorBoxLayer(LayerBase):
G
gaoyuan 已提交
1660 1661
    def __init__(self, name, inputs, size, min_size, max_size, aspect_ratio,
                 variance):
Y
yuan 已提交
1662
        super(PriorBoxLayer, self).__init__(name, 'priorbox', 0, inputs)
G
gaoyuan 已提交
1663
        config_assert(len(inputs) == 2, 'PriorBoxLayer must have 2 inputs')
G
gaoyuan 已提交
1664 1665 1666 1667 1668 1669 1670
        input_layer = self.get_input_layer(1)
        config_assert(
            input_layer.type == 'data',
            'Expecting the second input layer of an priorbox layer to be '
            'a data layer')
        config_assert(input_layer.width > 0, 'The data layer must set width')
        config_assert(input_layer.height > 0, 'The data layer must set height')
G
gaoyuan 已提交
1671
        config_assert(len(variance) == 4, 'The variance must have 4 inputs')
Y
yuan 已提交
1672 1673 1674 1675 1676 1677
        self.config.inputs[0].priorbox_conf.min_size.extend(min_size)
        self.config.inputs[0].priorbox_conf.max_size.extend(max_size)
        self.config.inputs[0].priorbox_conf.aspect_ratio.extend(aspect_ratio)
        self.config.inputs[0].priorbox_conf.variance.extend(variance)
        self.config.size = size

Q
qijun 已提交
1678

1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724
@config_layer('multibox_loss')
class MultiBoxLossLayer(LayerBase):
    def __init__(self, name, inputs, input_num, num_classes, overlap_threshold,
                 neg_pos_ratio, neg_overlap, background_id):
        super(MultiBoxLossLayer, self).__init__(name, 'multibox_loss', 0,
                                                inputs)
        config_assert(
            len(inputs) == (input_num * 2 + 2),
            'MultiBoxLossLayer does not have enough inputs')
        config_assert(num_classes > background_id,
                      'Classes number must greater than background ID')
        self.config.inputs[0].multibox_loss_conf.num_classes = num_classes
        self.config.inputs[
            0].multibox_loss_conf.overlap_threshold = overlap_threshold
        self.config.inputs[0].multibox_loss_conf.neg_pos_ratio = neg_pos_ratio
        self.config.inputs[0].multibox_loss_conf.neg_overlap = neg_overlap
        self.config.inputs[0].multibox_loss_conf.background_id = background_id
        self.config.inputs[0].multibox_loss_conf.input_num = input_num
        self.config.size = 1


@config_layer('detection_output')
class DetectionOutputLayer(LayerBase):
    def __init__(self, name, inputs, size, input_num, num_classes,
                 nms_threshold, nms_top_k, keep_top_k, confidence_threshold,
                 background_id):
        super(DetectionOutputLayer, self).__init__(name, 'detection_output', 0,
                                                   inputs)
        config_assert(
            len(inputs) == (input_num * 2 + 1),
            'DetectionOutputLayer does not have enough inputs')
        config_assert(num_classes > background_id,
                      'Classes number must greater than background ID')
        self.config.inputs[0].detection_output_conf.num_classes = num_classes
        self.config.inputs[
            0].detection_output_conf.nms_threshold = nms_threshold
        self.config.inputs[0].detection_output_conf.nms_top_k = nms_top_k
        self.config.inputs[0].detection_output_conf.keep_top_k = keep_top_k
        self.config.inputs[
            0].detection_output_conf.confidence_threshold = confidence_threshold
        self.config.inputs[
            0].detection_output_conf.background_id = background_id
        self.config.inputs[0].detection_output_conf.input_num = input_num
        self.config.size = size


Z
zhangjinchao01 已提交
1725 1726
@config_layer('data')
class DataLayer(LayerBase):
L
Luo Tao 已提交
1727
    def __init__(self, name, size, height=None, width=None, device=None):
Q
qijun 已提交
1728 1729
        super(DataLayer, self).__init__(
            name, 'data', size, inputs=[], device=device)
L
Luo Tao 已提交
1730 1731
        if height and width:
            self.set_layer_height_width(height, width)
Q
qijun 已提交
1732

Z
zhangjinchao01 已提交
1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759

'''
DataNormLayer: A layer for data normalization
Input: One and only one input layer is accepted. The input layer must
       be DataLayer with dense data type
Output: The normalization of the input data

Reference:
    LA Shalabi, Z Shaaban, B Kasasbeh. Data mining: A preprocessing engine

Example:
    Layer(
        name = "norm_input_layer",
        type = "data_norm",
        inputs = [Input("input_layer",
                        parameter_name = "_slot0.stats")],
        data_norm_strategy = "z-score",
    )

Note:
  (1) The parameter has been calculated in the preprocessing stage,
      and should be initialized by --init_model_path when training.
  (2) Three data normalization methoeds are considered
          z-score: y = (x-mean)/std
          min-max: y = (x-min)/(max-min)
          decimal-scaling: y = x/10^j, where j is the smallest integer such that max(|y|)<1
'''
Q
qijun 已提交
1760 1761


Z
zhangjinchao01 已提交
1762 1763
@config_layer('data_norm')
class DataNormLayer(LayerBase):
Q
qijun 已提交
1764
    def __init__(self, name, inputs, data_norm_strategy="z-score", device=None):
Z
zhangjinchao01 已提交
1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775
        super(DataNormLayer, self).__init__(
            name, 'data_norm', 0, inputs=inputs, device=device)
        self.config.data_norm_strategy = data_norm_strategy
        config_assert(len(inputs) == 1, 'DataNormLayer must have 1 input')
        input_layer = self.get_input_layer(0)
        self.set_layer_size(input_layer.size)
        para_size = 5 * input_layer.size
        para_dims = [5, input_layer.size]
        self.inputs[0].is_static = True
        self.create_input_parameter(0, para_size, para_dims)

Q
qijun 已提交
1776

Z
zhangjinchao01 已提交
1777 1778 1779
@config_layer('prelu')
class ParameterReluLayer(LayerBase):
    layer_type = 'prelu'
Q
qijun 已提交
1780 1781

    def __init__(self, name, inputs, partial_sum=1, **args):
Z
zhangjinchao01 已提交
1782 1783 1784
        super(ParameterReluLayer, self).__init__(
            name, self.layer_type, 0, inputs=inputs, **args)
        input_layer = self.get_input_layer(0)
1785 1786 1787
        config_assert(len(self.inputs) == 1, "prelu layer has only one input.")
        config_assert(input_layer.size % partial_sum == 0,
                      "a wrong setting for partial_sum")
Z
zhangjinchao01 已提交
1788 1789 1790
        self.set_layer_size(input_layer.size)
        self.create_input_parameter(0, input_layer.size / partial_sum)

Q
qijun 已提交
1791

Z
zhangjinchao01 已提交
1792 1793 1794
@config_layer('conv')
class ConvLayerBase(LayerBase):
    layer_type = 'conv'
Q
qijun 已提交
1795 1796 1797 1798 1799 1800 1801 1802

    def __init__(self,
                 name,
                 inputs=[],
                 bias=True,
                 num_filters=None,
                 shared_biases=False,
                 **xargs):
Z
zhangjinchao01 已提交
1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818
        super(ConvLayerBase, self).__init__(
            name, self.layer_type, 0, inputs=inputs, **xargs)

        if num_filters is not None:
            self.config.num_filters = num_filters

        use_gpu = int(g_command_config_args.get("use_gpu", 0))
        parallel_nn = int(g_command_config_args.get("parallel_nn", 0))

        # Automatically select cudnn_type for GPU and exconv for CPU
        # if set type=conv, but still reserve the way user specify
        # exconv or cudnn_conv manually.
        if self.layer_type == "cudnn_conv":
            config_assert(use_gpu, "cudnn_conv only support GPU")

        if (use_gpu == 1 and self.layer_type != "exconv" and
Q
qijun 已提交
1819
            (parallel_nn == 0 or self.config.device > -1)):
Z
zhangjinchao01 已提交
1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831
            self.layer_type = "cudnn_conv"
        else:
            self.layer_type = "exconv"
        # need to specify layer in config
        self.config.type = self.layer_type

        if shared_biases is not None:
            self.config.shared_biases = shared_biases

        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            conv_conf = self.config.inputs[input_index].conv_conf
L
Luo Tao 已提交
1832 1833
            parse_conv(self.inputs[input_index].conv, input_layer.name,
                       conv_conf, num_filters)
Z
zhangjinchao01 已提交
1834 1835
            psize = self.calc_parameter_size(conv_conf)
            self.create_input_parameter(input_index, psize)
L
Luo Tao 已提交
1836 1837
            self.set_cnn_layer(name, conv_conf.output_y, conv_conf.output_x,
                               self.config.num_filters)
Z
zhangjinchao01 已提交
1838 1839 1840 1841 1842 1843 1844 1845 1846 1847

        psize = self.config.size
        if shared_biases:
            psize = self.config.num_filters
        self.create_bias_parameter(bias, psize, [psize, 1])

    def calc_parameter_size(self, conv_conf):
        return self.config.num_filters * conv_conf.filter_channels \
                    * (conv_conf.filter_size * conv_conf.filter_size_y)

Q
qijun 已提交
1848

Z
zhangjinchao01 已提交
1849 1850 1851 1852
@config_layer('exconv')
class ConvLayer(ConvLayerBase):
    layer_type = 'exconv'

Q
qijun 已提交
1853

Z
zhangjinchao01 已提交
1854 1855 1856 1857
@config_layer('cudnn_conv')
class ConvLayer(ConvLayerBase):
    layer_type = 'cudnn_conv'

1858 1859 1860 1861

@config_layer('convt')
class ConvTransLayerBase(LayerBase):
    layer_type = 'convt'
Q
qijun 已提交
1862 1863 1864 1865 1866 1867 1868 1869

    def __init__(self,
                 name,
                 inputs=[],
                 bias=True,
                 num_filters=None,
                 shared_biases=False,
                 **xargs):
1870
        super(ConvTransLayerBase, self).__init__(
1871 1872 1873 1874 1875 1876 1877 1878
            name, self.layer_type, 0, inputs=inputs, **xargs)

        if num_filters is not None:
            self.config.num_filters = num_filters

        use_gpu = int(g_command_config_args.get("use_gpu", 0))
        parallel_nn = int(g_command_config_args.get("parallel_nn", 0))

1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889
        # Automatically select cudnn_type for GPU and exconvt for CPU
        # if set type=exconvt, but still reserve the way user specify
        # exconvt or cudnn_convt manually.
        if self.layer_type == "cudnn_convt":
            config_assert(use_gpu, "cudnn_convt only support GPU")

        if (use_gpu == 1 and self.layer_type != "exconvt" and
            (parallel_nn == 0 or self.config.device > -1)):
            self.layer_type = "cudnn_convt"
        else:
            self.layer_type = "exconvt"
1890 1891 1892 1893 1894 1895 1896 1897
        # need to specify layer in config
        self.config.type = self.layer_type

        if shared_biases is not None:
            self.config.shared_biases = shared_biases

        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
1898
            parse_conv(
1899 1900
                self.inputs[input_index].conv,
                input_layer.name,
1901
                self.config.inputs[input_index].conv_conf,
1902
                num_filters,
1903
                trans=True)
1904 1905 1906
            conv_conf = self.config.inputs[input_index].conv_conf
            psize = self.calc_parameter_size(conv_conf)
            self.create_input_parameter(input_index, psize)
1907 1908
            self.set_cnn_layer(name, conv_conf.img_size_y, conv_conf.img_size,
                               self.config.num_filters)
1909 1910 1911 1912 1913 1914 1915

        psize = self.config.size
        if shared_biases:
            psize = self.config.num_filters
        self.create_bias_parameter(bias, psize, [psize, 1])

    def calc_parameter_size(self, conv_conf):
1916
        return conv_conf.channels * conv_conf.filter_channels \
1917 1918
                    * (conv_conf.filter_size * conv_conf.filter_size_y)

Q
qijun 已提交
1919

1920 1921 1922 1923
@config_layer('exconvt')
class ConvTransLayer(ConvTransLayerBase):
    layer_type = 'exconvt'

Q
qijun 已提交
1924

1925 1926 1927 1928 1929
@config_layer('cudnn_convt')
class ConvTransLayer(ConvTransLayerBase):
    layer_type = 'cudnn_convt'


Z
zhangjinchao01 已提交
1930 1931
@config_layer('norm')
class NormLayer(LayerBase):
1932 1933
    def __init__(self, name, inputs, **xargs):
        super(NormLayer, self).__init__(name, 'norm', 0, inputs=inputs, **xargs)
Z
zhangjinchao01 已提交
1934 1935 1936
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            norm_conf = self.config.inputs[input_index].norm_conf
L
Luo Tao 已提交
1937 1938 1939 1940
            parse_norm(self.inputs[input_index].norm, input_layer.name,
                       norm_conf)
            self.set_cnn_layer(name, norm_conf.output_y, norm_conf.output_x,
                               norm_conf.channels, False)
1941 1942 1943
            if norm_conf.norm_type == "cross-channel-norm":
                self.create_input_parameter(0, norm_conf.channels,
                                            [norm_conf.channels, 1])
Q
qijun 已提交
1944

Z
zhangjinchao01 已提交
1945 1946 1947

@config_layer('pool')
class PoolLayer(LayerBase):
1948 1949
    def __init__(self, name, inputs, ceil_mode=True, **xargs):
        super(PoolLayer, self).__init__(name, 'pool', 0, inputs=inputs, **xargs)
Z
zhangjinchao01 已提交
1950 1951 1952
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            pool_conf = self.config.inputs[input_index].pool_conf
L
Luo Tao 已提交
1953
            parse_pool(self.inputs[input_index].pool, input_layer.name,
1954
                       pool_conf, ceil_mode)
L
Luo Tao 已提交
1955 1956
            self.set_cnn_layer(name, pool_conf.output_y, pool_conf.output_x,
                               pool_conf.channels)
Q
qijun 已提交
1957

Z
zhangjinchao01 已提交
1958

Q
qijun 已提交
1959 1960
@config_layer('spp')
class SpatialPyramidPoolLayer(LayerBase):
1961
    def __init__(self, name, inputs, **xargs):
Q
qijun 已提交
1962
        super(SpatialPyramidPoolLayer, self).__init__(
1963
            name, 'spp', 0, inputs=inputs, **xargs)
Q
qijun 已提交
1964 1965 1966
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            spp_conf = self.config.inputs[input_index].spp_conf
L
Luo Tao 已提交
1967 1968 1969
            parse_spp(self.inputs[input_index].spp, input_layer.name, spp_conf)
            output_x = (pow(4, spp_conf.pyramid_height) - 1) / (4 - 1)
            self.set_cnn_layer(name, 1, output_x, spp_conf.image_conf.channels)
Q
qijun 已提交
1970

Q
qijun 已提交
1971

D
dangqingqing 已提交
1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990
@config_layer('pad')
class PadLayer(LayerBase):
    def __init__(self, name, inputs, **xargs):
        super(PadLayer, self).__init__(name, 'pad', 0, inputs=inputs, **xargs)
        pad = self.inputs[0].pad
        self.config.inputs[0].pad_conf.pad_c.extend(pad.pad_c)
        self.config.inputs[0].pad_conf.pad_h.extend(pad.pad_h)
        self.config.inputs[0].pad_conf.pad_w.extend(pad.pad_w)

        input_layer = self.get_input_layer(0)
        image_conf = self.config.inputs[0].pad_conf.image_conf
        parse_image(pad, input_layer.name, image_conf)
        out_ch = pad.channels + pad.pad_c[0] + pad.pad_c[1]
        out_h = image_conf.img_size_y + pad.pad_h[0] + pad.pad_h[1]
        out_w = image_conf.img_size + pad.pad_w[0] + pad.pad_w[1]
        self.set_cnn_layer(name, out_h, out_w, out_ch)
        self.config.size = out_ch * out_h * out_w


Z
zhangjinchao01 已提交
1991 1992 1993
@config_layer('batch_norm')
class BatchNormLayer(LayerBase):
    layer_type = 'batch_norm'
Q
qijun 已提交
1994 1995 1996 1997 1998 1999 2000 2001 2002 2003

    def __init__(self,
                 name,
                 inputs,
                 active_type="linear",
                 bias=True,
                 use_global_stats=True,
                 moving_average_fraction=0.9,
                 batch_norm_type=None,
                 **xargs):
Z
zhangjinchao01 已提交
2004 2005 2006 2007
        if inputs is None:
            inputs = []
        elif not isinstance(inputs, list):
            inputs = [inputs]
Q
qijun 已提交
2008 2009
        config_assert(
            len(inputs) == 1, "BatchNormLayer must have one and only one input")
Z
zhangjinchao01 已提交
2010 2011 2012 2013 2014 2015 2016 2017
        # Create Input for moving mean and std,
        # in batch normalization layer.
        # These paras no need to update, so set is_static is true.
        # If not use is_static, even set learning_rate = 0, decay_rate = 0,
        # these paras will change if set average_window in configure.
        use_gpu = bool(int(g_command_config_args.get("use_gpu", 0)))
        is_shared = True if not use_gpu else False
        for i in xrange(2):
Q
qijun 已提交
2018 2019 2020 2021 2022 2023
            inputs.append(
                Input(
                    inputs[0].input_layer_name,
                    initial_std=0.0,
                    initial_mean=0.0,
                    is_static=True,
2024
                    is_shared=is_shared,
D
dangqingqing 已提交
2025
                    make_layer_name_in_submodel=False, ))
Z
zhangjinchao01 已提交
2026 2027 2028 2029 2030 2031 2032

        parallel_nn = bool(int(g_command_config_args.get("parallel_nn", 0)))
        cudnn_version = int(g_command_config_args.get("cudnn_version", 0))
        # Automatically select cudnn_batch_norm for GPU and batch_norm for CPU.
        # Also based on cudnn version.
        use_cudnn = use_gpu and batch_norm_type != "batch_norm" and \
            ((not parallel_nn) or self.config.device > -1) and \
2033
            cudnn_version >= 4007
Z
zhangjinchao01 已提交
2034
        self.layer_type = "cudnn_batch_norm" if use_cudnn else "batch_norm"
Q
qijun 已提交
2035 2036 2037 2038 2039 2040 2041
        super(BatchNormLayer, self).__init__(
            name,
            self.layer_type,
            0,
            active_type=active_type,
            inputs=inputs,
            **xargs)
Z
zhangjinchao01 已提交
2042 2043 2044 2045 2046 2047

        if use_global_stats is not None:
            self.config.use_global_stats = use_global_stats
        if moving_average_fraction is not None:
            self.config.moving_average_fraction = moving_average_fraction

Q
qijun 已提交
2048
        input_layer = self.get_input_layer(0)
Z
zhangjinchao01 已提交
2049
        image_conf = self.config.inputs[0].image_conf
L
Luo Tao 已提交
2050
        parse_image(self.inputs[0].image, input_layer.name, image_conf)
2051

2052 2053
        # Only pass the width and height of input to batch_norm layer
        # when either of it is non-zero.
2054 2055
        if input_layer.width != 0 or input_layer.height != 0:
            self.set_cnn_layer(name, image_conf.img_size_y, image_conf.img_size,
D
dangqingqing 已提交
2056
                               image_conf.channels, False)
2057 2058
        else:
            self.set_layer_size(input_layer.size)
Z
zhangjinchao01 已提交
2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070

        psize = self.calc_parameter_size(image_conf)
        dims = [1, psize]
        self.create_input_parameter(0, psize)
        self.create_input_parameter(1, psize, dims)
        self.create_input_parameter(2, psize, dims)

        self.create_bias_parameter(bias, psize)

    def calc_parameter_size(self, image_conf):
        return image_conf.channels

Q
qijun 已提交
2071

Z
zhangjinchao01 已提交
2072 2073
@config_layer('trans')
class TransLayer(LayerBase):
2074
    def __init__(self, name, inputs, **xargs):
Q
qijun 已提交
2075
        super(TransLayer, self).__init__(
2076
            name, 'trans', 0, inputs=inputs, **xargs)
Q
qijun 已提交
2077 2078 2079
        config_assert(
            len(self.inputs) == 1,
            'TransLayer must have one and only one input')
Z
zhangjinchao01 已提交
2080 2081
        self.set_layer_size(self.get_input_layer(0).size)

Q
qijun 已提交
2082

Z
zhangjinchao01 已提交
2083 2084
@config_layer('resize')
class ResizeLayer(LayerBase):
2085
    def __init__(self, name, size, inputs, **xargs):
Q
qijun 已提交
2086
        super(ResizeLayer, self).__init__(
2087
            name, 'resize', size=size, inputs=inputs, **xargs)
Q
qijun 已提交
2088 2089 2090 2091
        config_assert(
            len(self.inputs) == 1,
            'ResizeLayer must have one and only one input')

Z
zhangjinchao01 已提交
2092

2093 2094
@config_layer('rotate')
class RotateLayer(LayerBase):
H
Haonan 已提交
2095
    def __init__(self, name, inputs, height, width, device=None):
2096 2097 2098 2099 2100
        super(RotateLayer, self).__init__(
            name, 'rotate', 0, inputs=inputs, device=device)
        config_assert(
            len(self.inputs) == 1,
            'RotateLayer must have one and only one input')
H
Haonan 已提交
2101
        self.set_layer_height_width(height, width)
2102 2103 2104
        self.set_layer_size(self.get_input_layer(0).size)


Z
zhangjinchao01 已提交
2105 2106
@config_layer('blockexpand')
class BlockExpandLayer(LayerBase):
2107
    def __init__(self, name, inputs, **xargs):
Q
qijun 已提交
2108
        super(BlockExpandLayer, self).__init__(
2109
            name, 'blockexpand', 0, inputs=inputs, **xargs)
Z
zhangjinchao01 已提交
2110 2111
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
Q
qijun 已提交
2112 2113
            parse_block_expand(
                self.inputs[input_index].block_expand, input_layer.name,
Z
zhangjinchao01 已提交
2114
                self.config.inputs[input_index].block_expand_conf)
Q
qijun 已提交
2115 2116 2117 2118 2119 2120
            block_expand_conf = self.config.inputs[
                input_index].block_expand_conf
            self.set_layer_size(block_expand_conf.block_x *
                                block_expand_conf.block_y *
                                block_expand_conf.channels)

Z
zhangjinchao01 已提交
2121

2122 2123
@config_layer('maxout')
class MaxOutLayer(LayerBase):
Q
qijun 已提交
2124 2125 2126
    def __init__(self, name, inputs, **xargs):
        super(MaxOutLayer, self).__init__(
            name, 'maxout', 0, inputs=inputs, **xargs)
2127 2128
        input_layer = self.get_input_layer(0)
        maxout_conf = self.config.inputs[0].maxout_conf
L
Luo Tao 已提交
2129
        parse_maxout(self.inputs[0].maxout, input_layer.name, maxout_conf)
L
Luo Tao 已提交
2130 2131 2132
        out_channels = maxout_conf.image_conf.channels / maxout_conf.groups
        self.set_cnn_layer(name, g_layer_map[input_layer.name].height,
                           g_layer_map[input_layer.name].width, out_channels)
Q
qijun 已提交
2133

2134

D
dangqingqing 已提交
2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151
@config_layer('row_conv')
class RowConvLayer(LayerBase):
    def __init__(self, name, inputs, context_length, **xargs):
        super(RowConvLayer, self).__init__(
            name, 'maxout', 0, inputs=inputs, **xargs)
        config_assert(
            len(self.inputs) == 1,
            'TransLayer must have one and only one input')
        input_layer = self.get_input_layer(0)
        row_conv_conf = self.config.inputs[0].row_conv_conf
        row_conv_conf.context_length = context_length
        self.set_layer_size(input_layer.size)
        psize = context_length * input_layer.size
        dims = [context_length, input_layer.size]
        self.create_input_parameter(0, psize, dims)


Z
zhangjinchao01 已提交
2152 2153 2154 2155
# key: cost type
# value: cost class
g_cost_map = {}

Q
qijun 已提交
2156

Z
zhangjinchao01 已提交
2157 2158 2159
# define a cost layer without any parameters
def define_cost(class_name, cost_type):
    def init(cls, name, inputs, device=None, coeff=1.):
Q
qijun 已提交
2160 2161
        super(type(cls), cls).__init__(
            name, cost_type, 1, inputs, device=device, coeff=coeff)
Z
zhangjinchao01 已提交
2162

Q
qijun 已提交
2163
    cls = type(class_name, (LayerBase, ), dict(__init__=init))
Z
zhangjinchao01 已提交
2164 2165 2166
    global g_cost_map
    g_cost_map[cost_type] = cls

Q
qijun 已提交
2167

Z
zhangjinchao01 已提交
2168 2169 2170 2171 2172 2173 2174 2175
define_cost('MultiClassCrossEntropy', 'multi-class-cross-entropy')
define_cost('RankingCost', 'rank-cost')
define_cost('AucValidation', 'auc-validation')
define_cost('PnpairValidation', 'pnpair-validation')
define_cost('SumOfSquaresCostLayer', 'square_error')
define_cost('MultiBinaryLabelCrossEntropy', 'multi_binary_label_cross_entropy')
define_cost('SoftBinaryClassCrossEntropy', 'soft_binary_class_cross_entropy')
define_cost('HuberTwoClass', 'huber')
X
xuwei06 已提交
2176
define_cost('SumCost', 'sum_cost')
D
dangqingqing 已提交
2177
define_cost('SmoothL1Cost', 'smooth_l1')
Z
zhangjinchao01 已提交
2178

Q
qijun 已提交
2179

Z
zhangjinchao01 已提交
2180 2181
@config_layer('hsigmoid')
class HierarchicalSigmoidLayer(LayerBase):
Q
qijun 已提交
2182
    def __init__(self, name, num_classes, inputs, device=None, bias=True):
Z
zhangjinchao01 已提交
2183 2184
        super(HierarchicalSigmoidLayer, self).__init__(
            name, 'hsigmoid', 1, inputs=inputs, device=device)
Q
qijun 已提交
2185 2186 2187
        config_assert(
            len(self.inputs) >= 2,
            'HierarchicalSigmoidLayer must have at least 2 inputs')
Z
zhangjinchao01 已提交
2188 2189 2190 2191 2192 2193 2194 2195
        self.config.num_classes = num_classes
        for input_index in xrange(len(self.inputs) - 1):
            input_layer = self.get_input_layer(input_index)
            psize = (num_classes - 1) * input_layer.size
            dims = [num_classes - 1, input_layer.size]
            self.create_input_parameter(input_index, psize, dims)
        self.create_bias_parameter(bias, num_classes - 1)

Q
qijun 已提交
2196

Z
zhangjinchao01 已提交
2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220
'''
lambdaCost for lambdaRank LTR approach

Usage:
  Example: Layer(name = "cost", type = "lambda_cost", NDCG_num = 8,
             max_sort_size = -1, inputs = ["output", "score"])

  Input data: Samples of the same query should be loaded as a sequence,
          by ProtoDataProvider or PyDataProvider etc.. User should provide
          scores for each sample. The score slot should be the 2nd
          input of lambdaRank layer.

  NDCG_num = the size of NDCG, e.g., 5 for NDCG@5.
    Note: NDCG_num must be less than or equal to the minimum
          size of lists.

  max_sort_size = the size of partial sorting in calculating gradient.
    Note: If max_sort_size = -1, then for each list, the algorithm will
          sort the entire list to get gradient.
          In other cases, max_sort_size must be greater than or equal
          to NDCG_num.
          max_sort_size can be greater than the size of a list, in which
          case the algorithm will sort the entire list to get gradient.
'''
Q
qijun 已提交
2221 2222


Z
zhangjinchao01 已提交
2223 2224
@config_layer('lambda_cost')
class LambdaCost(LayerBase):
Q
qijun 已提交
2225
    def __init__(self, name, inputs, NDCG_num=5, max_sort_size=-1, device=None):
Z
zhangjinchao01 已提交
2226 2227
        super(LambdaCost, self).__init__(
            name, 'lambda_cost', 1, inputs=inputs, device=device)
Q
qijun 已提交
2228
        config_assert(len(self.inputs) == 2, 'lambdaCost must have 2 inputs')
Z
zhangjinchao01 已提交
2229 2230
        self.config.NDCG_num = NDCG_num
        if max_sort_size != -1:
Q
qijun 已提交
2231 2232 2233
            config_assert(
                NDCG_num <= max_sort_size,
                'NDCG_num must be less than or equal to max_sort_size')
Z
zhangjinchao01 已提交
2234 2235
        self.config.max_sort_size = max_sort_size

Q
qijun 已提交
2236

Z
zhangjinchao01 已提交
2237 2238
@config_layer('nce')
class NCELayer(LayerBase):
Q
qijun 已提交
2239 2240 2241 2242 2243 2244 2245 2246
    def __init__(self,
                 name,
                 num_classes,
                 inputs,
                 num_neg_samples=10,
                 neg_sampling_dist=None,
                 bias=True,
                 **xargs):
Z
zhangjinchao01 已提交
2247
        super(NCELayer, self).__init__(name, 'nce', 1, inputs=inputs, **xargs)
Q
qijun 已提交
2248 2249
        config_assert(
            len(self.inputs) >= 2, 'NCELayer must have at least 2 inputs')
Z
zhangjinchao01 已提交
2250 2251
        self.config.num_classes = num_classes
        if neg_sampling_dist is not None:
Q
qijun 已提交
2252 2253 2254 2255
            config_assert(
                len(neg_sampling_dist) == num_classes,
                'len(neg_sampling_dist)(%s) is not same as num_classes (%s)' %
                (len(neg_sampling_dist), num_classes))
Z
zhangjinchao01 已提交
2256
            s = sum(neg_sampling_dist)
Q
qijun 已提交
2257 2258 2259
            config_assert(
                abs(s - 1) < 1e-5,
                'The sum of neg_sampling_dist (%s) is not 1' % s)
Z
zhangjinchao01 已提交
2260 2261 2262 2263 2264

            self.config.neg_sampling_dist.extend(neg_sampling_dist)

        self.config.num_neg_samples = num_neg_samples
        num_real_inputs = len(self.inputs) - 1
Q
qijun 已提交
2265
        input_layer = self.get_input_layer(num_real_inputs)
Z
zhangjinchao01 已提交
2266 2267 2268 2269
        config_assert(input_layer.type == 'data',
                      'Expecting the last input layer of an nce layer to be '
                      'a data layer')

Q
qijun 已提交
2270 2271
        if (num_real_inputs > 1 and input_layer.size == 1 and
                self.get_input_layer(num_real_inputs - 1).type == 'data'):
Z
zhangjinchao01 已提交
2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284
            # This input layer is assumed to be a sample weight layer
            num_real_inputs -= 1

        for input_index in xrange(num_real_inputs):
            input_layer = self.get_input_layer(input_index)
            psize = num_classes * input_layer.size
            dims = [num_classes, input_layer.size]
            self.create_input_parameter(input_index, psize, dims)
        self.create_bias_parameter(bias, num_classes)


@config_layer('addto')
class AddToLayer(LayerBase):
Q
qijun 已提交
2285
    def __init__(self, name, inputs, bias=True, **xargs):
Z
zhangjinchao01 已提交
2286 2287
        super(AddToLayer, self).__init__(
            name, 'addto', 0, inputs=inputs, **xargs)
Q
qijun 已提交
2288
        config_assert(len(inputs) > 0, 'inputs cannot be empty for AddToLayer')
Z
zhangjinchao01 已提交
2289 2290 2291 2292 2293
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            self.set_layer_size(input_layer.size)
        self.create_bias_parameter(bias, self.config.size)

Q
qijun 已提交
2294

Z
zhangjinchao01 已提交
2295 2296
@config_layer('agent')
class AgentLayer(LayerBase):
Q
qijun 已提交
2297 2298 2299 2300
    def __init__(self, name, size, device=None):
        super(AgentLayer, self).__init__(
            name, 'agent', size, inputs=[], device=device)

Z
zhangjinchao01 已提交
2301 2302 2303

@config_layer('sequence_agent')
class SequenceAgentLayer(LayerBase):
Q
qijun 已提交
2304
    def __init__(self, name, size, device=None):
Z
zhangjinchao01 已提交
2305 2306 2307
        super(SequenceAgentLayer, self).__init__(
            name, 'sequence_agent', size, inputs=[], device=device)

Q
qijun 已提交
2308

Z
zhangjinchao01 已提交
2309 2310
@config_layer('gather_agent')
class GatherAgentLayer(LayerBase):
Q
qijun 已提交
2311
    def __init__(self, name, size, device=None):
Z
zhangjinchao01 已提交
2312 2313 2314
        super(GatherAgentLayer, self).__init__(
            name, 'gather_agent', size, inputs=[], device=device)

Q
qijun 已提交
2315

Z
zhangjinchao01 已提交
2316 2317
@config_layer('scatter_agent')
class ScatterAgentLayer(LayerBase):
Q
qijun 已提交
2318
    def __init__(self, name, size, device=None):
Z
zhangjinchao01 已提交
2319 2320 2321
        super(ScatterAgentLayer, self).__init__(
            name, 'scatter_agent', size, inputs=[], device=device)

Q
qijun 已提交
2322

Z
zhangjinchao01 已提交
2323 2324
@config_layer('sequence_gather_agent')
class SequenceGatherAgentLayer(LayerBase):
Q
qijun 已提交
2325
    def __init__(self, name, size, device=None):
Z
zhangjinchao01 已提交
2326
        super(SequenceGatherAgentLayer, self).__init__(
Q
qijun 已提交
2327 2328
            name, 'sequence_gather_agent', size, inputs=[], device=device)

Z
zhangjinchao01 已提交
2329 2330 2331

@config_layer('sequence_scatter_agent')
class SequenceScatterAgentLayer(LayerBase):
Q
qijun 已提交
2332
    def __init__(self, name, size, device=None):
Z
zhangjinchao01 已提交
2333
        super(SequenceScatterAgentLayer, self).__init__(
Q
qijun 已提交
2334 2335
            name, 'sequence_scatter_agent', size, inputs=[], device=device)

Z
zhangjinchao01 已提交
2336 2337 2338

@config_layer('multiplex')
class MultiplexLayer(LayerBase):
Q
qijun 已提交
2339 2340 2341 2342 2343
    def __init__(self, name, inputs, size, device=None):
        super(MultiplexLayer, self).__init__(
            name, 'multiplex', size, inputs=inputs, device=device)
        config_assert(
            len(inputs) > 2, 'MultiplexLayer should have more than 2 inputs.')
Z
zhangjinchao01 已提交
2344
        for i in range(1, len(inputs)):
Q
qijun 已提交
2345 2346 2347 2348 2349
            config_assert(
                self.get_input_layer(i).size == size,
                "All the input layers except the first one should"
                "have the same size as the MultiplexLayer.")

Z
zhangjinchao01 已提交
2350 2351

@config_func
Q
qijun 已提交
2352 2353 2354
def Link(
        name,
        has_subseq=False, ):
Z
zhangjinchao01 已提交
2355 2356 2357 2358 2359
    link_config = LinkConfig()
    link_config.link_name = name
    link_config.has_subseq = has_subseq
    return link_config

Q
qijun 已提交
2360

Z
zhangjinchao01 已提交
2361 2362
# memory for recurrent layer group.
# *name* and *size* are actual layer's name and size.
2363 2364 2365 2366
# If *name* is None, need to provide *memory_name* and need to use
# SetMemoryInput() later to specify the layer which this memory remembers.
#
# return the name of the memory,
Z
zhangjinchao01 已提交
2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377
# use this name if you assign the memory as other layer's input
#
# boot frame of memory is zeroed by default,
# or initialize by boot layer output if *boot_layer* set,
# or initialize by trainable bias if *boot_bias* set,
# or initialize by a constant id if *boot_with_const_id* set
#
# Memory can be a sequence if *is_sequence* set, this type of memory
# can only be initailized by a *boot_layer* which is a sequence.
#
@config_func
2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389
def Memory(name,
           size,
           is_sequence=False,
           boot_layer=None,
           boot_bias=False,
           boot_bias_active_type="",
           boot_with_const_id=None,
           memory_name=None):
    if not memory_name:
        config_assert(name is not None, "name needs cannot be None")
        memory_name = name + "+delay1"
    agent_name = memory_name
Z
zhangjinchao01 已提交
2390
    if is_sequence:
L
Luo Tao 已提交
2391 2392 2393
        config_assert(
            boot_layer is not None,
            "there must be boot_layer in network when is_sequence = True")
Z
zhangjinchao01 已提交
2394 2395 2396 2397
        agent_layer = SequenceAgentLayer(agent_name, size)
    else:
        agent_layer = AgentLayer(agent_name, size)
    config_assert(g_current_submodel.is_recurrent_layer_group,
Q
qijun 已提交
2398
                  'Memory should be used in recurrent layer group only')
Z
zhangjinchao01 已提交
2399
    memory = g_current_submodel.memories.add()
2400 2401
    if name is not None:
        memory.layer_name = MakeLayerNameInSubmodel(name)
Z
zhangjinchao01 已提交
2402 2403
    memory.link_name = MakeLayerNameInSubmodel(agent_name)
    memory.is_sequence = is_sequence
Q
qijun 已提交
2404
    options = sum((boot_layer is not None, bool(boot_bias),
Z
zhangjinchao01 已提交
2405
                   boot_with_const_id is not None))
Q
qijun 已提交
2406 2407 2408 2409
    config_assert(
        options <= 1,
        'take one option at most from boot_layer, boot_bias, or boot_with_const_id'
    )
Z
zhangjinchao01 已提交
2410 2411 2412
    if boot_layer is not None:
        boot_layer = MakeLayerNameInParentSubmodel(boot_layer)
        config_assert(boot_layer in g_layer_map,
Q
qijun 已提交
2413 2414
                      'boot_layer "%s" does not correspond to a layer name' %
                      boot_layer)
Z
zhangjinchao01 已提交
2415 2416 2417
        memory.boot_layer_name = boot_layer
    elif boot_bias:
        memory.boot_bias_parameter_name = agent_layer.create_bias_parameter(
Q
qijun 已提交
2418
            boot_bias, size, for_self=False)
Z
zhangjinchao01 已提交
2419 2420 2421 2422 2423
        memory.boot_bias_active_type = boot_bias_active_type
    elif boot_with_const_id is not None:
        memory.boot_with_const_id = boot_with_const_id
    return agent_name

Q
qijun 已提交
2424

2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435
@config_func
def SetMemoryInput(memory_name, layer_name):
    memory_name = MakeLayerNameInSubmodel(memory_name)
    layer_name = MakeLayerNameInSubmodel(layer_name)
    for mem in g_current_submodel.memories:
        if mem.link_name == memory_name:
            mem.layer_name = layer_name
            return
    logger.fatal("Nonexistent memory name: " + memory_name)


Z
zhangjinchao01 已提交
2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446
# Generator for recurrent layer group, to use it:
#  1. define a id layer as output of layer group
#  2. define a memory of this id layer, and assign a boot id(begin of sequence)
#  3. define a eos check layer and fill its name in generator's *eos_layer_name*
# Sequence generation will stop when eos check return 1 or *max_num_frames* reached.
# If *beam_size* is greater than one, generator will use beam search.
#   in beam search, if *num_results_per_sample* set, one sample sequence can output
#   multiple results each with a probility.
@config_func
def Generator(
        max_num_frames,
Q
qijun 已提交
2447 2448 2449 2450
        eos_layer_name="eos_check",
        num_results_per_sample=1,
        beam_size=1,
        log_prob=None, ):
Z
zhangjinchao01 已提交
2451 2452 2453 2454 2455 2456 2457 2458 2459
    generator_config = GeneratorConfig()
    generator_config.max_num_frames = max_num_frames
    generator_config.eos_layer_name = eos_layer_name
    generator_config.num_results_per_sample = num_results_per_sample
    generator_config.beam_size = beam_size
    if log_prob is not None:
        generator_config.log_prob = log_prob
    return generator_config

Q
qijun 已提交
2460

Z
zhangjinchao01 已提交
2461 2462
@config_layer('expand')
class ExpandLayer(LayerBase):
2463
    def __init__(self, name, inputs, trans_type='non-seq', bias=False, **xargs):
Q
qijun 已提交
2464
        super(ExpandLayer, self).__init__(
2465
            name, 'expand', 0, inputs=inputs, **xargs)
Q
qijun 已提交
2466 2467 2468 2469 2470 2471 2472 2473
        config_assert(
            len(self.inputs) == 2, 'ExpandLayer takes 2 and only 2 inputs')
        self.config.trans_type = trans_type
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
        self.set_layer_size(self.get_input_layer(0).size)
        self.create_bias_parameter(bias, self.config.size)

Z
zhangjinchao01 已提交
2474 2475 2476

@config_layer('featmap_expand')
class FeatMapExpandLayer(LayerBase):
Q
qijun 已提交
2477 2478 2479 2480 2481 2482
    def __init__(self, name, inputs, device=None, num_filters=None, bias=False):
        super(FeatMapExpandLayer, self).__init__(
            name, 'featmap_expand', 0, inputs=inputs, device=device)
        config_assert(
            len(self.inputs) == 1, 'ExpandLayer takes 1 and only 1 inputs')
        if num_filters is not None:
Z
zhangjinchao01 已提交
2483
            self.config.num_filters = num_filters
Q
qijun 已提交
2484
        else:
Z
zhangjinchao01 已提交
2485
            logger.fatal("FeatMapExpandLayer must specify num_filters.")
Q
qijun 已提交
2486
        self.set_layer_size(self.get_input_layer(0).size * num_filters)
Z
zhangjinchao01 已提交
2487 2488 2489 2490


@config_layer('max')
class MaxLayer(LayerBase):
Q
qijun 已提交
2491 2492 2493 2494 2495 2496
    def __init__(self,
                 name,
                 inputs,
                 trans_type='non-seq',
                 active_type='linear',
                 bias=False,
2497 2498
                 output_max_index=None,
                 **xargs):
2499
        super(MaxLayer, self).__init__(name, 'max', 0, inputs=inputs, **xargs)
Z
zhangjinchao01 已提交
2500
        config_assert(len(self.inputs) == 1, 'MaxLayer must have 1 input')
Q
qijun 已提交
2501 2502
        self.config.trans_type = trans_type
        self.config.active_type = active_type
Z
zhangjinchao01 已提交
2503 2504 2505 2506
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            self.set_layer_size(input_layer.size)
        self.create_bias_parameter(bias, self.config.size)
2507 2508
        if output_max_index is not None:
            self.config.output_max_index = output_max_index
Z
zhangjinchao01 已提交
2509 2510 2511 2512


@config_layer('maxid')
class MaxIdLayer(LayerBase):
Q
qijun 已提交
2513
    def __init__(self, name, inputs, beam_size=None, device=None):
Z
zhangjinchao01 已提交
2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530
        super(MaxIdLayer, self).__init__(
            name, 'maxid', 0, inputs=inputs, device=device)
        config_assert(len(self.inputs) == 1, 'MaxIdLayer must have 1 input')
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            self.set_layer_size(input_layer.size)

        if beam_size is None:
            global g_current_submodel
            if g_current_submodel.HasField("generator"):
                self.config.beam_size = g_current_submodel.generator.beam_size
        else:
            self.config.beam_size = beam_size


@config_layer('eos_id')
class EosIdLayer(LayerBase):
Q
qijun 已提交
2531
    def __init__(self, name, inputs, eos_id, device=None):
Z
zhangjinchao01 已提交
2532 2533 2534
        super(EosIdLayer, self).__init__(
            name, 'eos_id', 0, inputs=inputs, device=device)
        config_assert(len(self.inputs) == 1, 'EosIdLayer must have 1 input')
Q
qijun 已提交
2535
        self.set_layer_size(2)  # boolean output
Z
zhangjinchao01 已提交
2536 2537
        self.config.eos_id = eos_id

Q
qijun 已提交
2538

Z
zhangjinchao01 已提交
2539 2540
@config_layer('seqlastins')
class SequenceLastInstanceLayer(LayerBase):
Q
qijun 已提交
2541 2542 2543 2544 2545
    def __init__(self,
                 name,
                 inputs,
                 active_type='linear',
                 trans_type='non-seq',
2546
                 bias=False,
2547
                 stride=-1,
2548
                 **xargs):
Q
qijun 已提交
2549 2550 2551 2552 2553
        super(SequenceLastInstanceLayer, self).__init__(
            name,
            'seqlastins',
            0,
            inputs=inputs,
2554 2555
            active_type=active_type,
            **xargs)
Q
qijun 已提交
2556 2557
        config_assert(
            len(inputs) == 1, 'SequenceLastInstanceLayer must have 1 input')
2558
        if trans_type == 'seq':
L
Luo Tao 已提交
2559
            config_assert(stride == -1, 'subseq does not support stride window')
Q
qijun 已提交
2560
        self.config.trans_type = trans_type
2561 2562
        self.config.seq_pool_stride = stride
        self.set_layer_size(self.get_input_layer(0).size)
Z
zhangjinchao01 已提交
2563 2564
        self.create_bias_parameter(bias, self.config.size)

Q
qijun 已提交
2565

Z
zhangjinchao01 已提交
2566 2567
@config_layer('seqfirstins')
class SequenceFirstInstanceLayer(SequenceLastInstanceLayer):
2568 2569 2570 2571 2572 2573
    def __init__(self,
                 name,
                 inputs,
                 active_type='linear',
                 trans_type='non-seq',
                 bias=False,
2574
                 stride=-1,
2575
                 **xargs):
Q
qijun 已提交
2576
        super(SequenceFirstInstanceLayer, self).__init__(
2577 2578 2579 2580 2581 2582 2583
            name,
            inputs=inputs,
            active_type=active_type,
            trans_type=trans_type,
            bias=bias,
            stride=stride,
            **xargs)
Z
zhangjinchao01 已提交
2584 2585
        self.config.select_first = True

Q
qijun 已提交
2586

Z
zhangjinchao01 已提交
2587 2588
@config_layer('seqconcat')
class SequenceConcatLayer(LayerBase):
2589
    def __init__(self, name, inputs, active_type='linear', bias=False, **xargs):
Q
qijun 已提交
2590 2591 2592 2593 2594
        super(SequenceConcatLayer, self).__init__(
            name,
            'seqconcat',
            0,
            inputs=inputs,
2595 2596
            active_type=active_type,
            **xargs)
Q
qijun 已提交
2597 2598
        config_assert(
            len(inputs) == 2, 'SequenceConcatLayer must have 2 inputs')
Z
zhangjinchao01 已提交
2599 2600 2601 2602 2603
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            self.set_layer_size(input_layer.size)
        self.create_bias_parameter(bias, self.config.size)

Q
qijun 已提交
2604

Z
zhangjinchao01 已提交
2605 2606
@config_layer('seqreshape')
class SequenceReshapeLayer(LayerBase):
Q
qijun 已提交
2607 2608 2609 2610 2611
    def __init__(self,
                 name,
                 size,
                 inputs,
                 active_type='linear',
2612 2613
                 bias=False,
                 **xargs):
Q
qijun 已提交
2614 2615 2616
        super(SequenceReshapeLayer, self).__init__(
            name,
            'seqreshape',
Z
zhangjinchao01 已提交
2617
            size,
Q
qijun 已提交
2618
            inputs=inputs,
2619 2620
            active_type=active_type,
            **xargs)
Q
qijun 已提交
2621 2622
        config_assert(
            len(inputs) == 1, 'SequenceReshapeLayer must have 1 inputs')
Z
zhangjinchao01 已提交
2623 2624 2625
        self.set_layer_size(size)
        self.create_bias_parameter(bias, size)

Q
qijun 已提交
2626

Z
zhangjinchao01 已提交
2627 2628
@config_layer('subseq')
class SubSequenceLayer(LayerBase):
2629
    def __init__(self, name, inputs, active_type='linear', bias=False, **xargs):
Q
qijun 已提交
2630
        super(SubSequenceLayer, self).__init__(
2631
            name, 'subseq', 0, inputs=inputs, active_type=active_type, **xargs)
Z
zhangjinchao01 已提交
2632 2633 2634 2635 2636 2637
        config_assert(len(inputs) == 3, 'SubSequenceLayer must have 3 inputs')
        input_layer0 = self.get_input_layer(0)
        size = input_layer0.size
        self.set_layer_size(size)
        self.create_bias_parameter(bias, size)

Q
qijun 已提交
2638

Z
zhangjinchao01 已提交
2639 2640
@config_layer('out_prod')
class OuterProdLayer(LayerBase):
Q
qijun 已提交
2641 2642 2643
    def __init__(self, name, inputs, device=None):
        super(OuterProdLayer, self).__init__(
            name, 'out_prod', 0, inputs=inputs, device=device)
Z
zhangjinchao01 已提交
2644 2645 2646 2647 2648
        config_assert(len(inputs) == 2, 'OuterProdLayer must have 2 inputs')
        input_layer0 = self.get_input_layer(0)
        input_layer1 = self.get_input_layer(1)
        self.set_layer_size(input_layer0.size * input_layer1.size)

Q
qijun 已提交
2649

Z
zhangjinchao01 已提交
2650 2651
@config_layer('power')
class PowerLayer(LayerBase):
Q
qijun 已提交
2652 2653 2654
    def __init__(self, name, inputs, device=None):
        super(PowerLayer, self).__init__(
            name, 'power', 0, inputs=inputs, device=device)
Z
zhangjinchao01 已提交
2655 2656 2657 2658
        config_assert(len(inputs) == 2, 'PowerLayer must have 2 inputs')
        input_layer1 = self.get_input_layer(1)
        self.set_layer_size(input_layer1.size)
        input_layer0 = self.get_input_layer(0)
Q
qijun 已提交
2659 2660 2661
        config_assert(1 == input_layer0.size,
                      'The left input is the exponent and should be of size 1')

Z
zhangjinchao01 已提交
2662 2663 2664

@config_layer('slope_intercept')
class SlopeInterceptLayer(LayerBase):
Q
qijun 已提交
2665 2666 2667
    def __init__(self, name, inputs, slope=1.0, intercept=0.0, device=None):
        super(SlopeInterceptLayer, self).__init__(
            name, 'slope_intercept', 0, inputs=inputs, device=device)
Z
zhangjinchao01 已提交
2668 2669 2670 2671 2672 2673
        self.config.slope = slope
        self.config.intercept = intercept
        config_assert(len(inputs) == 1, 'SlopeInterceptLayer must have 1 input')
        input_layer0 = self.get_input_layer(0)
        self.set_layer_size(input_layer0.size)

Q
qijun 已提交
2674

Z
zhangjinchao01 已提交
2675 2676
@config_layer('scaling')
class ScalingLayer(LayerBase):
Q
qijun 已提交
2677 2678 2679
    def __init__(self, name, inputs, device=None):
        super(ScalingLayer, self).__init__(
            name, 'scaling', 0, inputs=inputs, device=device)
Z
zhangjinchao01 已提交
2680 2681 2682 2683
        config_assert(len(inputs) == 2, 'ScalingLayer must have 2 inputs')
        input_layer1 = self.get_input_layer(1)
        self.set_layer_size(input_layer1.size)
        input_layer0 = self.get_input_layer(0)
Q
qijun 已提交
2684 2685 2686
        config_assert(1 == input_layer0.size,
                      'The left input should be of size 1')

Z
zhangjinchao01 已提交
2687 2688 2689

@config_layer('conv_shift')
class ConvShiftLayer(LayerBase):
Q
qijun 已提交
2690 2691 2692
    def __init__(self, name, inputs, device=None):
        super(ConvShiftLayer, self).__init__(
            name, 'conv_shift', 0, inputs=inputs, device=device)
Z
zhangjinchao01 已提交
2693 2694 2695 2696
        config_assert(len(inputs) == 2, 'ConvShiftLayer must have 2 inputs')
        input_layer0 = self.get_input_layer(0)
        self.set_layer_size(input_layer0.size)

Q
qijun 已提交
2697

Z
zhangjinchao01 已提交
2698 2699
@config_layer('convex_comb')
class ConvexCombinationLayer(LayerBase):
Q
qijun 已提交
2700
    def __init__(self, name, size, inputs, device=None):
Z
zhangjinchao01 已提交
2701
        super(ConvexCombinationLayer, self).__init__(
Q
qijun 已提交
2702 2703 2704
            name, 'convex_comb', size, inputs=inputs, device=device)
        config_assert(
            len(self.inputs) == 2, 'ConvexCombinationLayer must have 2 inputs')
2705 2706 2707
        config_assert(
            size * self.get_input_layer(0).size == self.get_input_layer(1).size,
            'Wrong input size for ConvexCombinationLayer')
Z
zhangjinchao01 已提交
2708 2709
        self.set_layer_size(size)

Q
qijun 已提交
2710

Z
zhangjinchao01 已提交
2711 2712
@config_layer('interpolation')
class InterpolationLayer(LayerBase):
Q
qijun 已提交
2713
    def __init__(self, name, inputs, device=None):
Z
zhangjinchao01 已提交
2714 2715
        super(InterpolationLayer, self).__init__(
            name, 'interpolation', 0, inputs=inputs, device=device)
Q
qijun 已提交
2716 2717
        config_assert(
            len(self.inputs) == 3, 'InterpolationLayer must have 3 inputs')
Z
zhangjinchao01 已提交
2718 2719 2720 2721 2722 2723 2724 2725
        input_layer0 = self.get_input_layer(0)
        input_layer1 = self.get_input_layer(1)
        input_layer2 = self.get_input_layer(2)
        self.set_layer_size(input_layer1.size)
        config_assert(input_layer0.size == 1, 'weight should be of size 1')
        config_assert(input_layer1.size == input_layer2.size,
                      'the two vector inputs should be of the same size')

Q
qijun 已提交
2726

L
liaogang 已提交
2727 2728
@config_layer('bilinear_interp')
class BilinearInterpLayer(LayerBase):
Q
qijun 已提交
2729
    def __init__(self, name, inputs, **xargs):
L
liaogang 已提交
2730
        super(BilinearInterpLayer, self).__init__(
L
liaogang 已提交
2731
            name, 'bilinear_interp', 0, inputs=inputs, **xargs)
L
liaogang 已提交
2732
        input_layer = self.get_input_layer(0)
L
Luo Tao 已提交
2733 2734 2735 2736
        conf = self.config.inputs[0].bilinear_interp_conf
        parse_bilinear(self.inputs[0].bilinear_interp, input_layer.name, conf)
        self.set_cnn_layer(name, conf.out_size_y, conf.out_size_x,
                           conf.image_conf.channels)
Q
qijun 已提交
2737

L
liaogang 已提交
2738

Z
zhangjinchao01 已提交
2739 2740
@config_layer('sum_to_one_norm')
class SumToOneNormLayer(LayerBase):
Q
qijun 已提交
2741
    def __init__(self, name, inputs, device=None):
Z
zhangjinchao01 已提交
2742
        super(SumToOneNormLayer, self).__init__(
Q
qijun 已提交
2743 2744 2745
            name, 'sum_to_one_norm', 0, inputs=inputs, device=device)
        config_assert(
            len(self.inputs) == 1, 'SumToOneNormLayer must have 1 input')
Z
zhangjinchao01 已提交
2746 2747 2748
        input_layer0 = self.get_input_layer(0)
        self.set_layer_size(input_layer0.size)

Q
qijun 已提交
2749

Z
zhangjinchao01 已提交
2750 2751
@config_layer('cos_vm')
class CosSimVecMatLayer(LayerBase):
Q
qijun 已提交
2752
    def __init__(self, name, size, inputs, cos_scale=1.0, device=None):
Z
zhangjinchao01 已提交
2753
        super(CosSimVecMatLayer, self).__init__(
Q
qijun 已提交
2754
            name, 'cos_vm', size, inputs=inputs, device=device)
Z
zhangjinchao01 已提交
2755
        self.config.cos_scale = cos_scale
Q
qijun 已提交
2756 2757
        config_assert(
            len(self.inputs) == 2, 'CosSimVecMatLayer must have 2 inputs')
2758 2759 2760
        config_assert(
            size * self.get_input_layer(0).size == self.get_input_layer(1).size,
            'Wrong input size for CosSimVecMatLayer')
Z
zhangjinchao01 已提交
2761

Q
qijun 已提交
2762

Z
zhangjinchao01 已提交
2763 2764
@config_layer('sampling_id')
class SamplingIdLayer(LayerBase):
Q
qijun 已提交
2765
    def __init__(self, name, inputs, device=None):
Z
zhangjinchao01 已提交
2766 2767
        super(SamplingIdLayer, self).__init__(
            name, 'sampling_id', 0, inputs=inputs, device=device)
Q
qijun 已提交
2768 2769
        config_assert(
            len(self.inputs) == 1, 'SamplingIdLayer must have 1 input')
Z
zhangjinchao01 已提交
2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            self.set_layer_size(input_layer.size)


# AverageLayer: "average" for each sample within a sequence.
# average_stratrgy: set to one of the following:
# 'average': plain average.
# 'sum': sum each sample instead of average (which is divide by sample_num).
# 'squarerootn': sum each sample, but divide by sqrt(sample_num).
@config_layer('average')
class AverageLayer(LayerBase):
Q
qijun 已提交
2782 2783 2784 2785 2786 2787
    def __init__(self,
                 name,
                 inputs,
                 average_strategy='average',
                 trans_type='non-seq',
                 active_type='linear',
2788 2789
                 bias=False,
                 **xargs):
Q
qijun 已提交
2790
        super(AverageLayer, self).__init__(
2791
            name, 'average', 0, inputs=inputs, active_type=active_type, **xargs)
Z
zhangjinchao01 已提交
2792
        self.config.average_strategy = average_strategy
Q
qijun 已提交
2793
        self.config.trans_type = trans_type
Z
zhangjinchao01 已提交
2794 2795 2796 2797 2798 2799
        config_assert(len(inputs) == 1, 'AverageLayer must have 1 input')
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            self.set_layer_size(input_layer.size)
        self.create_bias_parameter(bias, self.config.size)

Q
qijun 已提交
2800

Z
zhangjinchao01 已提交
2801 2802
@config_layer('cos')
class CosSimLayer(LayerBase):
2803
    def __init__(self, name, inputs, cos_scale=1, device=None):
Z
zhangjinchao01 已提交
2804 2805 2806 2807 2808 2809
        super(CosSimLayer, self).__init__(
            name, 'cos', 1, inputs=inputs, device=device)
        config_assert(len(self.inputs) == 2, 'CosSimLayer must have 2 inputs')
        config_assert(
            self.get_input_layer(0).size == self.get_input_layer(1).size,
            'inputs of CosSimLayer must have same dim')
2810
        self.config.cos_scale = cos_scale
Z
zhangjinchao01 已提交
2811 2812 2813 2814


@config_layer('tensor')
class TensorLayer(LayerBase):
2815
    def __init__(self, name, size, inputs, bias=True, **xargs):
Q
qijun 已提交
2816
        super(TensorLayer, self).__init__(
2817
            name, 'tensor', size, inputs=inputs, **xargs)
Z
zhangjinchao01 已提交
2818 2819
        config_assert(len(self.inputs) == 2, 'TensorLayer must have 2 inputs')
        config_assert(size > 0, 'size must be positive')
Q
qijun 已提交
2820 2821
        config_assert(inputs[1].parameter_name == None,
                      'second parameter should be None.')
Z
zhangjinchao01 已提交
2822 2823 2824 2825 2826 2827 2828 2829 2830 2831
        input_layer0 = self.get_input_layer(0)
        input_layer1 = self.get_input_layer(1)
        psize = size * input_layer0.size * input_layer1.size
        dims = [input_layer0.size, input_layer1.size, size]
        self.create_input_parameter(0, psize, dims)
        self.create_bias_parameter(bias, size)


@config_layer('mixed')
class MixedLayer(LayerBase):
Q
qijun 已提交
2832 2833 2834 2835 2836 2837 2838
    def __init__(self,
                 name,
                 inputs,
                 size=0,
                 bias=True,
                 error_clipping_threshold=None,
                 **xargs):
Z
zhangjinchao01 已提交
2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855
        config_assert(inputs, 'inputs cannot be empty')
        super(MixedLayer, self).__init__(
            name, 'mixed', size, inputs=inputs, **xargs)
        operator_input_index = []
        for operator in self.operators:
            operator_conf = operator.operator_conf
            for i in xrange(1, len(operator.input_layer_names)):
                input_index = len(self.config.inputs)
                operator_conf.input_indices.append(input_index)
                input_config = Input(operator.input_layer_names[i])
                self.inputs.append(input_config)
                layer_input = self.config.inputs.add()
                layer_input.input_layer_name = input_config.input_layer_name
            for input_index in operator_conf.input_indices:
                input_layer = self.get_input_layer(input_index)
                operator_conf.input_sizes.append(input_layer.size)
                operator_input_index.append(input_index)
2856
            if self.config.size == 0:
Z
zhangjinchao01 已提交
2857 2858 2859
                size = operator.calc_output_size(operator_conf.input_sizes)
                if size != 0:
                    self.set_layer_size(size)
2860
            else:
2861 2862
                sz = operator.calc_output_size(operator_conf.input_sizes)
                if sz != 0:
Q
qijun 已提交
2863 2864 2865 2866
                    config_assert(
                        sz == self.config.size,
                        "different inputs have different size: %s vs. %s" %
                        (sz, self.config.size))
Z
zhangjinchao01 已提交
2867 2868 2869 2870
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            input = self.inputs[input_index]
            if input_index not in operator_input_index:
Q
qijun 已提交
2871 2872 2873
                config_assert(
                    isinstance(input, Projection),
                    "input should be projection or operation")
2874
            if self.config.size == 0 and isinstance(input, Projection):
Z
zhangjinchao01 已提交
2875 2876 2877
                size = input.calc_output_size(input_layer)
                if size != 0:
                    self.set_layer_size(size)
2878
            elif isinstance(input, Projection):
Q
qijun 已提交
2879 2880 2881 2882 2883 2884
                sz = input.calc_output_size(input_layer)
                if sz != 0:
                    config_assert(
                        sz == self.config.size,
                        "different inputs have different size: %s vs. %s" %
                        (sz, self.config.size))
Z
zhangjinchao01 已提交
2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895
        config_assert(size != 0, "size is not set")

        for input_index in xrange(len(self.inputs)):
            input = self.inputs[input_index]
            if isinstance(input, Projection):
                input_layer = self.get_input_layer(input_index)
                input.proj_conf.input_size = input_layer.size
                input.proj_conf.output_size = size

                input_config = self.config.inputs[input_index]
                input_config.proj_conf.CopyFrom(input.proj_conf)
Q
qijun 已提交
2896 2897
                input_config.proj_conf.name = gen_parameter_name(name,
                                                                 input_index)
Z
zhangjinchao01 已提交
2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908
                psize = input.calc_parameter_size(input_layer.size, size)
                dims = input.calc_parameter_dims(input_layer.size, size)
                self.create_input_parameter(input_index, psize, dims)

        for operator in self.operators:
            operator_conf = operator.operator_conf
            operator_conf.output_size = self.config.size
            operator.check_dims()
            record_operator_conf = self.config.operator_confs.add()
            record_operator_conf.CopyFrom(operator_conf)

2909 2910 2911 2912 2913 2914
        psize = self.config.size
        if isinstance(self.inputs[0], ConvProjection):
            self.config.shared_biases = True
            psize = 0
            for input in self.inputs:
                psize += input.calc_bias_size()
Z
zhangjinchao01 已提交
2915

2916 2917 2918
        if bias:
            self.config.bias_size = psize
            self.create_bias_parameter(bias, psize)
Z
zhangjinchao01 已提交
2919

2920 2921
        if error_clipping_threshold is not None:
            self.config.error_clipping_threshold = error_clipping_threshold
Z
zhangjinchao01 已提交
2922

Q
qijun 已提交
2923

Z
zhangjinchao01 已提交
2924 2925
# like MixedLayer, but no bias parameter
@config_func
Q
qijun 已提交
2926
def ExpressionLayer(name, inputs, **xargs):
Z
zhangjinchao01 已提交
2927 2928
    MixedLayer(name, inputs, bias=False, **xargs)

Q
qijun 已提交
2929

Z
zhangjinchao01 已提交
2930 2931
@config_layer('concat')
class ConcatenateLayer(LayerBase):
Q
qijun 已提交
2932
    def __init__(self, name, inputs, bias=False, **xargs):
Z
zhangjinchao01 已提交
2933
        config_assert(inputs, 'inputs cannot be empty')
2934
        config_assert(not bias, 'ConcatenateLayer cannot support bias.')
Z
zhangjinchao01 已提交
2935 2936 2937 2938 2939 2940
        super(ConcatenateLayer, self).__init__(
            name, 'concat', 0, inputs=inputs, **xargs)
        size = 0
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            input = self.inputs[input_index]
Q
qijun 已提交
2941
            if self.config.size == 0:
Z
zhangjinchao01 已提交
2942 2943 2944 2945
                size += input_layer.size

        self.set_layer_size(size)

Q
qijun 已提交
2946

Z
zhangjinchao01 已提交
2947 2948 2949
# like concat layer, but each input layer was processed by a Projection.
@config_layer('concat2')
class ConcatenateLayer2(LayerBase):
Q
qijun 已提交
2950
    def __init__(self, name, inputs, bias=False, **xargs):
Z
zhangjinchao01 已提交
2951 2952 2953
        config_assert(inputs, 'inputs cannot be empty')
        super(ConcatenateLayer2, self).__init__(
            name, 'concat2', 0, inputs=inputs, **xargs)
2954 2955

        if isinstance(self.inputs[0], ConvProjection):
Q
qijun 已提交
2956 2957 2958 2959 2960 2961
            for input_index in xrange(len(self.inputs) - 1):
                input = self.inputs[input_index + 1]
                config_assert(
                    isinstance(input, ConvProjection),
                    "The first input of ConcatenateLayer2 is ConvProjection, "
                    "the other inputs should also be ConvProjection.")
2962

Z
zhangjinchao01 已提交
2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982
        size = 0
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            input = self.inputs[input_index]
            output_size = input.calc_output_size(input_layer)
            config_assert(output_size != 0, "proj output size is not set")
            size += output_size

        self.set_layer_size(size)

        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            input = self.inputs[input_index]
            input.proj_conf.input_size = input_layer.size
            input.proj_conf.output_size = input.calc_output_size(input_layer)

            input_config = self.config.inputs[input_index]
            input_config.proj_conf.CopyFrom(input.proj_conf)
            input_config.proj_conf.name = gen_parameter_name(name, input_index)
            psize = input.calc_parameter_size(input.proj_conf.input_size,
Q
qijun 已提交
2983
                                              input.proj_conf.output_size)
Z
zhangjinchao01 已提交
2984
            dims = input.calc_parameter_dims(input.proj_conf.input_size,
Q
qijun 已提交
2985
                                             input.proj_conf.output_size)
Z
zhangjinchao01 已提交
2986 2987
            self.create_input_parameter(input_index, psize, dims)

2988 2989 2990 2991 2992 2993 2994
        psize = self.config.size
        if isinstance(self.inputs[0], ConvProjection):
            self.config.shared_biases = True
            psize = 0
            for input in self.inputs:
                psize += input.calc_bias_size()

2995 2996 2997
        if bias:
            self.config.bias_size = psize
            self.create_bias_parameter(bias, psize)
2998

Q
qijun 已提交
2999

Z
zhangjinchao01 已提交
3000 3001
@config_layer('recurrent')
class RecurrentLayer(LayerBase):
Q
qijun 已提交
3002
    def __init__(self, name, inputs, reversed=False, bias=True, **xargs):
Y
Yu Yang 已提交
3003 3004
        super(RecurrentLayer, self).__init__(name, 'recurrent', 0, inputs,
                                             **xargs)
Z
zhangjinchao01 已提交
3005 3006 3007 3008 3009 3010 3011 3012 3013
        config_assert(len(self.inputs) == 1, 'RecurrentLayer must have 1 input')
        input_layer = self.get_input_layer(0)
        size = input_layer.size
        self.set_layer_size(size)
        self.config.reversed = reversed
        dims = [size, size]
        self.create_input_parameter(0, size * size, dims)
        self.create_bias_parameter(bias, self.config.size)

Q
qijun 已提交
3014

Z
zhangjinchao01 已提交
3015 3016
@config_layer('lstmemory')
class LstmLayer(LayerBase):
Q
qijun 已提交
3017 3018 3019 3020 3021 3022 3023 3024
    def __init__(self,
                 name,
                 inputs,
                 reversed=False,
                 active_gate_type="sigmoid",
                 active_state_type="sigmoid",
                 bias=True,
                 **xargs):
Z
zhangjinchao01 已提交
3025 3026 3027 3028 3029 3030 3031 3032
        super(LstmLayer, self).__init__(name, 'lstmemory', 0, inputs, **xargs)
        config_assert(len(self.inputs) == 1, 'LstmLayer must have 1 input')
        input_layer = self.get_input_layer(0)
        #check input_layer.size is divided by 4
        config_assert(input_layer.size % 4 == 0, "size % 4 should be 0!")
        size = input_layer.size / 4
        self.set_layer_size(size)
        self.config.reversed = reversed
Q
qijun 已提交
3033
        self.config.active_gate_type = active_gate_type
Z
zhangjinchao01 已提交
3034 3035 3036 3037 3038
        self.config.active_state_type = active_state_type
        self.create_input_parameter(0, size * size * 4, [size, size, 4])
        #bias includes 3 kinds of peephole, 4 + 3 = 7
        self.create_bias_parameter(bias, size * 7)

Q
qijun 已提交
3039

Z
zhangjinchao01 已提交
3040 3041
@config_layer('lstm_step')
class LstmStepLayer(LayerBase):
Q
qijun 已提交
3042 3043 3044 3045 3046 3047 3048 3049 3050 3051
    def __init__(self,
                 name,
                 size,
                 inputs,
                 active_gate_type="sigmoid",
                 active_state_type="sigmoid",
                 bias=True,
                 **xargs):
        super(LstmStepLayer, self).__init__(name, 'lstm_step', size, inputs,
                                            **xargs)
Z
zhangjinchao01 已提交
3052 3053 3054
        config_assert(len(inputs) == 2, 'LstmStepLayer must have 2 inputs')
        input_layer0 = self.get_input_layer(0)
        input_layer1 = self.get_input_layer(1)
Q
qijun 已提交
3055 3056 3057 3058 3059
        config_assert(input_layer0.size == 4 * size,
                      'input_layer0.size != 4 * layer.size')
        config_assert(input_layer1.size == size,
                      'input_layer1.size != layer.size')
        self.config.active_gate_type = active_gate_type
Z
zhangjinchao01 已提交
3060 3061 3062
        self.config.active_state_type = active_state_type
        self.create_bias_parameter(bias, size * 3)

Q
qijun 已提交
3063

Z
zhangjinchao01 已提交
3064 3065 3066
# get the specific output from the input layer.
@config_layer('get_output')
class GetOutputLayer(LayerBase):
Q
qijun 已提交
3067 3068 3069 3070
    def __init__(self, name, size, inputs):
        super(GetOutputLayer, self).__init__(name, 'get_output', size, inputs)
        config_assert(
            len(self.inputs) == 1, 'GetOutputLayer must have 1 inputs')
Z
zhangjinchao01 已提交
3071 3072 3073 3074
        inputs = self.inputs[0]
        config_assert(inputs.input_layer_argument,
                      'input_layer_argument cannot be empty')

Q
qijun 已提交
3075

Z
zhangjinchao01 已提交
3076 3077
@config_layer('mdlstmemory')
class MDLstmLayer(LayerBase):
Q
qijun 已提交
3078 3079 3080 3081 3082 3083 3084 3085
    def __init__(self,
                 name,
                 inputs,
                 directions=True,
                 active_gate_type="sigmoid",
                 active_state_type="sigmoid",
                 bias=True,
                 **xargs):
Y
Yu Yang 已提交
3086 3087
        super(MDLstmLayer, self).__init__(name, 'mdlstmemory', 0, inputs,
                                          **xargs)
Z
zhangjinchao01 已提交
3088 3089 3090 3091
        config_assert(len(self.inputs) == 1, 'MDLstmLayer must have 1 input')
        input_layer = self.get_input_layer(0)
        dim_num = len(directions)
        #check input_layer.size is divided by (3+dim_num)
Y
Yu Yang 已提交
3092 3093
        config_assert(input_layer.size % (3 + dim_num) == 0,
                      "size % (dim_num) should be 0!")
Q
qijun 已提交
3094
        size = input_layer.size / (3 + dim_num)
Z
zhangjinchao01 已提交
3095
        self.set_layer_size(size)
Q
qijun 已提交
3096
        self.config.active_gate_type = active_gate_type
Z
zhangjinchao01 已提交
3097 3098 3099
        self.config.active_state_type = active_state_type
        for i in xrange(len(directions)):
            self.config.directions.append(int(directions[i]))
Y
Yu Yang 已提交
3100 3101
        self.create_input_parameter(0, size * size * (3 + dim_num),
                                    [size, size, 3 + dim_num])
Z
zhangjinchao01 已提交
3102
        #bias includes 3 kinds of peephole, 3+dim_num+2+dim_num
Q
qijun 已提交
3103 3104
        self.create_bias_parameter(bias, size * (5 + 2 * dim_num))

Z
zhangjinchao01 已提交
3105 3106 3107

@config_layer('gated_recurrent')
class GatedRecurrentLayer(LayerBase):
Q
qijun 已提交
3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118
    def __init__(self,
                 name,
                 inputs,
                 reversed=False,
                 active_gate_type="sigmoid",
                 bias=True,
                 **xargs):
        super(GatedRecurrentLayer, self).__init__(name, 'gated_recurrent', 0,
                                                  inputs, **xargs)
        config_assert(
            len(self.inputs) == 1, 'GatedRecurrentLayer must have 1 input')
Z
zhangjinchao01 已提交
3119 3120 3121 3122 3123 3124
        input_layer = self.get_input_layer(0)
        #check input_layer.size is divided by 3
        config_assert(input_layer.size % 3 == 0, "size % 3 should be 0!")
        size = input_layer.size / 3
        self.set_layer_size(size)
        self.config.reversed = reversed
Q
qijun 已提交
3125
        self.config.active_gate_type = active_gate_type
Z
zhangjinchao01 已提交
3126 3127 3128
        self.create_input_parameter(0, size * size * 3, [size, size * 3])
        self.create_bias_parameter(bias, size * 3)

Q
qijun 已提交
3129

Z
zhangjinchao01 已提交
3130 3131
@config_layer('gru_step')
class GruStepLayer(LayerBase):
Q
qijun 已提交
3132 3133 3134 3135 3136 3137 3138
    def __init__(self,
                 name,
                 size,
                 inputs,
                 active_gate_type="sigmoid",
                 bias=True,
                 **xargs):
Y
Yu Yang 已提交
3139 3140
        super(GruStepLayer, self).__init__(name, 'gru_step', size, inputs,
                                           **xargs)
Z
zhangjinchao01 已提交
3141 3142 3143
        config_assert(len(self.inputs) == 2, 'GruStepLayer must have 2 input')
        input_layer0 = self.get_input_layer(0)
        input_layer1 = self.get_input_layer(1)
Q
qijun 已提交
3144 3145 3146 3147 3148
        config_assert(input_layer0.size == 3 * size,
                      'input_layer0.size != 3 * layer.size')
        config_assert(input_layer1.size == size,
                      'input_layer1.size != layer.size')
        self.config.active_gate_type = active_gate_type
H
Haonan 已提交
3149
        self.create_input_parameter(0, size * size * 3, [size, size * 3])
Z
zhangjinchao01 已提交
3150 3151
        self.create_bias_parameter(bias, size * 3)

Q
qijun 已提交
3152

Z
zhangjinchao01 已提交
3153 3154 3155 3156 3157 3158 3159
'''
 A layer for calculating the cost of sequential conditional random field model.
 Example: CRFLayer(name="crf_cost", size=label_num,
                   inputs=["output", "label", "weight"])
          where "weight" is optional, one weight for each sequence
 @param coeff: weight of the layer
'''
Q
qijun 已提交
3160 3161


Z
zhangjinchao01 已提交
3162 3163
@config_layer('crf')
class CRFLayer(LayerBase):
Q
qijun 已提交
3164
    def __init__(self, name, size, inputs, coeff=1.0, device=None):
Z
zhangjinchao01 已提交
3165
        super(CRFLayer, self).__init__(name, 'crf', size, inputs, device=device)
Q
qijun 已提交
3166 3167
        config_assert(2 <= len(self.inputs) <= 3,
                      'CRFLayer must have 2 or 3 inputs')
3168
        self.create_input_parameter(0, size * (size + 2), [size + 2, size])
Z
zhangjinchao01 已提交
3169 3170
        self.config.coeff = coeff

Q
qijun 已提交
3171

Z
zhangjinchao01 已提交
3172 3173 3174 3175 3176 3177 3178 3179
'''
 A layer for calculating the decoding sequence of sequential conditional
 random field model.
 The decoding sequence is stored in output_.ids
 If a second input is provided, it is treated as the ground-truth label, and
 this layer will also calculate error, output_.value[i] is 1 for incorrect
 decoding or 0 for correct decoding
'''
Q
qijun 已提交
3180 3181


Z
zhangjinchao01 已提交
3182 3183
@config_layer('crf_decoding')
class CRFDecodingLayer(LayerBase):
Q
qijun 已提交
3184
    def __init__(self, name, size, inputs, device=None):
Z
zhangjinchao01 已提交
3185 3186 3187 3188 3189
        super(CRFDecodingLayer, self).__init__(
            name, 'crf_decoding', size, inputs, device=device)
        config_assert(
            len(self.inputs) <= 2,
            'CRFDecodingLayer cannot have more than 2 inputs')
3190
        self.create_input_parameter(0, size * (size + 2), [size + 2, size])
Z
zhangjinchao01 已提交
3191

Q
qijun 已提交
3192

Z
zhangjinchao01 已提交
3193 3194
@config_layer('ctc')
class CTCLayer(LayerBase):
Q
qijun 已提交
3195
    def __init__(self, name, size, inputs, norm_by_times=False, device=None):
Z
zhangjinchao01 已提交
3196 3197 3198 3199
        super(CTCLayer, self).__init__(name, 'ctc', size, inputs, device=device)
        self.config.norm_by_times = norm_by_times
        config_assert(len(self.inputs) == 2, 'CTCLayer must have 2 inputs')

Q
qijun 已提交
3200

3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221
@config_layer('warp_ctc')
class WarpCTCLayer(LayerBase):
    def __init__(self,
                 name,
                 size,
                 inputs,
                 blank=0,
                 norm_by_times=False,
                 device=None):
        super(WarpCTCLayer, self).__init__(
            name, 'warp_ctc', size=size, inputs=inputs, device=device)
        self.config.blank = blank
        self.config.norm_by_times = norm_by_times
        config_assert(len(self.inputs) == 2, 'WarpCTCLayer must have 2 inputs')
        input_layer = self.get_input_layer(0)
        config_assert(
            (input_layer.active_type == '' or
             input_layer.active_type == 'linear'),
            "Expecting the active_type of input layer to be linear or null")


Z
zhangjinchao01 已提交
3222 3223
@config_layer('recurrent_layer_group')
class RecurrentLayerGroup(LayerBase):
Q
qijun 已提交
3224
    def __init__(self, name, device=None):
Z
zhangjinchao01 已提交
3225 3226 3227 3228 3229 3230
        super(RecurrentLayerGroup, self).__init__(
            name, 'recurrent_layer_group', 0, inputs=[], device=device)


# Deprecated, use a new layer specific class instead
@config_func
Q
qijun 已提交
3231
def Layer(name, type, **xargs):
Z
zhangjinchao01 已提交
3232 3233 3234 3235
    layers = {}
    layers.update(g_cost_map)
    layers.update(g_layer_type_map)
    layer_func = layers.get(type)
Q
qijun 已提交
3236
    config_assert(layer_func, "layer type '%s' not supported." % type)
X
xuwei06 已提交
3237
    return layer_func(name, **xargs)
Z
zhangjinchao01 已提交
3238

Q
qijun 已提交
3239

Z
zhangjinchao01 已提交
3240
@config_func
Q
qijun 已提交
3241
def ParameterHook(type, **kwargs):
Z
zhangjinchao01 已提交
3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253
    if type == 'pruning':
        mask_filename = kwargs.get('mask_filename', None)
        assert mask_filename is not None
        hook = ParameterUpdaterHookConfig()
        hook.type = type
        hook.purning_mask_filename = mask_filename
        return hook
    else:
        return None


@config_func
Q
qijun 已提交
3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274
def Parameter(name,
              size,
              device,
              dims,
              learning_rate=None,
              momentum=None,
              decay_rate=None,
              decay_rate_l1=None,
              initial_mean=None,
              initial_std=None,
              initial_strategy=None,
              initial_smart=None,
              num_batches_regularization=None,
              sparse_remote_update=None,
              sparse_update=None,
              gradient_clipping_threshold=None,
              sparse=None,
              format=None,
              need_compact=None,
              is_static=None,
              is_shared=None,
X
xuwei06 已提交
3275 3276
              update_hooks=None,
              initializer=None):
Z
zhangjinchao01 已提交
3277 3278 3279 3280 3281 3282 3283

    config_assert(name not in g_parameter_map,
                  'Duplicated parameter name: ' + name)

    para = g_config.model_config.parameters.add()
    para.name = name
    para.size = size
3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294
    if device is not None:
        para.device = int(device)
    para.dims.extend(dims)

    if learning_rate is not None:
        para.learning_rate = float(learning_rate)

    momentum = default(momentum, g_default_momentum)
    if momentum is not None:
        para.momentum = float(momentum)

Z
zhangjinchao01 已提交
3295 3296
    config_assert(not momentum or not decay_rate_l1,
                  "momentum and decay_rate_l1 cannot both be non-zero")
3297 3298 3299 3300 3301

    decay_rate = default(decay_rate, g_default_decay_rate)
    if decay_rate is not None:
        para.decay_rate = decay_rate

Z
zhangjinchao01 已提交
3302 3303 3304 3305
    if decay_rate_l1 is not None:
        para.decay_rate_l1 = decay_rate_l1
    para.initial_std = default(initial_std, g_default_initial_std)
    para.initial_mean = default(initial_mean, g_default_initial_mean)
3306

Q
qijun 已提交
3307 3308
    num_batches_regularization = default(num_batches_regularization,
                                         g_default_num_batches_regularization)
3309 3310 3311
    if num_batches_regularization is not None:
        para.num_batches_regularization = int(num_batches_regularization)

Z
zhangjinchao01 已提交
3312 3313 3314 3315 3316 3317
    if sparse_remote_update is not None:
        para.sparse_remote_update = sparse_remote_update
        if sparse_remote_update:
            g_config.opt_config.use_sparse_remote_updater = True
    if sparse_update is not None:
        para.sparse_update = sparse_update
Q
qijun 已提交
3318 3319
    gradient_clipping_threshold = default(gradient_clipping_threshold,
                                          g_default_gradient_clipping_threshold)
3320 3321
    if gradient_clipping_threshold is not None:
        para.gradient_clipping_threshold = gradient_clipping_threshold
Q
qijun 已提交
3322 3323
    para.initial_strategy = default(initial_strategy,
                                    g_default_initial_strategy)
Z
zhangjinchao01 已提交
3324 3325 3326 3327 3328 3329
    para.initial_smart = default(initial_smart, g_default_initial_smart)
    if para.initial_smart:
        para.initial_mean = 0.
        if len(para.dims) != 0:
            para.initial_std = 1. / math.sqrt(para.dims[0])
        else:
Q
qijun 已提交
3330 3331 3332
            print(
                "Use initial_smart, but dims not set. Initial_smart may not be used in this layer"
            )
Z
zhangjinchao01 已提交
3333 3334 3335 3336
            traceback.print_exc()
            para.initial_std = 1. / math.sqrt(para.size)
    if g_default_compact_func is not None:
        sparse, format, need_compact = g_default_compact_func(para.name)
3337 3338 3339 3340 3341 3342 3343

    if sparse is not None:
        para.is_sparse = sparse
    if format is not None:
        para.format = format
    if need_compact is not None:
        para.need_compact = need_compact
Z
zhangjinchao01 已提交
3344 3345 3346 3347
    if is_static is not None:
        para.is_static = is_static
    config_assert(not para.sparse_remote_update or not para.is_static,
                  "sparse_remote_update and is_static cannot both be true")
3348 3349
    if is_shared is not None:
        para.is_shared = is_shared
Z
zhangjinchao01 已提交
3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363

    update_hooks = default(update_hooks, g_default_update_hooks)

    if update_hooks is not None:
        if hasattr(update_hooks, '__call__'):
            update_hooks = update_hooks(para.name)

        if isinstance(update_hooks, list):
            for hook in update_hooks:
                para.update_hooks.extend([hook])
        else:
            para.update_hooks.extend(update_hooks)

    g_parameter_map[name] = para
X
xuwei06 已提交
3364 3365 3366 3367 3368
    if initializer is not None:
        config_assert(
            callable(initializer),
            "parameter initializer should be a callable object")
        g_parameter_initializer_map[name] = initializer
Z
zhangjinchao01 已提交
3369 3370 3371 3372 3373 3374 3375


@config_func
def default_initial_std(val):
    global g_default_initial_std
    g_default_initial_std = val

Q
qijun 已提交
3376

Z
zhangjinchao01 已提交
3377 3378 3379 3380 3381
@config_func
def default_initial_mean(val):
    global g_default_initial_mean
    g_default_initial_mean = val

Q
qijun 已提交
3382

Z
zhangjinchao01 已提交
3383 3384 3385 3386 3387
@config_func
def default_initial_strategy(val):
    global g_default_initial_strategy
    g_default_initial_strategy = val

Q
qijun 已提交
3388

Z
zhangjinchao01 已提交
3389 3390 3391 3392 3393
@config_func
def default_initial_smart(val):
    global g_default_initial_smart
    g_default_initial_smart = val

Q
qijun 已提交
3394

Z
zhangjinchao01 已提交
3395 3396 3397 3398 3399
@config_func
def default_momentum(val):
    global g_default_momentum
    g_default_momentum = val

Q
qijun 已提交
3400

Z
zhangjinchao01 已提交
3401 3402 3403 3404 3405
@config_func
def default_decay_rate(val):
    global g_default_decay_rate
    g_default_decay_rate = val

Q
qijun 已提交
3406

Z
zhangjinchao01 已提交
3407 3408 3409 3410 3411
@config_func
def default_num_batches_regularization(val):
    global g_default_num_batches_regularization
    g_default_num_batches_regularization = val

Q
qijun 已提交
3412

Z
zhangjinchao01 已提交
3413 3414 3415 3416 3417
@config_func
def default_gradient_clipping_threshold(val):
    global g_default_gradient_clipping_threshold
    g_default_gradient_clipping_threshold = val

Q
qijun 已提交
3418

Z
zhangjinchao01 已提交
3419 3420 3421 3422 3423
@config_func
def default_device(val):
    global g_default_device
    g_default_device = val

Q
qijun 已提交
3424

Z
zhangjinchao01 已提交
3425 3426 3427 3428 3429
@config_func
def default_update_hooks(val):
    global g_default_update_hooks
    g_default_update_hooks = val

Q
qijun 已提交
3430

Z
zhangjinchao01 已提交
3431 3432 3433 3434 3435
@config_func
def default_compact_func(val):
    global g_default_compact_func
    g_default_compact_func = val

Q
qijun 已提交
3436

Z
zhangjinchao01 已提交
3437 3438 3439 3440 3441
def make_importer(config_dir, config_args):
    def Import(config_file, local_args={}):
        if not config_file.startswith('/'):
            config_file = config_dir + '/' + config_file
            g_config.config_files.append(config_file)
Q
qijun 已提交
3442 3443 3444
        execfile(config_file,
                 make_config_environment(config_file, config_args), local_args)

Z
zhangjinchao01 已提交
3445 3446
    return Import

Q
qijun 已提交
3447

X
xuwei06 已提交
3448
DEFAULT_SETTING = dict(
Z
zhangjinchao01 已提交
3449 3450 3451 3452 3453
    batch_size=None,
    mini_batch_size=None,
    algorithm='async_sgd',
    async_lagged_grad_discard_ratio=1.5,
    learning_method='momentum',
3454
    gradient_clipping_threshold=None,
Z
zhangjinchao01 已提交
3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476
    num_batches_per_send_parameter=None,
    num_batches_per_get_parameter=None,
    center_parameter_update_method=None,
    learning_rate=1.,
    learning_rate_decay_a=0.,
    learning_rate_decay_b=0.,
    learning_rate_schedule='poly',
    learning_rate_args='',
    l1weight=0.1,
    l2weight=0.,
    l2weight_zero_iter=0,
    c1=0.0001,
    backoff=0.5,
    owlqn_steps=10,
    max_backoff=5,
    average_window=0,
    do_average_in_cpu=False,
    max_average_window=None,
    ada_epsilon=1e-6,
    ada_rou=0.95,
    delta_add_rate=1.0,
    shrink_parameter_value=0,
Q
qijun 已提交
3477 3478 3479
    adam_beta1=0.9,
    adam_beta2=0.999,
    adam_epsilon=1e-8, )
Z
zhangjinchao01 已提交
3480

X
xuwei06 已提交
3481
settings = copy.deepcopy(DEFAULT_SETTING)
X
xuwei06 已提交
3482

Q
qijun 已提交
3483
settings_deprecated = dict(usage_ratio=1., )
Z
zhangjinchao01 已提交
3484 3485 3486 3487

trainer_settings = dict(
    save_dir="./output/model",
    init_model_path=None,
Q
qijun 已提交
3488 3489
    start_pass=0, )

Z
zhangjinchao01 已提交
3490 3491 3492 3493 3494

@config_func
def Settings(**args):
    for k, v in args.iteritems():
        if k == "usage_ratio":
Q
qijun 已提交
3495 3496
            logger.warning(
                "Deprecated: define usage_ratio in DataConfig instead")
Z
zhangjinchao01 已提交
3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507
            if g_config.HasField("data_config"):
                g_config.data_config.__setattr__(k, v)
            settings_deprecated[k] = v
            continue
        elif k in settings:
            settings[k] = v
        elif k in trainer_settings:
            trainer_settings[k] = v
        else:
            logger.fatal('Unkown setting: %s' % k)

Q
qijun 已提交
3508

Z
zhangjinchao01 已提交
3509 3510 3511 3512
@config_func
def cluster_config(**args):
    pass

Q
qijun 已提交
3513

Z
zhangjinchao01 已提交
3514 3515 3516 3517 3518 3519 3520 3521 3522
@config_func
def EnableSubmodelSuffix(flag=True):
    """
    If enabled, the layer and evaluator names in submodel will be automatically
    appended with @submodel_name
    """
    global g_add_submodel_suffix
    g_add_submodel_suffix = flag

Q
qijun 已提交
3523

Z
zhangjinchao01 已提交
3524 3525 3526 3527
def make_config_environment(config_file, config_args):
    def make_setter(k):
        def setter(v):
            logger.fatal("Obsolete: use Settings(%s=%s, ...) instead" % (k, v))
Q
qijun 已提交
3528

Z
zhangjinchao01 已提交
3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543
        return setter

    funcs = {}
    funcs.update(g_config_funcs)

    for k in settings.iterkeys():
        funcs[k] = make_setter(k)
    for k in settings_deprecated.iterkeys():
        funcs[k] = make_setter(k)
    config_dir = os.path.dirname(config_file)
    if not config_dir:
        config_dir = '.'

    funcs.update(
        Import=make_importer(config_dir, config_args),
Q
qijun 已提交
3544
        get_config_arg=make_get_config_arg(config_args), )
Z
zhangjinchao01 已提交
3545 3546 3547 3548 3549

    funcs.update(g_extended_config_funcs)

    return funcs

Q
qijun 已提交
3550

Z
zhangjinchao01 已提交
3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566
def make_get_config_arg(config_args):
    def get_config_arg(name, type, default=None):
        if type == bool:
            s = config_args.get(name)
            if not s:
                return default
            if s == 'True' or s == '1' or s == 'true':
                return True
            if s == 'False' or s == '0' or s == 'false':
                return False
            raise ValueError('Value of config_arg %s is not boolean' % name)
        else:
            return type(config_args.get(name, default))

    return get_config_arg

Q
qijun 已提交
3567

Z
zhangjinchao01 已提交
3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579
def importlib(name):
    __import__(name)
    return sys.modules[name]


def find_caller():
    stack = traceback.extract_stack()
    for s in stack[-4::-1]:
        if not s[0].endswith('config_parser.py'):
            return s[0], s[1], s[2]
    return "(unknown file)", 0, "(unknown function)"

Q
qijun 已提交
3580

Z
zhangjinchao01 已提交
3581 3582 3583 3584
def my_fatal(s):
    logger.critical(s)
    raise Exception()

Y
Yu Yang 已提交
3585

3586
_parse_config_hooks = set()
Y
Yu Yang 已提交
3587 3588


3589 3590 3591 3592 3593 3594 3595
def register_parse_config_hook(f):
    """
    Register a hook function for parse_config. parse_config will invoke the hook
    at the beginning of parse. This make it possible to reset global state for
    for constructing the model.
    """
    _parse_config_hooks.add(f)
Q
qijun 已提交
3596

Y
Yu Yang 已提交
3597

3598
def update_g_config():
Z
zhangjinchao01 已提交
3599
    '''
3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622
    Update g_config after execute config_file or config_functions.
    '''
    for k, v in settings.iteritems():
        if v is None:
            continue
        g_config.opt_config.__setattr__(k, v)

    for k, v in trainer_settings.iteritems():
        if v is None:
            continue
        g_config.__setattr__(k, v)

    for name in g_config.model_config.input_layer_names:
        assert name in g_layer_map, \
            'input name "%s" does not correspond to a layer name' % name
        assert (g_layer_map[name].type == "data" or g_layer_map[name].type == "data_trim"), \
            'The type of input layer "%s" is not "data"' % name
    for name in g_config.model_config.output_layer_names:
        assert name in g_layer_map, \
            'input name "%s" does not correspond to a layer name' % name
    return g_config


3623
def begin_parse():
Z
zhangjinchao01 已提交
3624
    init_config_environment()
3625 3626
    for hook in _parse_config_hooks:
        hook()
Z
zhangjinchao01 已提交
3627 3628 3629 3630 3631

    logger.findCaller = find_caller
    logger.fatal = my_fatal

    g_config.model_config.type = "nn"
X
xuwei06 已提交
3632 3633 3634 3635 3636 3637 3638 3639 3640

    global g_current_submodel, g_root_submodel
    g_root_submodel = g_config.model_config.sub_models.add()
    g_root_submodel.name = 'root'
    g_root_submodel.is_recurrent_layer_group = False
    g_current_submodel = g_root_submodel


def parse_config(trainer_config, config_arg_str):
3641 3642 3643 3644
    '''
    @param config_arg_str: a string of the form var1=val1,var2=val2. It will be
    passed to config script as a dictionary CONFIG_ARGS
    '''
X
xuwei06 已提交
3645

3646
    begin_parse()
X
xuwei06 已提交
3647 3648
    config_args = {}

Z
zhangjinchao01 已提交
3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660
    if config_arg_str:
        config_args = dict([f.split('=') for f in config_arg_str.split(',')])

    global g_command_config_args
    g_command_config_args.update(config_args)

    extension_module_name = config_args.get('extension_module_name')
    if extension_module_name:
        global g_extended_config_funcs
        extension_module = importlib(extension_module_name)
        g_extended_config_funcs = extension_module.get_config_funcs(g_config)

3661 3662
    if hasattr(trainer_config, '__call__'):
        trainer_config.func_globals.update(
L
Luo Tao 已提交
3663
            make_config_environment("", config_args))
3664
        trainer_config()
H
hanchao 已提交
3665
    else:
3666 3667
        execfile(trainer_config,
                 make_config_environment(trainer_config, config_args))
Z
zhangjinchao01 已提交
3668

3669
    return update_g_config()
Z
zhangjinchao01 已提交
3670 3671


3672
def parse_config_and_serialize(trainer_config, config_arg_str):
Z
zhangjinchao01 已提交
3673
    try:
3674
        config = parse_config(trainer_config, config_arg_str)
Z
zhangjinchao01 已提交
3675 3676 3677 3678 3679 3680
        #logger.info(config)
        return config.SerializeToString()
    except:
        traceback.print_exc()
        raise

Q
qijun 已提交
3681

Z
zhangjinchao01 已提交
3682 3683 3684 3685 3686 3687 3688 3689
if __name__ == '__main__':
    try:
        config = parse_config(sys.argv[1], '')
        config.SerializeToString()
        __real_print__(str(config))
    except:
        traceback.print_exc()
        raise