yolo_fpn.py 32.1 KB
Newer Older
Q
qingqing01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from paddle import ParamAttr
from ppdet.core.workspace import register, serializable
20
from ..backbones.darknet import ConvBNLayer
W
wangxinxin08 已提交
21
import numpy as np
Q
qingqing01 已提交
22

23 24 25 26
from ..shape_spec import ShapeSpec

__all__ = ['YOLOv3FPN', 'PPYOLOFPN']

Q
qingqing01 已提交
27

28
def add_coord(x, data_format):
W
wangxinxin08 已提交
29
    b = x.shape[0]
30
    if data_format == 'NCHW':
W
wangxinxin08 已提交
31 32 33 34 35 36 37
        h = x.shape[2]
        w = x.shape[3]
    else:
        h = x.shape[1]
        w = x.shape[2]

    gx = paddle.arange(w, dtype='float32') / (w - 1.) * 2.0 - 1.
38
    if data_format == 'NCHW':
W
wangxinxin08 已提交
39 40 41 42 43 44
        gx = gx.reshape([1, 1, 1, w]).expand([b, 1, h, w])
    else:
        gx = gx.reshape([1, 1, w, 1]).expand([b, h, w, 1])
    gx.stop_gradient = True

    gy = paddle.arange(h, dtype='float32') / (h - 1.) * 2.0 - 1.
45
    if data_format == 'NCHW':
W
wangxinxin08 已提交
46 47 48 49 50 51 52 53
        gy = gy.reshape([1, 1, h, 1]).expand([b, 1, h, w])
    else:
        gy = gy.reshape([1, h, 1, 1]).expand([b, h, w, 1])
    gy.stop_gradient = True

    return gx, gy


Q
qingqing01 已提交
54
class YoloDetBlock(nn.Layer):
55
    def __init__(self, ch_in, channel, norm_type, name, data_format='NCHW'):
W
wangxinxin08 已提交
56 57 58 59 60 61 62 63 64 65
        """
        YOLODetBlock layer for yolov3, see https://arxiv.org/abs/1804.02767

        Args:
            ch_in (int): input channel
            channel (int): base channel
            norm_type (str): batch norm type
            name (str): layer name
            data_format (str): data format, NCHW or NHWC
        """
Q
qingqing01 已提交
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
        super(YoloDetBlock, self).__init__()
        self.ch_in = ch_in
        self.channel = channel
        assert channel % 2 == 0, \
            "channel {} cannot be divided by 2".format(channel)
        conv_def = [
            ['conv0', ch_in, channel, 1, '.0.0'],
            ['conv1', channel, channel * 2, 3, '.0.1'],
            ['conv2', channel * 2, channel, 1, '.1.0'],
            ['conv3', channel, channel * 2, 3, '.1.1'],
            ['route', channel * 2, channel, 1, '.2'],
        ]

        self.conv_module = nn.Sequential()
        for idx, (conv_name, ch_in, ch_out, filter_size,
                  post_name) in enumerate(conv_def):
            self.conv_module.add_sublayer(
                conv_name,
                ConvBNLayer(
                    ch_in=ch_in,
                    ch_out=ch_out,
                    filter_size=filter_size,
                    padding=(filter_size - 1) // 2,
                    norm_type=norm_type,
90
                    data_format=data_format,
Q
qingqing01 已提交
91 92 93 94 95 96 97 98
                    name=name + post_name))

        self.tip = ConvBNLayer(
            ch_in=channel,
            ch_out=channel * 2,
            filter_size=3,
            padding=1,
            norm_type=norm_type,
99
            data_format=data_format,
Q
qingqing01 已提交
100 101 102 103 104 105 106 107
            name=name + '.tip')

    def forward(self, inputs):
        route = self.conv_module(inputs)
        tip = self.tip(route)
        return route, tip


W
wangxinxin08 已提交
108
class SPP(nn.Layer):
109 110 111 112 113 114 115
    def __init__(self,
                 ch_in,
                 ch_out,
                 k,
                 pool_size,
                 norm_type,
                 name,
W
wangxinxin08 已提交
116
                 act='leaky',
117
                 data_format='NCHW'):
W
wangxinxin08 已提交
118 119 120 121 122 123 124 125 126 127 128
        """
        SPP layer, which consist of four pooling layer follwed by conv layer

        Args:
            ch_in (int): input channel of conv layer
            ch_out (int): output channel of conv layer
            k (int): kernel size of conv layer
            norm_type (str): batch norm type
            name (str): layer name
            data_format (str): data format, NCHW or NHWC
        """
W
wangxinxin08 已提交
129 130
        super(SPP, self).__init__()
        self.pool = []
W
wangxinxin08 已提交
131
        self.data_format = data_format
W
wangxinxin08 已提交
132 133 134 135 136 137 138
        for size in pool_size:
            pool = self.add_sublayer(
                '{}.pool1'.format(name),
                nn.MaxPool2D(
                    kernel_size=size,
                    stride=1,
                    padding=size // 2,
139
                    data_format=data_format,
W
wangxinxin08 已提交
140 141 142
                    ceil_mode=False))
            self.pool.append(pool)
        self.conv = ConvBNLayer(
143 144 145 146 147 148
            ch_in,
            ch_out,
            k,
            padding=k // 2,
            norm_type=norm_type,
            name=name,
W
wangxinxin08 已提交
149
            act=act,
150
            data_format=data_format)
W
wangxinxin08 已提交
151 152 153 154 155

    def forward(self, x):
        outs = [x]
        for pool in self.pool:
            outs.append(pool(x))
W
wangxinxin08 已提交
156 157 158 159 160
        if self.data_format == "NCHW":
            y = paddle.concat(outs, axis=1)
        else:
            y = paddle.concat(outs, axis=-1)

W
wangxinxin08 已提交
161 162 163 164 165
        y = self.conv(y)
        return y


class DropBlock(nn.Layer):
166
    def __init__(self, block_size, keep_prob, name, data_format='NCHW'):
W
wangxinxin08 已提交
167 168 169 170 171 172 173 174 175
        """
        DropBlock layer, see https://arxiv.org/abs/1810.12890

        Args:
            block_size (int): block size
            keep_prob (int): keep probability
            name (str): layer name
            data_format (str): data format, NCHW or NHWC
        """
W
wangxinxin08 已提交
176 177 178 179
        super(DropBlock, self).__init__()
        self.block_size = block_size
        self.keep_prob = keep_prob
        self.name = name
180
        self.data_format = data_format
W
wangxinxin08 已提交
181 182 183 184 185 186

    def forward(self, x):
        if not self.training or self.keep_prob == 1:
            return x
        else:
            gamma = (1. - self.keep_prob) / (self.block_size**2)
187 188 189 190 191
            if self.data_format == 'NCHW':
                shape = x.shape[2:]
            else:
                shape = x.shape[1:3]
            for s in shape:
W
wangxinxin08 已提交
192 193 194 195
                gamma *= s / (s - self.block_size + 1)

            matrix = paddle.cast(paddle.rand(x.shape, x.dtype) < gamma, x.dtype)
            mask_inv = F.max_pool2d(
196 197 198 199 200
                matrix,
                self.block_size,
                stride=1,
                padding=self.block_size // 2,
                data_format=self.data_format)
W
wangxinxin08 已提交
201 202 203 204 205 206
            mask = 1. - mask_inv
            y = x * mask * (mask.numel() / mask.sum())
            return y


class CoordConv(nn.Layer):
207 208 209 210 211 212 213 214
    def __init__(self,
                 ch_in,
                 ch_out,
                 filter_size,
                 padding,
                 norm_type,
                 name,
                 data_format='NCHW'):
W
wangxinxin08 已提交
215 216 217 218 219 220 221 222 223 224 225 226 227
        """
        CoordConv layer

        Args:
            ch_in (int): input channel
            ch_out (int): output channel
            filter_size (int): filter size, default 3
            padding (int): padding size, default 0
            norm_type (str): batch norm type, default bn
            name (str): layer name
            data_format (str): data format, NCHW or NHWC

        """
W
wangxinxin08 已提交
228 229 230 231 232 233 234
        super(CoordConv, self).__init__()
        self.conv = ConvBNLayer(
            ch_in + 2,
            ch_out,
            filter_size=filter_size,
            padding=padding,
            norm_type=norm_type,
235
            data_format=data_format,
W
wangxinxin08 已提交
236
            name=name)
237
        self.data_format = data_format
W
wangxinxin08 已提交
238 239

    def forward(self, x):
240
        gx, gy = add_coord(x, self.data_format)
241 242 243 244
        if self.data_format == 'NCHW':
            y = paddle.concat([x, gx, gy], axis=1)
        else:
            y = paddle.concat([x, gx, gy], axis=-1)
W
wangxinxin08 已提交
245 246 247 248 249
        y = self.conv(y)
        return y


class PPYOLODetBlock(nn.Layer):
250
    def __init__(self, cfg, name, data_format='NCHW'):
W
wangxinxin08 已提交
251 252 253 254 255 256 257 258
        """
        PPYOLODetBlock layer

        Args:
            cfg (list): layer configs for this block
            name (str): block name
            data_format (str): data format, NCHW or NHWC
        """
W
wangxinxin08 已提交
259 260 261
        super(PPYOLODetBlock, self).__init__()
        self.conv_module = nn.Sequential()
        for idx, (conv_name, layer, args, kwargs) in enumerate(cfg[:-1]):
262 263
            kwargs.update(
                name='{}.{}'.format(name, conv_name), data_format=data_format)
W
wangxinxin08 已提交
264 265 266
            self.conv_module.add_sublayer(conv_name, layer(*args, **kwargs))

        conv_name, layer, args, kwargs = cfg[-1]
267 268
        kwargs.update(
            name='{}.{}'.format(name, conv_name), data_format=data_format)
W
wangxinxin08 已提交
269 270 271 272 273 274 275 276
        self.tip = layer(*args, **kwargs)

    def forward(self, inputs):
        route = self.conv_module(inputs)
        tip = self.tip(route)
        return route, tip


K
Kaipeng Deng 已提交
277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346
class PPYOLOTinyDetBlock(nn.Layer):
    def __init__(self,
                 ch_in,
                 ch_out,
                 name,
                 drop_block=False,
                 block_size=3,
                 keep_prob=0.9,
                 data_format='NCHW'):
        """
        PPYOLO Tiny DetBlock layer
        Args:
            ch_in (list): input channel number
            ch_out (list): output channel number
            name (str): block name
            drop_block: whether user DropBlock
            block_size: drop block size
            keep_prob: probability to keep block in DropBlock
            data_format (str): data format, NCHW or NHWC
        """
        super(PPYOLOTinyDetBlock, self).__init__()
        self.drop_block_ = drop_block
        self.conv_module = nn.Sequential()

        cfgs = [
            # name, in channels, out channels, filter_size, 
            # stride, padding, groups
            ['.0', ch_in, ch_out, 1, 1, 0, 1],
            ['.1', ch_out, ch_out, 5, 1, 2, ch_out],
            ['.2', ch_out, ch_out, 1, 1, 0, 1],
            ['.route', ch_out, ch_out, 5, 1, 2, ch_out],
        ]
        for cfg in cfgs:
            conv_name, conv_ch_in, conv_ch_out, filter_size, stride, padding, \
                    groups = cfg
            self.conv_module.add_sublayer(
                name + conv_name,
                ConvBNLayer(
                    ch_in=conv_ch_in,
                    ch_out=conv_ch_out,
                    filter_size=filter_size,
                    stride=stride,
                    padding=padding,
                    groups=groups,
                    name=name + conv_name))

        self.tip = ConvBNLayer(
            ch_in=ch_out,
            ch_out=ch_out,
            filter_size=1,
            stride=1,
            padding=0,
            groups=1,
            name=name + conv_name)

        if self.drop_block_:
            self.drop_block = DropBlock(
                block_size=block_size,
                keep_prob=keep_prob,
                data_format=data_format,
                name=name + '.dropblock')

    def forward(self, inputs):
        if self.drop_block_:
            inputs = self.drop_block(inputs)
        route = self.conv_module(inputs)
        tip = self.tip(route)
        return route, tip


W
wangxinxin08 已提交
347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413
class PPYOLODetBlockCSP(nn.Layer):
    def __init__(self,
                 cfg,
                 ch_in,
                 ch_out,
                 act,
                 norm_type,
                 name,
                 data_format='NCHW'):
        """
        PPYOLODetBlockCSP layer

        Args:
            cfg (list): layer configs for this block
            ch_in (int): input channel
            ch_out (int): output channel
            act (str): default mish
            name (str): block name
            data_format (str): data format, NCHW or NHWC
        """
        super(PPYOLODetBlockCSP, self).__init__()
        self.data_format = data_format
        self.conv1 = ConvBNLayer(
            ch_in,
            ch_out,
            1,
            padding=0,
            act=act,
            norm_type=norm_type,
            name=name + '.left',
            data_format=data_format)
        self.conv2 = ConvBNLayer(
            ch_in,
            ch_out,
            1,
            padding=0,
            act=act,
            norm_type=norm_type,
            name=name + '.right',
            data_format=data_format)
        self.conv3 = ConvBNLayer(
            ch_out * 2,
            ch_out * 2,
            1,
            padding=0,
            act=act,
            norm_type=norm_type,
            name=name,
            data_format=data_format)
        self.conv_module = nn.Sequential()
        for idx, (layer_name, layer, args, kwargs) in enumerate(cfg):
            kwargs.update(name=name + layer_name, data_format=data_format)
            self.conv_module.add_sublayer(layer_name, layer(*args, **kwargs))

    def forward(self, inputs):
        conv_left = self.conv1(inputs)
        conv_right = self.conv2(inputs)
        conv_left = self.conv_module(conv_left)
        if self.data_format == 'NCHW':
            conv = paddle.concat([conv_left, conv_right], axis=1)
        else:
            conv = paddle.concat([conv_left, conv_right], axis=-1)

        conv = self.conv3(conv)
        return conv, conv


Q
qingqing01 已提交
414 415 416
@register
@serializable
class YOLOv3FPN(nn.Layer):
417
    __shared__ = ['norm_type', 'data_format']
Q
qingqing01 已提交
418

419 420 421 422
    def __init__(self,
                 in_channels=[256, 512, 1024],
                 norm_type='bn',
                 data_format='NCHW'):
W
wangxinxin08 已提交
423 424 425 426 427 428 429 430 431
        """
        YOLOv3FPN layer

        Args:
            in_channels (list): input channels for fpn
            norm_type (str): batch norm type, default bn
            data_format (str): data format, NCHW or NHWC

        """
Q
qingqing01 已提交
432
        super(YOLOv3FPN, self).__init__()
433 434 435 436 437
        assert len(in_channels) > 0, "in_channels length should > 0"
        self.in_channels = in_channels
        self.num_blocks = len(in_channels)

        self._out_channels = []
Q
qingqing01 已提交
438 439
        self.yolo_blocks = []
        self.routes = []
440
        self.data_format = data_format
Q
qingqing01 已提交
441 442
        for i in range(self.num_blocks):
            name = 'yolo_block.{}'.format(i)
443 444 445
            in_channel = in_channels[-i - 1]
            if i > 0:
                in_channel += 512 // (2**i)
Q
qingqing01 已提交
446 447 448
            yolo_block = self.add_sublayer(
                name,
                YoloDetBlock(
449
                    in_channel,
Q
qingqing01 已提交
450 451
                    channel=512 // (2**i),
                    norm_type=norm_type,
452
                    data_format=data_format,
Q
qingqing01 已提交
453 454
                    name=name))
            self.yolo_blocks.append(yolo_block)
455 456
            # tip layer output channel doubled
            self._out_channels.append(1024 // (2**i))
Q
qingqing01 已提交
457 458 459 460 461 462 463 464 465 466 467 468

            if i < self.num_blocks - 1:
                name = 'yolo_transition.{}'.format(i)
                route = self.add_sublayer(
                    name,
                    ConvBNLayer(
                        ch_in=512 // (2**i),
                        ch_out=256 // (2**i),
                        filter_size=1,
                        stride=1,
                        padding=0,
                        norm_type=norm_type,
469
                        data_format=data_format,
Q
qingqing01 已提交
470 471 472 473 474 475 476 477 478
                        name=name))
                self.routes.append(route)

    def forward(self, blocks):
        assert len(blocks) == self.num_blocks
        blocks = blocks[::-1]
        yolo_feats = []
        for i, block in enumerate(blocks):
            if i > 0:
479 480 481 482
                if self.data_format == 'NCHW':
                    block = paddle.concat([route, block], axis=1)
                else:
                    block = paddle.concat([route, block], axis=-1)
Q
qingqing01 已提交
483 484 485 486 487
            route, tip = self.yolo_blocks[i](block)
            yolo_feats.append(tip)

            if i < self.num_blocks - 1:
                route = self.routes[i](route)
488 489
                route = F.interpolate(
                    route, scale_factor=2., data_format=self.data_format)
Q
qingqing01 已提交
490 491

        return yolo_feats
W
wangxinxin08 已提交
492

493 494 495 496 497 498 499 500
    @classmethod
    def from_config(cls, cfg, input_shape):
        return {'in_channels': [i.channels for i in input_shape], }

    @property
    def out_shape(self):
        return [ShapeSpec(channels=c) for c in self._out_channels]

W
wangxinxin08 已提交
501 502 503 504

@register
@serializable
class PPYOLOFPN(nn.Layer):
505
    __shared__ = ['norm_type', 'data_format']
W
wangxinxin08 已提交
506

507 508 509 510
    def __init__(self,
                 in_channels=[512, 1024, 2048],
                 norm_type='bn',
                 data_format='NCHW',
W
wangxinxin08 已提交
511
                 coord_conv=False,
512
                 conv_block_num=2,
W
wangxinxin08 已提交
513 514 515 516
                 drop_block=False,
                 block_size=3,
                 keep_prob=0.9,
                 spp=False):
W
wangxinxin08 已提交
517 518 519 520 521 522 523
        """
        PPYOLOFPN layer

        Args:
            in_channels (list): input channels for fpn
            norm_type (str): batch norm type, default bn
            data_format (str): data format, NCHW or NHWC
W
wangxinxin08 已提交
524 525 526 527 528 529
            coord_conv (bool): whether use CoordConv or not
            conv_block_num (int): conv block num of each pan block
            drop_block (bool): whether use DropBlock or not
            block_size (int): block size of DropBlock
            keep_prob (float): keep probability of DropBlock
            spp (bool): whether use spp or not
W
wangxinxin08 已提交
530 531

        """
W
wangxinxin08 已提交
532
        super(PPYOLOFPN, self).__init__()
533 534 535
        assert len(in_channels) > 0, "in_channels length should > 0"
        self.in_channels = in_channels
        self.num_blocks = len(in_channels)
W
wangxinxin08 已提交
536
        # parse kwargs
W
wangxinxin08 已提交
537 538 539 540 541 542
        self.coord_conv = coord_conv
        self.drop_block = drop_block
        self.block_size = block_size
        self.keep_prob = keep_prob
        self.spp = spp
        self.conv_block_num = conv_block_num
W
wangxinxin08 已提交
543
        self.data_format = data_format
W
wangxinxin08 已提交
544 545 546 547 548 549 550 551 552 553 554 555 556
        if self.coord_conv:
            ConvLayer = CoordConv
        else:
            ConvLayer = ConvBNLayer

        if self.drop_block:
            dropblock_cfg = [[
                'dropblock', DropBlock, [self.block_size, self.keep_prob],
                dict()
            ]]
        else:
            dropblock_cfg = []

557
        self._out_channels = []
W
wangxinxin08 已提交
558 559
        self.yolo_blocks = []
        self.routes = []
560 561 562
        for i, ch_in in enumerate(self.in_channels[::-1]):
            if i > 0:
                ch_in += 512 // (2**i)
W
wangxinxin08 已提交
563
            channel = 64 * (2**self.num_blocks) // (2**i)
W
wangxinxin08 已提交
564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603
            base_cfg = []
            c_in, c_out = ch_in, channel
            for j in range(self.conv_block_num):
                base_cfg += [
                    [
                        'conv{}'.format(2 * j), ConvLayer, [c_in, c_out, 1],
                        dict(
                            padding=0, norm_type=norm_type)
                    ],
                    [
                        'conv{}'.format(2 * j + 1), ConvBNLayer,
                        [c_out, c_out * 2, 3], dict(
                            padding=1, norm_type=norm_type)
                    ],
                ]
                c_in, c_out = c_out * 2, c_out

            base_cfg += [[
                'route', ConvLayer, [c_in, c_out, 1], dict(
                    padding=0, norm_type=norm_type)
            ], [
                'tip', ConvLayer, [c_out, c_out * 2, 3], dict(
                    padding=1, norm_type=norm_type)
            ]]

            if self.conv_block_num == 2:
                if i == 0:
                    if self.spp:
                        spp_cfg = [[
                            'spp', SPP, [channel * 4, channel, 1], dict(
                                pool_size=[5, 9, 13], norm_type=norm_type)
                        ]]
                    else:
                        spp_cfg = []
                    cfg = base_cfg[0:3] + spp_cfg + base_cfg[
                        3:4] + dropblock_cfg + base_cfg[4:6]
                else:
                    cfg = base_cfg[0:2] + dropblock_cfg + base_cfg[2:6]
            elif self.conv_block_num == 0:
                if self.spp and i == 0:
W
wangxinxin08 已提交
604
                    spp_cfg = [[
W
wangxinxin08 已提交
605 606
                        'spp', SPP, [c_in * 4, c_in, 1], dict(
                            pool_size=[5, 9, 13], norm_type=norm_type)
W
wangxinxin08 已提交
607 608 609
                    ]]
                else:
                    spp_cfg = []
W
wangxinxin08 已提交
610
                cfg = spp_cfg + dropblock_cfg + base_cfg
W
wangxinxin08 已提交
611 612 613
            name = 'yolo_block.{}'.format(i)
            yolo_block = self.add_sublayer(name, PPYOLODetBlock(cfg, name))
            self.yolo_blocks.append(yolo_block)
614
            self._out_channels.append(channel * 2)
W
wangxinxin08 已提交
615 616 617 618 619 620
            if i < self.num_blocks - 1:
                name = 'yolo_transition.{}'.format(i)
                route = self.add_sublayer(
                    name,
                    ConvBNLayer(
                        ch_in=channel,
W
wangxinxin08 已提交
621
                        ch_out=256 // (2**i),
W
wangxinxin08 已提交
622 623 624 625
                        filter_size=1,
                        stride=1,
                        padding=0,
                        norm_type=norm_type,
626
                        data_format=data_format,
W
wangxinxin08 已提交
627 628 629 630 631 632 633 634 635
                        name=name))
                self.routes.append(route)

    def forward(self, blocks):
        assert len(blocks) == self.num_blocks
        blocks = blocks[::-1]
        yolo_feats = []
        for i, block in enumerate(blocks):
            if i > 0:
636 637 638 639
                if self.data_format == 'NCHW':
                    block = paddle.concat([route, block], axis=1)
                else:
                    block = paddle.concat([route, block], axis=-1)
W
wangxinxin08 已提交
640 641 642 643 644
            route, tip = self.yolo_blocks[i](block)
            yolo_feats.append(tip)

            if i < self.num_blocks - 1:
                route = self.routes[i](route)
645 646
                route = F.interpolate(
                    route, scale_factor=2., data_format=self.data_format)
W
wangxinxin08 已提交
647

648 649 650 651 652 653 654 655 656
        return yolo_feats

    @classmethod
    def from_config(cls, cfg, input_shape):
        return {'in_channels': [i.channels for i in input_shape], }

    @property
    def out_shape(self):
        return [ShapeSpec(channels=c) for c in self._out_channels]
K
Kaipeng Deng 已提交
657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767


@register
@serializable
class PPYOLOTinyFPN(nn.Layer):
    __shared__ = ['norm_type', 'data_format']

    def __init__(self,
                 in_channels=[80, 56, 34],
                 detection_block_channels=[160, 128, 96],
                 norm_type='bn',
                 data_format='NCHW',
                 **kwargs):
        """
        PPYOLO Tiny FPN layer
        Args:
            in_channels (list): input channels for fpn
            detection_block_channels (list): channels in fpn
            norm_type (str): batch norm type, default bn
            data_format (str): data format, NCHW or NHWC
            kwargs: extra key-value pairs, such as parameter of DropBlock and spp 
        """
        super(PPYOLOTinyFPN, self).__init__()
        assert len(in_channels) > 0, "in_channels length should > 0"
        self.in_channels = in_channels[::-1]
        assert len(detection_block_channels
                   ) > 0, "detection_block_channelslength should > 0"
        self.detection_block_channels = detection_block_channels
        self.data_format = data_format
        self.num_blocks = len(in_channels)
        # parse kwargs
        self.drop_block = kwargs.get('drop_block', False)
        self.block_size = kwargs.get('block_size', 3)
        self.keep_prob = kwargs.get('keep_prob', 0.9)

        self.spp_ = kwargs.get('spp', False)
        if self.spp_:
            self.spp = SPP(self.in_channels[0] * 4,
                           self.in_channels[0],
                           k=1,
                           pool_size=[5, 9, 13],
                           norm_type=norm_type,
                           name='spp')

        self._out_channels = []
        self.yolo_blocks = []
        self.routes = []
        for i, (
                ch_in, ch_out
        ) in enumerate(zip(self.in_channels, self.detection_block_channels)):
            name = 'yolo_block.{}'.format(i)
            if i > 0:
                ch_in += self.detection_block_channels[i - 1]
            yolo_block = self.add_sublayer(
                name,
                PPYOLOTinyDetBlock(
                    ch_in,
                    ch_out,
                    name,
                    drop_block=self.drop_block,
                    block_size=self.block_size,
                    keep_prob=self.keep_prob))
            self.yolo_blocks.append(yolo_block)
            self._out_channels.append(ch_out)

            if i < self.num_blocks - 1:
                name = 'yolo_transition.{}'.format(i)
                route = self.add_sublayer(
                    name,
                    ConvBNLayer(
                        ch_in=ch_out,
                        ch_out=ch_out,
                        filter_size=1,
                        stride=1,
                        padding=0,
                        norm_type=norm_type,
                        data_format=data_format,
                        name=name))
                self.routes.append(route)

    def forward(self, blocks):
        assert len(blocks) == self.num_blocks
        blocks = blocks[::-1]

        yolo_feats = []
        for i, block in enumerate(blocks):
            if i == 0 and self.spp_:
                block = self.spp(block)

            if i > 0:
                if self.data_format == 'NCHW':
                    block = paddle.concat([route, block], axis=1)
                else:
                    block = paddle.concat([route, block], axis=-1)
            route, tip = self.yolo_blocks[i](block)
            yolo_feats.append(tip)

            if i < self.num_blocks - 1:
                route = self.routes[i](route)
                route = F.interpolate(
                    route, scale_factor=2., data_format=self.data_format)

        return yolo_feats

    @classmethod
    def from_config(cls, cfg, input_shape):
        return {'in_channels': [i.channels for i in input_shape], }

    @property
    def out_shape(self):
        return [ShapeSpec(channels=c) for c in self._out_channels]
W
wangxinxin08 已提交
768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961


@register
@serializable
class PPYOLOPAN(nn.Layer):
    __shared__ = ['norm_type', 'data_format']

    def __init__(self,
                 in_channels=[512, 1024, 2048],
                 norm_type='bn',
                 data_format='NCHW',
                 act='mish',
                 conv_block_num=3,
                 drop_block=False,
                 block_size=3,
                 keep_prob=0.9,
                 spp=False):
        """
        PPYOLOPAN layer with SPP, DropBlock and CSP connection.

        Args:
            in_channels (list): input channels for fpn
            norm_type (str): batch norm type, default bn
            data_format (str): data format, NCHW or NHWC
            act (str): activation function, default mish
            conv_block_num (int): conv block num of each pan block
            drop_block (bool): whether use DropBlock or not
            block_size (int): block size of DropBlock
            keep_prob (float): keep probability of DropBlock
            spp (bool): whether use spp or not

        """
        super(PPYOLOPAN, self).__init__()
        assert len(in_channels) > 0, "in_channels length should > 0"
        self.in_channels = in_channels
        self.num_blocks = len(in_channels)
        # parse kwargs
        self.drop_block = drop_block
        self.block_size = block_size
        self.keep_prob = keep_prob
        self.spp = spp
        self.conv_block_num = conv_block_num
        self.data_format = data_format
        if self.drop_block:
            dropblock_cfg = [[
                'dropblock', DropBlock, [self.block_size, self.keep_prob],
                dict()
            ]]
        else:
            dropblock_cfg = []

        # fpn
        self.fpn_blocks = []
        self.fpn_routes = []
        fpn_channels = []
        for i, ch_in in enumerate(self.in_channels[::-1]):
            if i > 0:
                ch_in += 512 // (2**(i - 1))
            channel = 512 // (2**i)
            base_cfg = []
            for j in range(self.conv_block_num):
                base_cfg += [
                    # name, layer, args
                    [
                        '{}.0'.format(j), ConvBNLayer, [channel, channel, 1],
                        dict(
                            padding=0, act=act, norm_type=norm_type)
                    ],
                    [
                        '{}.1'.format(j), ConvBNLayer, [channel, channel, 3],
                        dict(
                            padding=1, act=act, norm_type=norm_type)
                    ]
                ]

            if i == 0 and self.spp:
                base_cfg[3] = [
                    'spp', SPP, [channel * 4, channel, 1], dict(
                        pool_size=[5, 9, 13], act=act, norm_type=norm_type)
                ]

            cfg = base_cfg[:4] + dropblock_cfg + base_cfg[4:]
            name = 'fpn.{}'.format(i)
            fpn_block = self.add_sublayer(
                name,
                PPYOLODetBlockCSP(cfg, ch_in, channel, act, norm_type, name,
                                  data_format))
            self.fpn_blocks.append(fpn_block)
            fpn_channels.append(channel * 2)
            if i < self.num_blocks - 1:
                name = 'fpn_transition.{}'.format(i)
                route = self.add_sublayer(
                    name,
                    ConvBNLayer(
                        ch_in=channel * 2,
                        ch_out=channel,
                        filter_size=1,
                        stride=1,
                        padding=0,
                        act=act,
                        norm_type=norm_type,
                        data_format=data_format,
                        name=name))
                self.fpn_routes.append(route)
        # pan
        self.pan_blocks = []
        self.pan_routes = []
        self._out_channels = [512 // (2**(self.num_blocks - 2)), ]
        for i in reversed(range(self.num_blocks - 1)):
            name = 'pan_transition.{}'.format(i)
            route = self.add_sublayer(
                name,
                ConvBNLayer(
                    ch_in=fpn_channels[i + 1],
                    ch_out=fpn_channels[i + 1],
                    filter_size=3,
                    stride=2,
                    padding=1,
                    act=act,
                    norm_type=norm_type,
                    data_format=data_format,
                    name=name))
            self.pan_routes = [route, ] + self.pan_routes
            base_cfg = []
            ch_in = fpn_channels[i] + fpn_channels[i + 1]
            channel = 512 // (2**i)
            for j in range(self.conv_block_num):
                base_cfg += [
                    # name, layer, args
                    [
                        '{}.0'.format(j), ConvBNLayer, [channel, channel, 1],
                        dict(
                            padding=0, act=act, norm_type=norm_type)
                    ],
                    [
                        '{}.1'.format(j), ConvBNLayer, [channel, channel, 3],
                        dict(
                            padding=1, act=act, norm_type=norm_type)
                    ]
                ]

            cfg = base_cfg[:4] + dropblock_cfg + base_cfg[4:]
            name = 'pan.{}'.format(i)
            pan_block = self.add_sublayer(
                name,
                PPYOLODetBlockCSP(cfg, ch_in, channel, act, norm_type, name,
                                  data_format))

            self.pan_blocks = [pan_block, ] + self.pan_blocks
            self._out_channels.append(channel * 2)

        self._out_channels = self._out_channels[::-1]

    def forward(self, blocks):
        assert len(blocks) == self.num_blocks
        blocks = blocks[::-1]
        # fpn
        fpn_feats = []
        for i, block in enumerate(blocks):
            if i > 0:
                if self.data_format == 'NCHW':
                    block = paddle.concat([route, block], axis=1)
                else:
                    block = paddle.concat([route, block], axis=-1)
            route, tip = self.fpn_blocks[i](block)
            fpn_feats.append(tip)

            if i < self.num_blocks - 1:
                route = self.fpn_routes[i](route)
                route = F.interpolate(
                    route, scale_factor=2., data_format=self.data_format)

        pan_feats = [fpn_feats[-1], ]
        route = fpn_feats[self.num_blocks - 1]
        for i in reversed(range(self.num_blocks - 1)):
            block = fpn_feats[i]
            route = self.pan_routes[i](route)
            if self.data_format == 'NCHW':
                block = paddle.concat([route, block], axis=1)
            else:
                block = paddle.concat([route, block], axis=-1)

            route, tip = self.pan_blocks[i](block)
            pan_feats.append(tip)

        return pan_feats[::-1]

    @classmethod
    def from_config(cls, cfg, input_shape):
        return {'in_channels': [i.channels for i in input_shape], }

    @property
    def out_shape(self):
        return [ShapeSpec(channels=c) for c in self._out_channels]