pybind.cc 17.3 KB
Newer Older
1 2 3 4 5 6
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13 14

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Q
qijun 已提交
15 16
#include "paddle/pybind/protobuf.h"

Q
QI JUN 已提交
17
#include <mutex>  // for call_once
18
#include <unordered_map>
Q
QI JUN 已提交
19
#include "gflags/gflags.h"
Q
Qiao Longfei 已提交
20
#include "paddle/framework/backward.h"
F
fengjiayi 已提交
21
#include "paddle/framework/executor.h"
Q
qijun 已提交
22
#include "paddle/framework/feed_fetch_method.h"
23
#include "paddle/framework/framework.pb.h"
Y
Yu Yang 已提交
24
#include "paddle/framework/lod_rank_table.h"
D
dangqingqing 已提交
25
#include "paddle/framework/lod_tensor.h"
Y
Yu Yang 已提交
26
#include "paddle/framework/lod_tensor_array.h"
27
#include "paddle/framework/prune.h"
Q
qijun 已提交
28
#include "paddle/framework/selected_rows.h"
Z
zchen0211 已提交
29
#include "paddle/operators/cond_op.h"
Y
Yan Chunwei 已提交
30
#include "paddle/operators/net_op.h"
Q
qijun 已提交
31
#include "paddle/platform/enforce.h"
Q
qijun 已提交
32
#include "paddle/platform/place.h"
Y
Yu Yang 已提交
33
#include "paddle/pybind/exception.h"
Q
qijun 已提交
34
#include "paddle/pybind/pybind.h"
35
#include "paddle/pybind/tensor_py.h"
36
#include "paddle/string/to_string.h"
37

D
Dong Zhihong 已提交
38 39
#ifdef PADDLE_WITH_CUDA
#include "paddle/operators/nccl/nccl_gpu_common.h"
D
Dong Zhihong 已提交
40
#include "paddle/platform/gpu_info.h"
D
Dong Zhihong 已提交
41 42
#endif

Q
Qiao Longfei 已提交
43 44 45
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);

46
namespace paddle {
47
namespace pybind {
48 49 50
static size_t UniqueIntegerGenerator(const std::string &prefix) {
  static std::unordered_map<std::string, std::atomic<size_t>> generators;
  return generators[prefix].fetch_add(1);
51 52
}

Q
QI JUN 已提交
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
std::once_flag gflags_init_flag;

// TODO(qijun) move init gflags to init.cc
void InitGflags(std::vector<std::string> &argv) {
  std::call_once(gflags_init_flag, [&]() {
    int argc = argv.size();
    char **arr = new char *[argv.size()];
    std::string line;
    for (size_t i = 0; i < argv.size(); i++) {
      arr[i] = &argv[i][0];
      line += argv[i];
      line += ' ';
    }
    google::ParseCommandLineFlags(&argc, &arr, true);
    VLOG(1) << "Init commandline: " << line;
  });
}

Q
qijun 已提交
71
bool IsCompileGPU() {
72
#ifndef PADDLE_WITH_CUDA
Q
qijun 已提交
73 74 75 76 77 78
  return false;
#else
  return true;
#endif
}

79
PYBIND11_PLUGIN(core) {
Y
Yu Yang 已提交
80
  py::module m("core", "C++ core of PaddlePaddle");
81

82 83 84 85
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

Y
Yu Yang 已提交
86 87
  BindException(m);

88 89 90
  py::class_<Tensor>(m, "Tensor", py::buffer_protocol())
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
Y
Yu Yang 已提交
91
      .def("get_dims",
92
           [](const Tensor &self) { return vectorize(self.dims()); })
Y
Yu Yang 已提交
93
      .def("set_dims",
Q
qijun 已提交
94
           [](Tensor &self, const std::vector<int64_t> &dim) {
Y
Yu Yang 已提交
95
             self.Resize(make_ddim(dim));
Y
Yu Yang 已提交
96 97
           })
      .def("alloc_float",
Y
Yu Yang 已提交
98
           [](Tensor &self, paddle::platform::GPUPlace &place) {
Q
qijun 已提交
99
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
100
           })
Q
qijun 已提交
101
      .def("alloc_float",
Y
Yu Yang 已提交
102
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
103
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
104 105
           })
      .def("alloc_int",
Y
Yu Yang 已提交
106
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
107
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
108
           })
Q
qijun 已提交
109
      .def("alloc_int",
Y
Yu Yang 已提交
110
           [](Tensor &self, paddle::platform::GPUPlace &place) {
Q
qijun 已提交
111
             self.mutable_data<int>(place);
Q
qijun 已提交
112
           })
Y
Yu Yang 已提交
113 114
      .def("set", PyCPUTensorSetFromArray<float>)
      .def("set", PyCPUTensorSetFromArray<int>)
115
      .def("set", PyCPUTensorSetFromArray<double>)
116
      .def("set", PyCPUTensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
117
      .def("set", PyCPUTensorSetFromArray<bool>)
118
#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
119 120
      .def("set", PyCUDATensorSetFromArray<float>)
      .def("set", PyCUDATensorSetFromArray<int>)
121
      .def("set", PyCUDATensorSetFromArray<double>)
122
      .def("set", PyCUDATensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
123
      .def("set", PyCUDATensorSetFromArray<bool>)
Q
qijun 已提交
124
#endif
125
      .def("shape", [](Tensor &self) { return vectorize(self.dims()); })
126 127 128 129 130
      .def("set_float_element", TensorSetElement<float>)
      .def("get_float_element", TensorGetElement<float>)
      .def("set_double_element", TensorSetElement<double>)
      .def("get_double_element", TensorGetElement<double>)
      .def("dtype", [](Tensor &self) { return ToDataType(self.type()); });
Y
Yu Yang 已提交
131

132
  py::class_<LoDTensor, Tensor>(m, "LoDTensor")
133 134
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
135 136 137
      .def(
          "__init__",
          [](LoDTensor &instance, const std::vector<std::vector<size_t>> &lod) {
138
#ifndef PADDLE_WITH_CUDA
139
            new (&instance) LoDTensor(lod);
140
#else
Y
Yu Yang 已提交
141
             LoD new_lod;
142 143
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
144
             new (&instance) LoDTensor(new_lod);
145
#endif
146
          })
Y
Yu Yang 已提交
147
      .def("__init__", [](LoDTensor &instance) { new (&instance) LoDTensor(); })
D
dangqingqing 已提交
148
      .def("set_lod",
149
           [](LoDTensor &self, const std::vector<std::vector<size_t>> &lod) {
150
#ifndef PADDLE_WITH_CUDA
D
dangqingqing 已提交
151
             self.set_lod(lod);
152
#else
Y
Yu Yang 已提交
153
             LoD new_lod;
154 155 156 157
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             self.set_lod(new_lod);
#endif
D
dangqingqing 已提交
158
           })
159
      .def("lod", [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
160
#ifndef PADDLE_WITH_CUDA
D
dangqingqing 已提交
161
        return self.lod();
162 163 164 165 166
#else
           auto lod = self.lod();
           std::vector<std::vector<size_t>> new_lod;
           new_lod.reserve(lod.size());
           std::transform(lod.begin(), lod.end(), std::back_inserter(new_lod),
Y
Yu Yang 已提交
167
               [](Vector<size_t> item) ->
168 169 170 171 172 173 174 175
                   std::vector<size_t> {
                 std::vector<size_t> v;
                 v.reserve(item.size());
                 std::copy(item.begin(), item.end(), std::back_inserter(v));
                 return v;
               });
           return new_lod;
#endif
D
dangqingqing 已提交
176 177
      });

Q
qijun 已提交
178 179 180 181 182 183 184 185 186 187 188 189 190
  py::class_<SelectedRows>(m, "SelectedRows")
      .def("__init__",
           [](SelectedRows &instance) { new (&instance) SelectedRows(); })
      .def("__init__",
           [](SelectedRows &instance, const std::vector<int64_t> rows,
              const int64_t &height) {
             new (&instance) SelectedRows(rows, height);
           })
      .def("get_tensor",
           [](SelectedRows &self) { return self.mutable_value(); },
           py::return_value_policy::reference)
      .def("set_height", &SelectedRows::set_height)
      .def("height", &SelectedRows::height)
Q
qijun 已提交
191 192 193 194 195 196 197 198 199
      .def("set_rows",
           [](SelectedRows &self, std::vector<int64_t> rows) {
#ifndef PADDLE_WITH_CUDA
             self.set_rows(rows);
#else
        Vector<int64_t> new_rows(rows);
        self.set_rows(new_rows);
#endif
           })
200 201 202 203 204 205 206 207 208 209 210
      .def("rows", [](SelectedRows &self) {
#ifndef PADDLE_WITH_CUDA
        return self.rows();
#else
         auto rows = self.rows();
         std::vector<int64_t> new_rows;
         new_rows.reserve(rows.size());
         std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows));
         return new_rows;
#endif
      });
Q
qijun 已提交
211

212
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
213 214 215

All parameter, weight, gradient are variables in Paddle.
)DOC")
216
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
217
      .def("set_int",
218 219
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
220 221 222 223 224 225 226
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
Y
Yu Yang 已提交
227
      .def("get_tensor",
228 229
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
230 231
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
232 233 234
      .def("get_lod_rank_table",
           [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
           py::return_value_policy::reference)
Q
qijun 已提交
235 236 237 238 239
      .def("get_selected_rows",
           [](Variable &self) -> SelectedRows * {
             return self.GetMutable<SelectedRows>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
240 241 242
      .def("get_lod_tensor_array",
           [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
           py::return_value_policy::reference)
D
Dong Zhihong 已提交
243 244 245 246 247 248 249
#ifdef PADDLE_WITH_CUDA
      .def("get_communicator",
           [](Variable &self) -> platform::Communicator * {
             return self.GetMutable<platform::Communicator>();
           },
           py::return_value_policy::reference)
#endif
Y
Yan Chunwei 已提交
250
      .def("get_net",
D
dongzhihong 已提交
251 252
           [](Variable &self) -> operators::NetOp * {
             return self.GetMutable<operators::NetOp>();
Y
Yan Chunwei 已提交
253
           },
Y
Yu Yang 已提交
254
           py::return_value_policy::reference);
255

256
  py::class_<Scope>(m, "Scope", "")
D
dongzhihong 已提交
257
      .def("var",
258
           [](Scope &self, const std::string &name) -> Variable * {
D
dongzhihong 已提交
259
             return self.Var(name);
Y
Yu Yang 已提交
260
           },
261
           py::return_value_policy::reference)
262
      .def("find_var", &Scope::FindVar, py::return_value_policy::reference)
Y
Yu Yang 已提交
263
      .def(py::init<>())
264
      .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
265
           py::return_value_policy::reference)
Y
Yu Yang 已提交
266
      .def("drop_kids", &Scope::DropKids);
267

Y
Yu Yang 已提交
268 269
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
270 271
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
272 273 274 275 276 277 278 279 280 281
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
        PADDLE_ENFORCE(
            info.Proto().SerializeToString(&str),
            "Serialize OpProto Error. This could be a bug of Paddle.");
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
282 283
    return ret_values;
  });
284 285 286 287
  m.def("prune", [](const ProgramDescBind &origin,
                    const std::vector<std::array<size_t, 2>> &targets) {
    ProgramDescBind prog_with_targets(origin);
    for (const auto &t : targets) {
288
      prog_with_targets.MutableBlock(t[0])->Op(t[1])->MarkAsTarget();
289 290 291 292 293
    }
    ProgramDesc pruned_desc;
    Prune(*prog_with_targets.Proto(), &pruned_desc);
    return new ProgramDescBind(pruned_desc);
  });
294 295 296 297 298
  m.def("inference_optimize", [](ProgramDescBind &origin) {
    ProgramDesc pruned_desc;
    InferenceOptimize(*(origin.Proto()), &pruned_desc);
    return new ProgramDescBind(pruned_desc);
  });
299 300 301
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
302 303
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
Q
qijun 已提交
304
  // clang-format off
Y
Yu Yang 已提交
305
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
306 307
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
308
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
309 310 311 312 313
                    return new paddle::platform::CPUDeviceContext();
                  })
      .def_static("create",
                  [](paddle::platform::GPUPlace& place)
                      -> paddle::platform::DeviceContext* {
314
#ifndef PADDLE_WITH_CUDA
Q
qijun 已提交
315
                    PADDLE_THROW("GPUPlace is not supported in CPU device.");
Q
qijun 已提交
316
#else
Q
qijun 已提交
317
                    return new paddle::platform::CUDADeviceContext(place);
Q
qijun 已提交
318
#endif
Q
qijun 已提交
319
                  });
D
Dong Zhihong 已提交
320
// clang-format on
Q
qijun 已提交
321

D
Dong Zhihong 已提交
322 323 324
#ifdef PADDLE_WITH_CUDA
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
325 326 327
  py::class_<platform::GPUPlace>(m, "GPUPlace")
      .def(py::init<int>())
      .def("__str__", string::to_string<const platform::GPUPlace &>);
Q
qijun 已提交
328

329 330 331
  py::class_<paddle::platform::CPUPlace>(m, "CPUPlace")
      .def(py::init<>())
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
332

Y
Yu Yang 已提交
333 334 335 336 337 338 339 340 341 342 343
  py::class_<platform::Place>(m, "Place")
      .def(py::init<>())
      .def("set_place",
           [](platform::Place &self, const platform::CPUPlace &cpu_place) {
             self = cpu_place;
           })
      .def("set_place",
           [](platform::Place &self, const platform::GPUPlace &gpu_place) {
             self = gpu_place;
           });

Y
Yu Yang 已提交
344 345 346 347 348 349 350 351 352
  py::class_<OperatorBase>(m, "Operator")
      .def_static("create",
                  [](py::bytes protobin) {
                    OpDesc desc;
                    PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
                                   "Cannot parse user input to OpDesc");
                    PADDLE_ENFORCE(desc.IsInitialized(),
                                   "User OpDesc is not initialized, reason %s",
                                   desc.InitializationErrorString());
353
                    return OpRegistry::CreateOp(desc);
Y
Yu Yang 已提交
354 355 356 357 358 359
                  })
      .def("backward",
           [](const OperatorBase &forwardOp,
              const std::unordered_set<std::string> &no_grad_vars) {
             return Backward(forwardOp, no_grad_vars).release();
           })
360
      .def("run",
361
           [](OperatorBase &self, const Scope &scope,
362 363 364 365
              const platform::DeviceContext &dev_ctx) {
             self.Run(scope, dev_ctx);
             dev_ctx.Wait();
           })
Y
Yu Yang 已提交
366 367 368 369 370 371 372
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
373 374
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
375
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
376
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
377 378 379 380
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
381

Y
Yu Yang 已提交
382 383 384 385 386 387 388
  py::class_<operators::NetOp, OperatorBase>(m, "Net")
      .def_static("create",
                  []() -> operators::NetOp * {
                    auto *retv = new operators::NetOp;
                    retv->SetType("plain_net");
                    return retv;
                  })
389 390
      .def("append_op", [](operators::NetOp &self,
                           const OperatorBase &op) { self.AppendOp(op); })
D
dongzhihong 已提交
391 392 393 394
      .def("complete_add_op", &operators::NetOp::CompleteAddOp)
      .def("complete_add_op", [](std::shared_ptr<operators::NetOp> &self) {
        self->CompleteAddOp();
      });
Y
Yan Chunwei 已提交
395

Z
cond op  
zchen0211 已提交
396 397 398 399 400 401 402 403 404 405
  // cond_op
  py::class_<operators::CondOp, OperatorBase>(m, "CondOp")
      .def_static("create",
                  [](py::bytes protobin) -> operators::CondOp * {
                    OpDesc desc;
                    PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
                                   "Cannot parse user input to OpDesc");
                    PADDLE_ENFORCE(desc.IsInitialized(),
                                   "User OpDesc is not initialized, reason %s",
                                   desc.InitializationErrorString());
406
                    auto cond_op = OpRegistry::CreateOp(desc);
Z
cond op  
zchen0211 已提交
407 408 409 410 411 412 413 414 415 416 417
                    return static_cast<operators::CondOp *>(cond_op.release());
                  })
      .def("set_truenet",
           [](operators::CondOp &self, const operators::NetOp &net) -> void {
             self.set_truenet(net.Clone());
           })
      .def("set_falsenet",
           [](operators::CondOp &self, const operators::NetOp &net) -> void {
             self.set_falsenet(net.Clone());
           });

F
fengjiayi 已提交
418 419
  py::class_<framework::Executor>(m, "Executor")
      .def(py::init<std::vector<platform::Place> &>())
420
      .def("run", &Executor::Run);
F
fengjiayi 已提交
421

422
  m.def("unique_integer", UniqueIntegerGenerator);
Q
QI JUN 已提交
423
  m.def("init_gflags", InitGflags);
424

Q
qijun 已提交
425
  m.def("is_compile_gpu", IsCompileGPU);
426
  m.def("set_feed_variable", framework::SetFeedVariable);
Q
qijun 已提交
427
  m.def("get_fetch_variable", framework::GetFetchVariable);
Q
qijun 已提交
428

F
fengjiayi 已提交
429 430 431 432
  BindProgramDesc(m);
  BindBlockDesc(m);
  BindVarDsec(m);
  BindOpDesc(m);
Y
Yu Yang 已提交
433

Y
Yu Yang 已提交
434 435 436 437 438 439 440 441 442
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

Y
Yu Yang 已提交
443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
  py::class_<LoDTensorArray>(m, "LoDTensorArray")
      .def("__getitem__",
           [](LoDTensorArray &self, size_t i) { return &self.at(i); },
           py::return_value_policy::reference)
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
           [](LoDTensorArray &self, size_t i, const LoDTensor &t) {
             PADDLE_ENFORCE_LT(i, self.size());
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
      .def("append", [](LoDTensorArray &self, const LoDTensor &t) {
        self.emplace_back();
        self.back().ShareDataWith(t);
        self.back().set_lod(t.lod());
      });

Y
Yu Yang 已提交
460
  m.def("op_support_gpu", OpSupportGPU);
D
Dong Zhihong 已提交
461
#ifdef PADDLE_WITH_CUDA
D
Dong Zhihong 已提交
462
  m.def("get_cuda_device_count", platform::GetCUDADeviceCount);
D
Dong Zhihong 已提交
463
#endif
Y
Yu Yang 已提交
464

465
  return m.ptr();
L
Luo Tao 已提交
466
}
467
}  // namespace pybind
468
}  // namespace paddle