/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/pybind/protobuf.h" #include // for call_once #include #include "gflags/gflags.h" #include "paddle/framework/backward.h" #include "paddle/framework/executor.h" #include "paddle/framework/feed_fetch_method.h" #include "paddle/framework/framework.pb.h" #include "paddle/framework/lod_rank_table.h" #include "paddle/framework/lod_tensor.h" #include "paddle/framework/lod_tensor_array.h" #include "paddle/framework/prune.h" #include "paddle/framework/selected_rows.h" #include "paddle/operators/cond_op.h" #include "paddle/operators/net_op.h" #include "paddle/platform/enforce.h" #include "paddle/platform/place.h" #include "paddle/pybind/exception.h" #include "paddle/pybind/pybind.h" #include "paddle/pybind/tensor_py.h" #include "paddle/string/to_string.h" #ifdef PADDLE_WITH_CUDA #include "paddle/operators/nccl/nccl_gpu_common.h" #include "paddle/platform/gpu_info.h" #endif // disable auto conversion to list in Python PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray); namespace paddle { namespace pybind { static size_t UniqueIntegerGenerator(const std::string &prefix) { static std::unordered_map> generators; return generators[prefix].fetch_add(1); } std::once_flag gflags_init_flag; // TODO(qijun) move init gflags to init.cc void InitGflags(std::vector &argv) { std::call_once(gflags_init_flag, [&]() { int argc = argv.size(); char **arr = new char *[argv.size()]; std::string line; for (size_t i = 0; i < argv.size(); i++) { arr[i] = &argv[i][0]; line += argv[i]; line += ' '; } google::ParseCommandLineFlags(&argc, &arr, true); VLOG(1) << "Init commandline: " << line; }); } bool IsCompileGPU() { #ifndef PADDLE_WITH_CUDA return false; #else return true; #endif } PYBIND11_PLUGIN(core) { py::module m("core", "C++ core of PaddlePaddle"); // using framework in this function. Since it is inside a function, it will // not cause namespace pollution. using namespace paddle::framework; // NOLINT BindException(m); py::class_(m, "Tensor", py::buffer_protocol()) .def_buffer( [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); }) .def("get_dims", [](const Tensor &self) { return vectorize(self.dims()); }) .def("set_dims", [](Tensor &self, const std::vector &dim) { self.Resize(make_ddim(dim)); }) .def("alloc_float", [](Tensor &self, paddle::platform::GPUPlace &place) { self.mutable_data(place); }) .def("alloc_float", [](Tensor &self, paddle::platform::CPUPlace &place) { self.mutable_data(place); }) .def("alloc_int", [](Tensor &self, paddle::platform::CPUPlace &place) { self.mutable_data(place); }) .def("alloc_int", [](Tensor &self, paddle::platform::GPUPlace &place) { self.mutable_data(place); }) .def("set", PyCPUTensorSetFromArray) .def("set", PyCPUTensorSetFromArray) .def("set", PyCPUTensorSetFromArray) .def("set", PyCPUTensorSetFromArray) .def("set", PyCPUTensorSetFromArray) #ifdef PADDLE_WITH_CUDA .def("set", PyCUDATensorSetFromArray) .def("set", PyCUDATensorSetFromArray) .def("set", PyCUDATensorSetFromArray) .def("set", PyCUDATensorSetFromArray) .def("set", PyCUDATensorSetFromArray) #endif .def("shape", [](Tensor &self) { return vectorize(self.dims()); }) .def("set_float_element", TensorSetElement) .def("get_float_element", TensorGetElement) .def("set_double_element", TensorSetElement) .def("get_double_element", TensorGetElement) .def("dtype", [](Tensor &self) { return ToDataType(self.type()); }); py::class_(m, "LoDTensor") .def_buffer( [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); }) .def( "__init__", [](LoDTensor &instance, const std::vector> &lod) { #ifndef PADDLE_WITH_CUDA new (&instance) LoDTensor(lod); #else LoD new_lod; new_lod.reserve(lod.size()); std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod)); new (&instance) LoDTensor(new_lod); #endif }) .def("__init__", [](LoDTensor &instance) { new (&instance) LoDTensor(); }) .def("set_lod", [](LoDTensor &self, const std::vector> &lod) { #ifndef PADDLE_WITH_CUDA self.set_lod(lod); #else LoD new_lod; new_lod.reserve(lod.size()); std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod)); self.set_lod(new_lod); #endif }) .def("lod", [](LoDTensor &self) -> std::vector> { #ifndef PADDLE_WITH_CUDA return self.lod(); #else auto lod = self.lod(); std::vector> new_lod; new_lod.reserve(lod.size()); std::transform(lod.begin(), lod.end(), std::back_inserter(new_lod), [](Vector item) -> std::vector { std::vector v; v.reserve(item.size()); std::copy(item.begin(), item.end(), std::back_inserter(v)); return v; }); return new_lod; #endif }); py::class_(m, "SelectedRows") .def("__init__", [](SelectedRows &instance) { new (&instance) SelectedRows(); }) .def("__init__", [](SelectedRows &instance, const std::vector rows, const int64_t &height) { new (&instance) SelectedRows(rows, height); }) .def("get_tensor", [](SelectedRows &self) { return self.mutable_value(); }, py::return_value_policy::reference) .def("set_height", &SelectedRows::set_height) .def("height", &SelectedRows::height) .def("set_rows", [](SelectedRows &self, std::vector rows) { #ifndef PADDLE_WITH_CUDA self.set_rows(rows); #else Vector new_rows(rows); self.set_rows(new_rows); #endif }) .def("rows", [](SelectedRows &self) { #ifndef PADDLE_WITH_CUDA return self.rows(); #else auto rows = self.rows(); std::vector new_rows; new_rows.reserve(rows.size()); std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows)); return new_rows; #endif }); py::class_(m, "Variable", R"DOC(Variable Class. All parameter, weight, gradient are variables in Paddle. )DOC") .def("is_int", [](const Variable &var) { return var.IsType(); }) .def("set_int", [](Variable &var, int val) -> void { *var.GetMutable() = val; }) .def("get_int", [](const Variable &var) -> int { return var.Get(); }) .def("is_float", [](const Variable &var) { return var.IsType(); }) .def("set_float", [](Variable &var, float val) -> void { *var.GetMutable() = val; }) .def("get_float", [](const Variable &var) -> float { return var.Get(); }) .def("get_tensor", [](Variable &self) -> LoDTensor * { return self.GetMutable(); }, py::return_value_policy::reference) .def("get_lod_rank_table", [](Variable &self) { return self.GetMutable(); }, py::return_value_policy::reference) .def("get_selected_rows", [](Variable &self) -> SelectedRows * { return self.GetMutable(); }, py::return_value_policy::reference) .def("get_lod_tensor_array", [](Variable &self) { return self.GetMutable(); }, py::return_value_policy::reference) #ifdef PADDLE_WITH_CUDA .def("get_communicator", [](Variable &self) -> platform::Communicator * { return self.GetMutable(); }, py::return_value_policy::reference) #endif .def("get_net", [](Variable &self) -> operators::NetOp * { return self.GetMutable(); }, py::return_value_policy::reference); py::class_(m, "Scope", "") .def("var", [](Scope &self, const std::string &name) -> Variable * { return self.Var(name); }, py::return_value_policy::reference) .def("find_var", &Scope::FindVar, py::return_value_policy::reference) .def(py::init<>()) .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); }, py::return_value_policy::reference) .def("drop_kids", &Scope::DropKids); //! @note: Be careful! PyBind will return std::string as an unicode, not //! Python str. If you want a str object, you should cast them in Python. m.def("get_all_op_protos", []() -> std::vector { std::vector ret_values; for (auto &iter : OpInfoMap::Instance().map()) { auto &info = iter.second; if (info.HasOpProtoAndChecker()) { std::string str; PADDLE_ENFORCE( info.Proto().SerializeToString(&str), "Serialize OpProto Error. This could be a bug of Paddle."); ret_values.emplace_back(str); } } return ret_values; }); m.def("prune", [](const ProgramDescBind &origin, const std::vector> &targets) { ProgramDescBind prog_with_targets(origin); for (const auto &t : targets) { prog_with_targets.MutableBlock(t[0])->Op(t[1])->MarkAsTarget(); } ProgramDesc pruned_desc; Prune(*prog_with_targets.Proto(), &pruned_desc); return new ProgramDescBind(pruned_desc); }); m.def("inference_optimize", [](ProgramDescBind &origin) { ProgramDesc pruned_desc; InferenceOptimize(*(origin.Proto()), &pruned_desc); return new ProgramDescBind(pruned_desc); }); m.def_submodule( "var_names", "The module will return special predefined variable name in Paddle") .def("empty", []() { return kEmptyVarName; }) .def("temp", []() { return kTempVarName; }); // clang-format off py::class_(m, "DeviceContext") .def_static("create", [](paddle::platform::CPUPlace& place) -> paddle::platform::DeviceContext* { return new paddle::platform::CPUDeviceContext(); }) .def_static("create", [](paddle::platform::GPUPlace& place) -> paddle::platform::DeviceContext* { #ifndef PADDLE_WITH_CUDA PADDLE_THROW("GPUPlace is not supported in CPU device."); #else return new paddle::platform::CUDADeviceContext(place); #endif }); // clang-format on #ifdef PADDLE_WITH_CUDA py::class_(m, "Communicator").def(py::init<>()); #endif py::class_(m, "GPUPlace") .def(py::init()) .def("__str__", string::to_string); py::class_(m, "CPUPlace") .def(py::init<>()) .def("__str__", string::to_string); py::class_(m, "Place") .def(py::init<>()) .def("set_place", [](platform::Place &self, const platform::CPUPlace &cpu_place) { self = cpu_place; }) .def("set_place", [](platform::Place &self, const platform::GPUPlace &gpu_place) { self = gpu_place; }); py::class_(m, "Operator") .def_static("create", [](py::bytes protobin) { OpDesc desc; PADDLE_ENFORCE(desc.ParsePartialFromString(protobin), "Cannot parse user input to OpDesc"); PADDLE_ENFORCE(desc.IsInitialized(), "User OpDesc is not initialized, reason %s", desc.InitializationErrorString()); return OpRegistry::CreateOp(desc); }) .def("backward", [](const OperatorBase &forwardOp, const std::unordered_set &no_grad_vars) { return Backward(forwardOp, no_grad_vars).release(); }) .def("run", [](OperatorBase &self, const Scope &scope, const platform::DeviceContext &dev_ctx) { self.Run(scope, dev_ctx); dev_ctx.Wait(); }) .def("type", [](const OperatorBase &op) -> std::string { return op.Type(); }) .def("outputs", [](const OperatorBase &op) -> std::map> { return op.Outputs(); }) .def("output_vars", [](const OperatorBase &op) { return op.OutputVars(true); }) .def("inputs", [](const OperatorBase &op) { return op.Inputs(); }) .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); }) .def("__str__", &OperatorBase::DebugString) .def("no_intermediate_outputs", [](const OperatorBase &op) { return op.OutputVars(false); }) .def("support_gpu", &OperatorBase::SupportGPU); py::class_(m, "Net") .def_static("create", []() -> operators::NetOp * { auto *retv = new operators::NetOp; retv->SetType("plain_net"); return retv; }) .def("append_op", [](operators::NetOp &self, const OperatorBase &op) { self.AppendOp(op); }) .def("complete_add_op", &operators::NetOp::CompleteAddOp) .def("complete_add_op", [](std::shared_ptr &self) { self->CompleteAddOp(); }); // cond_op py::class_(m, "CondOp") .def_static("create", [](py::bytes protobin) -> operators::CondOp * { OpDesc desc; PADDLE_ENFORCE(desc.ParsePartialFromString(protobin), "Cannot parse user input to OpDesc"); PADDLE_ENFORCE(desc.IsInitialized(), "User OpDesc is not initialized, reason %s", desc.InitializationErrorString()); auto cond_op = OpRegistry::CreateOp(desc); return static_cast(cond_op.release()); }) .def("set_truenet", [](operators::CondOp &self, const operators::NetOp &net) -> void { self.set_truenet(net.Clone()); }) .def("set_falsenet", [](operators::CondOp &self, const operators::NetOp &net) -> void { self.set_falsenet(net.Clone()); }); py::class_(m, "Executor") .def(py::init &>()) .def("run", &Executor::Run); m.def("unique_integer", UniqueIntegerGenerator); m.def("init_gflags", InitGflags); m.def("is_compile_gpu", IsCompileGPU); m.def("set_feed_variable", framework::SetFeedVariable); m.def("get_fetch_variable", framework::GetFetchVariable); BindProgramDesc(m); BindBlockDesc(m); BindVarDsec(m); BindOpDesc(m); py::class_(m, "LodRankTable") .def("items", [](framework::LoDRankTable &table) { std::vector> res; for (auto &item : table.items()) { res.push_back({item.index, item.length}); } return res; }); py::class_(m, "LoDTensorArray") .def("__getitem__", [](LoDTensorArray &self, size_t i) { return &self.at(i); }, py::return_value_policy::reference) .def("__len__", [](LoDTensorArray &self) { return self.size(); }) .def("__setitem__", [](LoDTensorArray &self, size_t i, const LoDTensor &t) { PADDLE_ENFORCE_LT(i, self.size()); self[i].ShareDataWith(t); self[i].set_lod(t.lod()); }) .def("append", [](LoDTensorArray &self, const LoDTensor &t) { self.emplace_back(); self.back().ShareDataWith(t); self.back().set_lod(t.lod()); }); m.def("op_support_gpu", OpSupportGPU); #ifdef PADDLE_WITH_CUDA m.def("get_cuda_device_count", platform::GetCUDADeviceCount); #endif return m.ptr(); } } // namespace pybind } // namespace paddle