pybind.cc 19.1 KB
Newer Older
1 2 3 4 5 6
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13 14

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Q
qijun 已提交
15 16
#include "paddle/pybind/protobuf.h"

Q
Qiao Longfei 已提交
17
#include "paddle/framework/backward.h"
F
fengjiayi 已提交
18
#include "paddle/framework/executor.h"
Q
qijun 已提交
19
#include "paddle/framework/feed_fetch_method.h"
20
#include "paddle/framework/framework.pb.h"
D
dangqingqing 已提交
21
#include "paddle/framework/lod_tensor.h"
Q
qijun 已提交
22
#include "paddle/framework/selected_rows.h"
23
#include "paddle/framework/tensor_array.h"
Z
zchen0211 已提交
24
#include "paddle/operators/cond_op.h"
25
#include "paddle/operators/dynamic_recurrent_op.h"
Y
Yan Chunwei 已提交
26
#include "paddle/operators/net_op.h"
Y
Yan Chunwei 已提交
27
#include "paddle/operators/recurrent_op.h"
Q
qijun 已提交
28
#include "paddle/platform/enforce.h"
Q
qijun 已提交
29
#include "paddle/platform/place.h"
Y
Yu Yang 已提交
30
#include "paddle/pybind/exception.h"
Q
qijun 已提交
31
#include "paddle/pybind/pybind.h"
32
#include "paddle/pybind/tensor_py.h"
33
#include "paddle/string/to_string.h"
34

D
Dong Zhihong 已提交
35 36
#ifdef PADDLE_WITH_CUDA
#include "paddle/operators/nccl/nccl_gpu_common.h"
D
Dong Zhihong 已提交
37
#include "paddle/platform/gpu_info.h"
D
Dong Zhihong 已提交
38 39
#endif

40
namespace paddle {
41
namespace pybind {
42 43 44 45 46
static size_t UniqueIntegerGenerator() {
  static std::atomic<size_t> generator;
  return generator.fetch_add(1);
}

Q
qijun 已提交
47
bool IsCompileGPU() {
48
#ifndef PADDLE_WITH_CUDA
Q
qijun 已提交
49 50 51 52 53 54
  return false;
#else
  return true;
#endif
}

55
PYBIND11_PLUGIN(core) {
Y
Yu Yang 已提交
56
  py::module m("core", "C++ core of PaddlePaddle");
57

58 59 60 61
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

Y
Yu Yang 已提交
62 63
  BindException(m);

64 65 66
  py::class_<Tensor>(m, "Tensor", py::buffer_protocol())
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
Y
Yu Yang 已提交
67
      .def("get_dims",
68
           [](const Tensor &self) { return vectorize(self.dims()); })
Y
Yu Yang 已提交
69
      .def("set_dims",
Q
qijun 已提交
70
           [](Tensor &self, const std::vector<int64_t> &dim) {
Y
Yu Yang 已提交
71
             self.Resize(make_ddim(dim));
Y
Yu Yang 已提交
72 73
           })
      .def("alloc_float",
Y
Yu Yang 已提交
74
           [](Tensor &self, paddle::platform::GPUPlace &place) {
Q
qijun 已提交
75
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
76
           })
Q
qijun 已提交
77
      .def("alloc_float",
Y
Yu Yang 已提交
78
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
79
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
80 81
           })
      .def("alloc_int",
Y
Yu Yang 已提交
82
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
83
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
84
           })
Q
qijun 已提交
85
      .def("alloc_int",
Y
Yu Yang 已提交
86
           [](Tensor &self, paddle::platform::GPUPlace &place) {
Q
qijun 已提交
87
             self.mutable_data<int>(place);
Q
qijun 已提交
88
           })
Y
Yu Yang 已提交
89 90
      .def("set", PyCPUTensorSetFromArray<float>)
      .def("set", PyCPUTensorSetFromArray<int>)
91
      .def("set", PyCPUTensorSetFromArray<double>)
92
      .def("set", PyCPUTensorSetFromArray<int64_t>)
93
#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
94 95
      .def("set", PyCUDATensorSetFromArray<float>)
      .def("set", PyCUDATensorSetFromArray<int>)
96
      .def("set", PyCUDATensorSetFromArray<double>)
97
      .def("set", PyCUDATensorSetFromArray<int64_t>)
Q
qijun 已提交
98
#endif
99
      .def("shape", [](Tensor &self) { return vectorize(self.dims()); })
100 101 102 103 104
      .def("set_float_element", TensorSetElement<float>)
      .def("get_float_element", TensorGetElement<float>)
      .def("set_double_element", TensorSetElement<double>)
      .def("get_double_element", TensorGetElement<double>)
      .def("dtype", [](Tensor &self) { return ToDataType(self.type()); });
Y
Yu Yang 已提交
105

106
  py::class_<LoDTensor, Tensor>(m, "LoDTensor")
107 108
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
109 110 111
      .def(
          "__init__",
          [](LoDTensor &instance, const std::vector<std::vector<size_t>> &lod) {
112
#ifndef PADDLE_WITH_CUDA
113
            new (&instance) LoDTensor(lod);
114
#else
Y
Yu Yang 已提交
115
             LoD new_lod;
116 117
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
118
             new (&instance) LoDTensor(new_lod);
119
#endif
120
          })
Y
Yu Yang 已提交
121
      .def("__init__", [](LoDTensor &instance) { new (&instance) LoDTensor(); })
D
dangqingqing 已提交
122
      .def("set_lod",
123
           [](LoDTensor &self, const std::vector<std::vector<size_t>> &lod) {
124
#ifndef PADDLE_WITH_CUDA
D
dangqingqing 已提交
125
             self.set_lod(lod);
126
#else
Y
Yu Yang 已提交
127
             LoD new_lod;
128 129 130 131
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             self.set_lod(new_lod);
#endif
D
dangqingqing 已提交
132
           })
133
      .def("lod", [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
134
#ifndef PADDLE_WITH_CUDA
D
dangqingqing 已提交
135
        return self.lod();
136 137 138 139 140
#else
           auto lod = self.lod();
           std::vector<std::vector<size_t>> new_lod;
           new_lod.reserve(lod.size());
           std::transform(lod.begin(), lod.end(), std::back_inserter(new_lod),
Y
Yu Yang 已提交
141
               [](Vector<size_t> item) ->
142 143 144 145 146 147 148 149
                   std::vector<size_t> {
                 std::vector<size_t> v;
                 v.reserve(item.size());
                 std::copy(item.begin(), item.end(), std::back_inserter(v));
                 return v;
               });
           return new_lod;
#endif
D
dangqingqing 已提交
150 151
      });

Q
qijun 已提交
152 153 154 155 156 157 158 159 160 161 162 163 164
  py::class_<SelectedRows>(m, "SelectedRows")
      .def("__init__",
           [](SelectedRows &instance) { new (&instance) SelectedRows(); })
      .def("__init__",
           [](SelectedRows &instance, const std::vector<int64_t> rows,
              const int64_t &height) {
             new (&instance) SelectedRows(rows, height);
           })
      .def("get_tensor",
           [](SelectedRows &self) { return self.mutable_value(); },
           py::return_value_policy::reference)
      .def("set_height", &SelectedRows::set_height)
      .def("height", &SelectedRows::height)
Q
qijun 已提交
165 166 167 168 169 170 171 172 173
      .def("set_rows",
           [](SelectedRows &self, std::vector<int64_t> rows) {
#ifndef PADDLE_WITH_CUDA
             self.set_rows(rows);
#else
        Vector<int64_t> new_rows(rows);
        self.set_rows(new_rows);
#endif
           })
174 175 176 177 178 179 180 181 182 183 184
      .def("rows", [](SelectedRows &self) {
#ifndef PADDLE_WITH_CUDA
        return self.rows();
#else
         auto rows = self.rows();
         std::vector<int64_t> new_rows;
         new_rows.reserve(rows.size());
         std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows));
         return new_rows;
#endif
      });
Q
qijun 已提交
185

186
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
187 188 189

All parameter, weight, gradient are variables in Paddle.
)DOC")
190
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
191
      .def("set_int",
192 193
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
194 195 196 197 198 199 200
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
Y
Yu Yang 已提交
201
      .def("get_tensor",
202 203
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
204 205
           },
           py::return_value_policy::reference)
Q
qijun 已提交
206 207 208 209 210
      .def("get_selected_rows",
           [](Variable &self) -> SelectedRows * {
             return self.GetMutable<SelectedRows>();
           },
           py::return_value_policy::reference)
D
Dong Zhihong 已提交
211 212 213 214 215 216 217
#ifdef PADDLE_WITH_CUDA
      .def("get_communicator",
           [](Variable &self) -> platform::Communicator * {
             return self.GetMutable<platform::Communicator>();
           },
           py::return_value_policy::reference)
#endif
Y
Yan Chunwei 已提交
218
      .def("get_net",
D
dongzhihong 已提交
219 220
           [](Variable &self) -> operators::NetOp * {
             return self.GetMutable<operators::NetOp>();
Y
Yan Chunwei 已提交
221
           },
Y
Yu Yang 已提交
222
           py::return_value_policy::reference);
223

224
  py::class_<Scope>(m, "Scope", "")
D
dongzhihong 已提交
225
      .def("var",
226
           [](Scope &self, const std::string &name) -> Variable * {
D
dongzhihong 已提交
227
             return self.Var(name);
Y
Yu Yang 已提交
228
           },
229
           py::return_value_policy::reference)
230
      .def("find_var", &Scope::FindVar, py::return_value_policy::reference)
Y
Yu Yang 已提交
231
      .def(py::init<>())
232
      .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
233
           py::return_value_policy::reference)
Y
Yu Yang 已提交
234
      .def("drop_kids", &Scope::DropKids);
235

Y
Yu Yang 已提交
236 237
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
238 239
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
240 241 242 243 244 245 246 247 248 249
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
        PADDLE_ENFORCE(
            info.Proto().SerializeToString(&str),
            "Serialize OpProto Error. This could be a bug of Paddle.");
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
250 251
    return ret_values;
  });
252 253 254
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
255 256
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
Q
qijun 已提交
257
  // clang-format off
Y
Yu Yang 已提交
258
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
259 260
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
261
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
262 263 264 265 266
                    return new paddle::platform::CPUDeviceContext();
                  })
      .def_static("create",
                  [](paddle::platform::GPUPlace& place)
                      -> paddle::platform::DeviceContext* {
267
#ifndef PADDLE_WITH_CUDA
Q
qijun 已提交
268
                    PADDLE_THROW("GPUPlace is not supported in CPU device.");
Q
qijun 已提交
269
#else
Q
qijun 已提交
270
                    return new paddle::platform::CUDADeviceContext(place);
Q
qijun 已提交
271
#endif
Q
qijun 已提交
272
                  });
D
Dong Zhihong 已提交
273
// clang-format on
Q
qijun 已提交
274

D
Dong Zhihong 已提交
275 276 277
#ifdef PADDLE_WITH_CUDA
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
278 279 280
  py::class_<platform::GPUPlace>(m, "GPUPlace")
      .def(py::init<int>())
      .def("__str__", string::to_string<const platform::GPUPlace &>);
Q
qijun 已提交
281

282 283 284
  py::class_<paddle::platform::CPUPlace>(m, "CPUPlace")
      .def(py::init<>())
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
285

Y
Yu Yang 已提交
286 287 288 289 290 291 292 293 294 295 296
  py::class_<platform::Place>(m, "Place")
      .def(py::init<>())
      .def("set_place",
           [](platform::Place &self, const platform::CPUPlace &cpu_place) {
             self = cpu_place;
           })
      .def("set_place",
           [](platform::Place &self, const platform::GPUPlace &gpu_place) {
             self = gpu_place;
           });

Y
Yu Yang 已提交
297 298 299 300 301 302 303 304 305
  py::class_<OperatorBase>(m, "Operator")
      .def_static("create",
                  [](py::bytes protobin) {
                    OpDesc desc;
                    PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
                                   "Cannot parse user input to OpDesc");
                    PADDLE_ENFORCE(desc.IsInitialized(),
                                   "User OpDesc is not initialized, reason %s",
                                   desc.InitializationErrorString());
306
                    return OpRegistry::CreateOp(desc, nullptr);
Y
Yu Yang 已提交
307 308 309 310 311 312
                  })
      .def("backward",
           [](const OperatorBase &forwardOp,
              const std::unordered_set<std::string> &no_grad_vars) {
             return Backward(forwardOp, no_grad_vars).release();
           })
313
      .def("run",
314
           [](OperatorBase &self, const Scope &scope,
315 316 317 318
              const platform::DeviceContext &dev_ctx) {
             self.Run(scope, dev_ctx);
             dev_ctx.Wait();
           })
Y
Yu Yang 已提交
319 320 321 322 323 324 325
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
326 327
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
328
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
329
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
330 331 332 333
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
334

Y
Yu Yang 已提交
335 336 337 338 339 340 341
  py::class_<operators::NetOp, OperatorBase>(m, "Net")
      .def_static("create",
                  []() -> operators::NetOp * {
                    auto *retv = new operators::NetOp;
                    retv->SetType("plain_net");
                    return retv;
                  })
342 343
      .def("append_op", [](operators::NetOp &self,
                           const OperatorBase &op) { self.AppendOp(op); })
D
dongzhihong 已提交
344 345 346 347
      .def("complete_add_op", &operators::NetOp::CompleteAddOp)
      .def("complete_add_op", [](std::shared_ptr<operators::NetOp> &self) {
        self->CompleteAddOp();
      });
Y
Yan Chunwei 已提交
348

349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398
  py::class_<framework::TensorArray>(m, "TensorArray")
      .def("__init__",
           [](TensorArray &instance) { new (&instance) TensorArray(); })
      .def("read",
           [](TensorArray &self, size_t index) { return self.Read(index); })
      .def("write", [](TensorArray &self, size_t index,
                       LoDTensor &value) { self.Write(index, value); })
      .def("write_shared",
           [](TensorArray &self, size_t index, const LoDTensor &value) {
             self.WriteShared(index, value);
           })
      .def("size", [](TensorArray &self) { return self.size(); })
      .def("pack",
           [](TensorArray &self, size_t level,
              const std::vector<std::vector<size_t>> &meta_info,
              const std::vector<std::vector<size_t>> &lod) {
             std::vector<DySeqMeta> meta;
             for (auto &info : meta_info) {
               PADDLE_ENFORCE_EQ(info.size(), 3UL);
               meta.emplace_back(info[0], info[1], info[2]);
             }
#ifndef PADDLE_WITH_CUDA
             return self.Pack(level, meta, lod);
#else
             LoD new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return self.Pack(level, meta, new_lod);
#endif
           })
      .def("unpack",
           [](TensorArray &self, const LoDTensor &source, int level,
              bool length_descend) {
             auto metas = self.Unpack(source, level, length_descend);
             std::vector<std::vector<size_t>> meta_info;
             for (auto meta : metas) {
               meta_info.emplace_back(
                   std::vector<size_t>({meta.begin, meta.end, meta.ori_idx}));
             }
             return meta_info;
           })
      .def("stack", [](TensorArray &self) { return self.Stack(); })
      .def("unstack",
           [](TensorArray &self, const LoDTensor &source) {
             return self.Unstack(source);
           })
      .def("unstack_shared", [](TensorArray &self, const LoDTensor &source) {
        return self.UnstackShared(source);
      });

Y
Yan Chunwei 已提交
399
  // recurrent_op
Y
Yu Yang 已提交
400 401 402 403 404 405 406 407 408 409
  py::class_<operators::RecurrentOp, OperatorBase>(m, "RecurrentOp")
      .def_static(
          "create",
          [](py::bytes protobin) -> operators::RecurrentOp * {
            OpDesc desc;
            PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
                           "Cannot parse user input to OpDesc");
            PADDLE_ENFORCE(desc.IsInitialized(),
                           "User OpDesc is not initialized, reason %s",
                           desc.InitializationErrorString());
410
            auto rnn_op = OpRegistry::CreateOp(desc, nullptr);
Y
Yu Yang 已提交
411 412
            return static_cast<operators::RecurrentOp *>(rnn_op.release());
          })
413 414 415 416
      .def("set_stepnet", [](operators::RecurrentOp &self,
                             const operators::NetOp &net) -> void {
        self.set_stepnet(net.Clone());
      });
Y
Yan Chunwei 已提交
417

418 419 420 421 422 423 424 425 426 427
  py::class_<operators::DynamicRecurrentOp, OperatorBase>(m,
                                                          "DynamicRecurrentOp")
      .def_static("create",
                  [](py::bytes protobin) -> operators::DynamicRecurrentOp * {
                    OpDesc desc;
                    PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
                                   "Cannot parse user input to OpDesc");
                    PADDLE_ENFORCE(desc.IsInitialized(),
                                   "User OpDesc is not initialized, reason %s",
                                   desc.InitializationErrorString());
428
                    auto rnn_op = OpRegistry::CreateOp(desc, nullptr);
429 430 431
                    return static_cast<operators::DynamicRecurrentOp *>(
                        rnn_op.release());
                  })
432
      .def("set_step_unit",
433
           [](operators::DynamicRecurrentOp &self, const operators::NetOp &net)
434
               -> void { self.rnn.SetStepUnit(net.Clone()); })
435 436
      .def("get_state",
           [](operators::DynamicRecurrentOp &self, const std::string &name)
437
               -> const TensorArray & { return self.rnn.state(name); })
438 439
      .def("get_step_input",
           [](operators::DynamicRecurrentOp &self, const std::string &name)
440
               -> const TensorArray & { return self.rnn.step_input(name); })
441 442
      .def("get_step_output",
           [](operators::DynamicRecurrentOp &self, const std::string &name)
443
               -> const TensorArray & { return self.rnn.step_output(name); });
444

Z
cond op  
zchen0211 已提交
445 446 447 448 449 450 451 452 453 454
  // cond_op
  py::class_<operators::CondOp, OperatorBase>(m, "CondOp")
      .def_static("create",
                  [](py::bytes protobin) -> operators::CondOp * {
                    OpDesc desc;
                    PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
                                   "Cannot parse user input to OpDesc");
                    PADDLE_ENFORCE(desc.IsInitialized(),
                                   "User OpDesc is not initialized, reason %s",
                                   desc.InitializationErrorString());
455
                    auto cond_op = OpRegistry::CreateOp(desc, nullptr);
Z
cond op  
zchen0211 已提交
456 457 458 459 460 461 462 463 464 465 466
                    return static_cast<operators::CondOp *>(cond_op.release());
                  })
      .def("set_truenet",
           [](operators::CondOp &self, const operators::NetOp &net) -> void {
             self.set_truenet(net.Clone());
           })
      .def("set_falsenet",
           [](operators::CondOp &self, const operators::NetOp &net) -> void {
             self.set_falsenet(net.Clone());
           });

F
fengjiayi 已提交
467 468
  py::class_<framework::Executor>(m, "Executor")
      .def(py::init<std::vector<platform::Place> &>())
Y
Yu Yang 已提交
469 470 471 472
      .def("run", [](Executor &self, ProgramDescBind *program_bind,
                     Scope *scope, int block_id) {
        self.Run(*program_bind->Proto(), scope, block_id);
      });
F
fengjiayi 已提交
473

474 475
  m.def("unique_integer", UniqueIntegerGenerator);

Q
qijun 已提交
476
  m.def("is_compile_gpu", IsCompileGPU);
477
  m.def("set_feed_variable", framework::SetFeedVariable);
Q
qijun 已提交
478
  m.def("get_fetch_variable", framework::GetFetchVariable);
Q
qijun 已提交
479

F
fengjiayi 已提交
480 481 482 483
  BindProgramDesc(m);
  BindBlockDesc(m);
  BindVarDsec(m);
  BindOpDesc(m);
Y
Yu Yang 已提交
484

Y
Yu Yang 已提交
485
  m.def("op_support_gpu", OpSupportGPU);
D
Dong Zhihong 已提交
486
  m.def("get_cuda_device_count", platform::GetCUDADeviceCount);
Y
Yu Yang 已提交
487

488
  return m.ptr();
L
Luo Tao 已提交
489
}
490
}  // namespace pybind
491
}  // namespace paddle