lod_tensor.cc 14.5 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14

F
fengjiayi 已提交
15 16 17 18 19
#include <stdint.h>
#include <string.h>
#include <algorithm>
#include <iterator>

Y
Yi Wang 已提交
20 21
#include "paddle/fluid/framework/data_type.h"
#include "paddle/fluid/framework/framework.pb.h"
F
fengjiayi 已提交
22
#include "paddle/fluid/framework/lod_tensor.h"
S
sneaxiy 已提交
23
#include "paddle/fluid/framework/var_type.h"
X
refine  
Xin Pan 已提交
24
#include "paddle/fluid/framework/version.h"
25

Y
Yi Wang 已提交
26 27
#include "paddle/fluid/memory/memcpy.h"
#include "paddle/fluid/memory/memory.h"
28

29
#if !defined(_WIN32)
Y
Yu Yang 已提交
30 31
#include "paddle/fluid/recordio/scanner.h"
#include "paddle/fluid/recordio/writer.h"
32
#endif  // _WIN32
Y
Yu Yang 已提交
33

34 35 36
namespace paddle {
namespace framework {

武毅 已提交
37
std::ostream &operator<<(std::ostream &os, const LoD &lod) {
38
  os << "{";
武毅 已提交
39
  for (auto &v : lod) {
40
    os << "{";
L
Liu Yiqun 已提交
41
    bool is_first = true;
武毅 已提交
42
    for (auto &i : v) {
L
Liu Yiqun 已提交
43 44 45 46 47 48
      if (is_first) {
        os << i;
        is_first = false;
      } else {
        os << ", " << i;
      }
49 50 51 52 53 54 55 56
    }
    os << "}";
  }
  os << "}";

  return os;
}

Y
Yang Yang 已提交
57
std::ostream &operator<<(std::ostream &os, const LoDTensor &t) {
58 59
  if (!platform::is_cpu_place(t.place())) {
    LoDTensor tt;
Y
Yi Wang 已提交
60
    framework::TensorCopy(t, platform::CPUPlace(), &tt);
61 62 63 64 65 66 67 68
    platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
    auto &dev_ctx = *pool.Get(t.place());
    dev_ctx.Wait();

    os << tt;
    return os;
  }

Y
Yang Yang 已提交
69 70 71 72 73 74
  os << "dim: " << t.dims() << "\n";
  os << "lod: " << t.lod() << "\n";

  // only print first ten elements
  int64_t size = t.numel() < 10 ? t.numel() : 10;
  for (int64_t i = 0; i < size; ++i) {
S
sneaxiy 已提交
75
    if (IsType<float>(t.type())) {
76
      os << t.data<float>()[i] << " ";
S
sneaxiy 已提交
77
    } else if (IsType<int64_t>(t.type())) {
78 79 80 81
      os << t.data<int64_t>()[i] << " ";
    } else {
      PADDLE_THROW("LoDTensor data type not in [float, int64_t]");
    }
Y
Yang Yang 已提交
82 83 84 85 86
  }

  return os;
}

Q
Qiao Longfei 已提交
87 88 89 90 91 92
std::string LoDToString(const LoD &lod) {
  std::ostringstream stream;
  stream << lod;
  return stream.str();
}

武毅 已提交
93
LoD SliceInLevel(const LoD &in, size_t level, size_t elem_begin,
Q
qijun 已提交
94
                 size_t elem_end) {
95
  PADDLE_ENFORCE_LT(level, in.size());
96
  PADDLE_ENFORCE_LT(elem_begin, elem_end);
97 98 99 100 101 102 103 104
  PADDLE_ENFORCE_LT(elem_end, in[level].size());

  LoD res;
  res.resize(in.size() - level);
  // copy the first level
  res[0].assign(in[level].begin() + elem_begin,
                in[level].begin() + elem_end + 1);
  for (size_t lvl = 1; lvl < res.size(); lvl++) {
武毅 已提交
105 106 107
    const auto &in_level = in[level + lvl];
    const auto &above_level = res[lvl - 1];
    auto &out_level = res[lvl];
108 109
    out_level.assign(in_level.begin() + above_level.front(),
                     in_level.begin() + above_level.back() + 1);
110
  }
111 112 113 114
  for (size_t lvl = 0; lvl < res.size(); lvl++) {
    // to make the first offset equals 0, all the elements minus the first
    // element
    size_t front = res[lvl].front();
武毅 已提交
115
    for (auto &ele : res[lvl]) {
116 117 118 119 120 121
      ele -= front;
    }
  }
  return res;
}

武毅 已提交
122
LoD ToAbsOffset(const LoD &in) {
123 124 125
  // the lowest level stores relative offsets
  if (in.empty() || in.size() == 1) return in;
  LoD result = in;
Q
Qiao Longfei 已提交
126 127 128 129
  for (auto level = static_cast<int>(in.size() - 2); level >= 0; level--) {
    for (size_t i = 0; i < in[level].size(); ++i) {
      size_t index = in[level][i];
      result[level][i] = result[level + 1][index];
130 131 132
    }
  }
  return result;
133 134
}

武毅 已提交
135
bool operator==(const LoD &a, const LoD &b) {
136 137 138 139 140
  if (a.size() != b.size()) {
    return false;
  }

  for (size_t i = 0; i < a.size(); i++) {
武毅 已提交
141 142
    const auto &a_level = a[i];
    const auto &b_level = b[i];
143 144 145 146 147 148 149 150 151 152
    if (a_level.size() != b_level.size()) {
      return false;
    }
    for (size_t j = 0; j < a_level.size(); j++) {
      if (a_level[j] != b_level[j]) {
        return false;
      }
    }
  }
  return true;
153 154
}

Y
Yan Chunwei 已提交
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
bool CheckLoD(const LoD &in, int tensor_height) {
  if (in.empty()) return true;
  for (const auto &level : in) {
    // check: there should be more than 2 offsets existing in each level.
    if (level.size() < 2) return false;
    // check: the first offset(the begin offset) of each level should be 0.
    if (level.front() != 0) return false;
    // check: all the offsets in a level should be ascending(no same items
    // allows).
    if (!std::is_sorted(level.begin(), level.begin(), [](size_t a, size_t b) {
          if (a < b) return true;
          return false;
        })) {
      LOG(INFO) << "ascending error";
      return false;
    }
  }
  // check: the lowest level's last offset should equals `tensor_height` if
  //        tensor_height>0.
  if (tensor_height > 0 && (size_t)tensor_height != in.back().back())
    return false;

  // check: the higher level's last offset should equals the lower level's
  // size-1.
  // NOTE LoD store the levels from top to bottom, so the higher level goes
  // first.
  for (size_t level = 0; level < in.size() - 1; level++) {
    if (in[level].back() != in[level + 1].size() - 1) return false;
  }
  return true;
}

bool CheckAbsLoD(const LoD &in, int tensor_height) {
  if (in.empty()) return true;
  for (const auto &level : in) {
    // check: all the offsets in a level should be ascending(no same items
    // allows).
    if (!std::is_sorted(level.begin(), level.begin(), [](size_t a, size_t b) {
          if (a < b) return true;
          return false;
        })) {
      return false;
    }

    // check: there should be more than 2 offsets existing in each level.
    if (level.size() < 2) return false;

    // check: the first offset of each level should be 0, and the last should be
    // the same(the height of underlying tensor).
    if (level.front() != 0) return false;
    if (tensor_height < 0) {
      tensor_height = level.back();
    } else if ((size_t)tensor_height != level.back()) {
      return false;
    }
  }
  return true;
}

214
using LoDAndOffset = std::pair<LoD, std::pair<size_t, size_t>>;
武毅 已提交
215
LoDAndOffset GetSubLoDAndAbsoluteOffset(const LoD &lod, size_t start_idx,
216 217 218 219 220 221
                                        size_t end_idx, size_t start_level) {
  LoD sub_lod;

  for (size_t level_idx = start_level; level_idx < lod.size(); ++level_idx) {
    PADDLE_ENFORCE_LE(start_idx, end_idx);
    PADDLE_ENFORCE_LT(end_idx, lod[level_idx].size());
222 223 224 225
    std::vector<size_t> level_lens;
    for (size_t i = start_idx; i < end_idx; ++i) {
      level_lens.push_back(lod[level_idx][i + 1] - lod[level_idx][i]);
    }
226
    sub_lod.emplace_back(level_lens);
227 228 229
    start_idx = lod[level_idx][start_idx];
    end_idx = lod[level_idx][end_idx];
  }
230 231

  return LoDAndOffset{sub_lod, {start_idx, end_idx}};
232 233
}

武毅 已提交
234
void AppendLoD(LoD *lod, const LoD &lod_length) {
235 236
  PADDLE_ENFORCE(
      lod->empty() || lod->size() == lod_length.size(),
237
      "The lod_length should has the same size with the appended lod.");
238
  if (lod->empty()) {
Y
Yang Yu 已提交
239 240 241
    for (size_t i = 0; i < lod_length.size(); ++i) {
      lod->emplace_back(1, 0);  // size = 1, value = 0;
    }
242 243
    *lod = LoD(lod_length.size(), std::vector<size_t>({0}));
  }
244
  for (size_t i = 0; i < lod->size(); ++i) {
武毅 已提交
245
    auto &level = (*lod)[i];
246 247 248 249 250 251
    for (size_t len : lod_length[i]) {
      level.push_back(level.back() + len);
    }
  }
}

武毅 已提交
252 253
void SerializeToStream(std::ostream &os, const LoDTensor &tensor,
                       const platform::DeviceContext &dev_ctx) {
254
  {  // the 1st field, uint32_t version for LoDTensor
X
refine  
Xin Pan 已提交
255 256
    os.write(reinterpret_cast<const char *>(&kCurTensorVersion),
             sizeof(kCurTensorVersion));
武毅 已提交
257
  }
258 259 260 261 262 263
  {
    // the 2st field, LoD information
    // uint64_t lod_level
    // uint64_t lod_level_1 size in byte.
    // int*     lod_level_1 data
    // ...
武毅 已提交
264 265 266 267 268 269 270 271 272 273 274
    auto lod = tensor.lod();
    uint64_t size = lod.size();
    os.write(reinterpret_cast<const char *>(&size), sizeof(size));

    for (auto &each : lod) {
      size = each.size() * sizeof(framework::LoD::value_type::value_type);
      os.write(reinterpret_cast<const char *>(&size), sizeof(size));
      os.write(reinterpret_cast<const char *>(each.data()),
               static_cast<std::streamsize>(size));
    }
  }
275
  // the 3st field, Tensor
Y
Yi Wang 已提交
276
  TensorToStream(os, static_cast<Tensor>(tensor), dev_ctx);
武毅 已提交
277 278
}

Y
Yancey 已提交
279 280
void DeserializeFromStream(std::istream &is, LoDTensor *tensor,
                           const platform::DeviceContext &dev_ctx) {
281
  {
Y
Yancey 已提交
282
    // the 1st field, unit32_t version for LoDTensor
283 284
    uint32_t version;
    is.read(reinterpret_cast<char *>(&version), sizeof(version));
X
refine  
Xin Pan 已提交
285 286
    PADDLE_ENFORCE(framework::IsTensorVersionSupported(version),
                   "tensor version %u is not supported.", version);
287
    PADDLE_ENFORCE_EQ(version, 0U, "Only version 0 is supported");
武毅 已提交
288
  }
289 290
  {
    // the 2st field, LoD information
武毅 已提交
291 292 293 294 295 296 297 298 299 300 301 302 303
    uint64_t lod_level;
    is.read(reinterpret_cast<char *>(&lod_level), sizeof(lod_level));
    auto &lod = *tensor->mutable_lod();
    lod.resize(lod_level);
    for (uint64_t i = 0; i < lod_level; ++i) {
      uint64_t size;
      is.read(reinterpret_cast<char *>(&size), sizeof(size));
      std::vector<size_t> tmp(size / sizeof(size_t));
      is.read(reinterpret_cast<char *>(tmp.data()),
              static_cast<std::streamsize>(size));
      lod[i] = tmp;
    }
  }
304
  // the 3st filed, Tensor
Y
Yi Wang 已提交
305
  TensorFromStream(is, static_cast<Tensor *>(tensor), dev_ctx);
武毅 已提交
306 307
}

308
#if !defined(_WIN32)
F
fengjiayi 已提交
309
void WriteToRecordIO(recordio::Writer *writer,
Y
Yu Yang 已提交
310 311 312 313 314 315 316 317
                     const std::vector<LoDTensor> &tensor,
                     const platform::DeviceContext &dev_ctx) {
  std::stringstream buffer;
  size_t sz = tensor.size();
  buffer.write(reinterpret_cast<const char *>(&sz), sizeof(uint32_t));
  for (auto &each : tensor) {
    SerializeToStream(buffer, each, dev_ctx);
  }
F
fengjiayi 已提交
318
  writer->Write(buffer.str());
Y
Yu Yang 已提交
319 320
}

Y
yuyang18 已提交
321 322 323 324 325
bool ReadFromRecordIO(recordio::Scanner *scanner,
                      const platform::DeviceContext &dev_ctx,
                      std::vector<LoDTensor> *result_ptr) {
  if (!scanner->HasNext()) {
    return false;
Y
Yu Yang 已提交
326
  }
Y
yuyang18 已提交
327 328 329 330 331 332 333 334 335 336
  std::istringstream sin(scanner->Next());
  uint32_t sz;
  sin.read(reinterpret_cast<char *>(&sz), sizeof(uint32_t));
  auto &result = *result_ptr;
  result.resize(sz);
  for (uint32_t i = 0; i < sz; ++i) {
    DeserializeFromStream(sin, &result[i], dev_ctx);
  }

  return true;
Y
Yu Yang 已提交
337
}
338 339 340 341 342 343 344 345 346 347 348 349 350
#else
class Writer {};
class Scanner {};
void WriteToRecordIO(recordio::Writer *writer,
                     const std::vector<LoDTensor> &tensor,
                     const platform::DeviceContext &dev_ctx) {}
bool ReadFromRecordIO(recordio::Scanner *scanner,
                      const platform::DeviceContext &dev_ctx,
                      std::vector<LoDTensor> *result_ptr) {
  PADDLE_ENFORCE("windows didn't supported recordio!.");
  return true;
}
#endif  // _WIN32
Y
Yang Yang 已提交
351 352 353
std::vector<LoDTensor> LoDTensor::SplitLoDTensor(
    const std::vector<platform::Place> places) const {
  check_memory_size();
Y
Yang Yang 已提交
354 355 356 357
  int batch_size =
      lod().empty() ? dims()[0] : static_cast<int>(lod()[0].size()) - 1;
  size_t result_size = std::min(static_cast<size_t>(batch_size), places.size());
  size_t remainder = batch_size % places.size();
Y
Yu Yang 已提交
358 359 360 361

  std::vector<LoDTensor> results;
  results.reserve(result_size);

Y
Yang Yang 已提交
362
  int step_width = static_cast<int>(batch_size / result_size);
Y
Yu Yang 已提交
363 364 365 366 367 368
  for (size_t i = 0; i < result_size; ++i) {
    int begin = static_cast<int>(i * step_width);
    int end = static_cast<int>((i + 1) * step_width);
    if (i + 1 == places.size()) {  // last
      end += remainder;
    }
Y
Yang Yang 已提交
369

370
    LoDTensor dst;
Y
Yang Yang 已提交
371 372
    if (lod().empty()) {
      auto src = Slice(begin, end);
Y
Yang Yang 已提交
373
      auto &dst_place = places[i];
Y
Yi Wang 已提交
374
      framework::TensorCopy(src, dst_place, &dst);
Y
Yang Yang 已提交
375 376 377 378 379
    } else {
      auto lod_and_offset = GetSubLoDAndAbsoluteOffset(lod(), begin, end, 0);

      auto &offset = lod_and_offset.second;
      auto src = Slice(offset.first, offset.second);
Y
Yang Yang 已提交
380
      auto &dst_place = places[i];
Y
Yi Wang 已提交
381
      framework::TensorCopy(src, dst_place, &dst);
Y
Yang Yang 已提交
382 383 384 385 386 387 388 389 390 391 392

      LoD my_lod;
      for (auto &l : lod_and_offset.first) {
        std::vector<size_t> v{0};
        for (auto &ll : l) {
          v.push_back(ll + v.back());
        }
        my_lod.emplace_back(v);
      }
      dst.set_lod(my_lod);
    }
Y
Yang Yang 已提交
393
    results.emplace_back(dst);
Y
Yang Yang 已提交
394 395
  }

Y
Yu Yang 已提交
396
  return results;
Y
Yang Yang 已提交
397 398
}

Y
Yang Yang 已提交
399
void LoDTensor::MergeLoDTensor(
400 401
    const std::vector<const LoDTensor *> &lod_tensors,
    platform::Place dst_place) {
Y
Yang Yang 已提交
402
  PADDLE_ENFORCE(!lod_tensors.empty());
Y
Yang Yang 已提交
403

Y
Yang Yang 已提交
404 405
  framework::DDim new_dim = lod_tensors[0]->dims();
  std::type_index new_type = lod_tensors[0]->type();
Y
Yang Yang 已提交
406 407 408 409
  framework::DataLayout new_layout = lod_tensors[0]->layout();
  LoD new_lod = lod_tensors[0]->lod();
  for (size_t i = 1; i < lod_tensors.size(); ++i) {
    auto *t = lod_tensors[i];
S
sneaxiy 已提交
410
    PADDLE_ENFORCE_EQ(new_type, t->type());
Y
Yang Yang 已提交
411 412 413 414 415 416 417
    PADDLE_ENFORCE_EQ(new_layout, t->layout());

    PADDLE_ENFORCE_EQ(framework::product(new_dim) / new_dim[0],
                      framework::product(t->dims()) / t->dims()[0]);
    new_dim[0] += t->dims()[0];

    auto &lod = t->lod();
F
fengjiayi 已提交
418
    PADDLE_ENFORCE_EQ(new_lod.size(), lod.size());
Y
Yang Yang 已提交
419 420
    for (size_t j = 0; j < lod.size(); ++j) {
      auto &sub_lod = new_lod[j];
C
chengduo 已提交
421
      size_t offset = sub_lod.back();
Y
Yang Yang 已提交
422 423 424 425
      for (size_t k = 1; k < lod[j].size(); ++k) {
        sub_lod.push_back(lod[j][k] + offset);
      }
    }
Y
Yang Yang 已提交
426 427
  }
  Resize(new_dim);
428
  set_layout(new_layout);
Y
Yang Yang 已提交
429
  set_lod(new_lod);
430
  mutable_data(dst_place, new_type);
Y
Yang Yang 已提交
431

432
  int begin = 0;
Y
Yang Yang 已提交
433
  for (auto *src : lod_tensors) {
434 435
    int end = begin + src->dims()[0];
    auto dst = Slice(begin, end);
Y
Yi Wang 已提交
436
    framework::TensorCopy(*src, dst_place, &dst);
437
    begin = end;
Y
Yang Yang 已提交
438 439 440
  }
}

441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473
LoD ConvertToLengthBasedLoD(const LoD &offset_lod) {
  LoD length_lod;
  length_lod.reserve(offset_lod.size());
  for (size_t lvl = 0; lvl < offset_lod.size(); ++lvl) {
    std::vector<size_t> level;
    if (offset_lod[lvl].size() > 0) {
      level.reserve(offset_lod[lvl].size() - 1);
    }
    for (size_t idx = 0; idx < offset_lod[lvl].size() - 1; ++idx) {
      level.push_back(offset_lod[lvl][idx + 1] - offset_lod[lvl][idx]);
    }
    length_lod.push_back(level);
  }
  return length_lod;
}

LoD ConvertToOffsetBasedLoD(const LoD &length_lod) {
  LoD offset_lod;
  offset_lod.reserve(length_lod.size());
  for (size_t lvl = 0; lvl < length_lod.size(); ++lvl) {
    std::vector<size_t> level;
    level.reserve(length_lod[lvl].size() + 1);
    size_t tmp = 0;
    level.push_back(tmp);
    for (size_t idx = 0; idx < length_lod[lvl].size(); ++idx) {
      tmp += length_lod[lvl][idx];
      level.push_back(tmp);
    }
    offset_lod.push_back(level);
  }
  return offset_lod;
}

474 475
}  // namespace framework
}  // namespace paddle