Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
c796e013
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
c796e013
编写于
2月 11, 2018
作者:
L
Liu Yiqun
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Refine the inference unittests.
上级
caf9a09d
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
101 addition
and
85 deletion
+101
-85
paddle/fluid/framework/lod_tensor.cc
paddle/fluid/framework/lod_tensor.cc
+7
-1
paddle/fluid/inference/tests/book/test_inference_word2vec.cc
paddle/fluid/inference/tests/book/test_inference_word2vec.cc
+5
-5
python/paddle/v2/fluid/tests/book/test_image_classification.py
...n/paddle/v2/fluid/tests/book/test_image_classification.py
+3
-1
python/paddle/v2/fluid/tests/book/test_label_semantic_roles.py
...n/paddle/v2/fluid/tests/book/test_label_semantic_roles.py
+19
-18
python/paddle/v2/fluid/tests/book/test_word2vec.py
python/paddle/v2/fluid/tests/book/test_word2vec.py
+67
-60
未找到文件。
paddle/fluid/framework/lod_tensor.cc
浏览文件 @
c796e013
...
...
@@ -31,8 +31,14 @@ std::ostream &operator<<(std::ostream &os, const LoD &lod) {
os
<<
"{"
;
for
(
auto
&
v
:
lod
)
{
os
<<
"{"
;
bool
is_first
=
true
;
for
(
auto
&
i
:
v
)
{
os
<<
i
<<
","
;
if
(
is_first
)
{
os
<<
i
;
is_first
=
false
;
}
else
{
os
<<
", "
<<
i
;
}
}
os
<<
"}"
;
}
...
...
paddle/fluid/inference/tests/book/test_inference_word2vec.cc
浏览文件 @
c796e013
...
...
@@ -31,12 +31,12 @@ TEST(inference, word2vec) {
paddle
::
framework
::
LoDTensor
first_word
,
second_word
,
third_word
,
fourth_word
;
paddle
::
framework
::
LoD
lod
{{
0
,
1
}};
int64_t
dict_size
=
207
2
;
// Hard-coding t
he size of dictionary
int64_t
dict_size
=
207
3
;
// T
he size of dictionary
SetupLoDTensor
(
first_word
,
lod
,
static_cast
<
int64_t
>
(
0
),
dict_size
);
SetupLoDTensor
(
second_word
,
lod
,
static_cast
<
int64_t
>
(
0
),
dict_size
);
SetupLoDTensor
(
third_word
,
lod
,
static_cast
<
int64_t
>
(
0
),
dict_size
);
SetupLoDTensor
(
fourth_word
,
lod
,
static_cast
<
int64_t
>
(
0
),
dict_size
);
SetupLoDTensor
(
first_word
,
lod
,
static_cast
<
int64_t
>
(
0
),
dict_size
-
1
);
SetupLoDTensor
(
second_word
,
lod
,
static_cast
<
int64_t
>
(
0
),
dict_size
-
1
);
SetupLoDTensor
(
third_word
,
lod
,
static_cast
<
int64_t
>
(
0
),
dict_size
-
1
);
SetupLoDTensor
(
fourth_word
,
lod
,
static_cast
<
int64_t
>
(
0
),
dict_size
-
1
);
std
::
vector
<
paddle
::
framework
::
LoDTensor
*>
cpu_feeds
;
cpu_feeds
.
push_back
(
&
first_word
);
...
...
python/paddle/v2/fluid/tests/book/test_image_classification.py
浏览文件 @
c796e013
...
...
@@ -182,7 +182,9 @@ def infer(use_cuda, save_dirname=None):
fetch_targets
]
=
fluid
.
io
.
load_inference_model
(
save_dirname
,
exe
)
# The input's dimension of conv should be 4-D or 5-D.
tensor_img
=
numpy
.
random
.
rand
(
1
,
3
,
32
,
32
).
astype
(
"float32"
)
# Use normilized image pixels as input data, which should be in the range [0, 1.0].
batch_size
=
1
tensor_img
=
numpy
.
random
.
rand
(
batch_size
,
3
,
32
,
32
).
astype
(
"float32"
)
# Construct feed as a dictionary of {feed_target_name: feed_target_data}
# and results will contain a list of data corresponding to fetch_targets.
...
...
python/paddle/v2/fluid/tests/book/test_label_semantic_roles.py
浏览文件 @
c796e013
...
...
@@ -26,7 +26,7 @@ import unittest
word_dict
,
verb_dict
,
label_dict
=
conll05
.
get_dict
()
word_dict_len
=
len
(
word_dict
)
label_dict_len
=
len
(
label_dict
)
pred_len
=
len
(
verb_dict
)
pred_
dict_
len
=
len
(
verb_dict
)
mark_dict_len
=
2
word_dim
=
32
...
...
@@ -53,7 +53,7 @@ def db_lstm(word, predicate, ctx_n2, ctx_n1, ctx_0, ctx_p1, ctx_p2, mark,
# 8 features
predicate_embedding
=
fluid
.
layers
.
embedding
(
input
=
predicate
,
size
=
[
pred_len
,
word_dim
],
size
=
[
pred_
dict_
len
,
word_dim
],
dtype
=
'float32'
,
is_sparse
=
IS_SPARSE
,
param_attr
=
'vemb'
)
...
...
@@ -234,6 +234,7 @@ def train(use_cuda, save_dirname=None):
# Set the threshold low to speed up the CI test
if
float
(
pass_precision
)
>
0.05
:
if
save_dirname
is
not
None
:
# TODO(liuyiqun): Change the target to crf_decode
fluid
.
io
.
save_inference_model
(
save_dirname
,
[
'word_data'
,
'verb_data'
,
'ctx_n2_data'
,
'ctx_n1_data'
,
'ctx_0_data'
,
'ctx_p1_data'
,
...
...
@@ -259,14 +260,14 @@ def infer(use_cuda, save_dirname=None):
fetch_targets
]
=
fluid
.
io
.
load_inference_model
(
save_dirname
,
exe
)
lod
=
[
0
,
4
,
10
]
ts_word
=
create_random_lodtensor
(
lod
,
place
,
low
=
0
,
high
=
1
)
ts_pred
=
create_random_lodtensor
(
lod
,
place
,
low
=
0
,
high
=
1
)
ts_ctx_n2
=
create_random_lodtensor
(
lod
,
place
,
low
=
0
,
high
=
1
)
ts_ctx_n1
=
create_random_lodtensor
(
lod
,
place
,
low
=
0
,
high
=
1
)
ts_ctx_0
=
create_random_lodtensor
(
lod
,
place
,
low
=
0
,
high
=
1
)
ts_ctx_p1
=
create_random_lodtensor
(
lod
,
place
,
low
=
0
,
high
=
1
)
ts_ctx_p2
=
create_random_lodtensor
(
lod
,
place
,
low
=
0
,
high
=
1
)
ts_mark
=
create_random_lodtensor
(
lod
,
place
,
low
=
0
,
high
=
1
)
word
=
create_random_lodtensor
(
lod
,
place
,
low
=
0
,
high
=
word_dict_len
-
1
)
pred
=
create_random_lodtensor
(
lod
,
place
,
low
=
0
,
high
=
pred_dict_len
-
1
)
ctx_n2
=
create_random_lodtensor
(
lod
,
place
,
low
=
0
,
high
=
word_dict_len
-
1
)
ctx_n1
=
create_random_lodtensor
(
lod
,
place
,
low
=
0
,
high
=
word_dict_len
-
1
)
ctx_0
=
create_random_lodtensor
(
lod
,
place
,
low
=
0
,
high
=
word_dict_len
-
1
)
ctx_p1
=
create_random_lodtensor
(
lod
,
place
,
low
=
0
,
high
=
word_dict_len
-
1
)
ctx_p2
=
create_random_lodtensor
(
lod
,
place
,
low
=
0
,
high
=
word_dict_len
-
1
)
mark
=
create_random_lodtensor
(
lod
,
place
,
low
=
0
,
high
=
mark_dict_len
-
1
)
# Construct feed as a dictionary of {feed_target_name: feed_target_data}
# and results will contain a list of data corresponding to fetch_targets.
...
...
@@ -281,14 +282,14 @@ def infer(use_cuda, save_dirname=None):
results
=
exe
.
run
(
inference_program
,
feed
=
{
feed_target_names
[
0
]:
ts_
word
,
feed_target_names
[
1
]:
ts_
pred
,
feed_target_names
[
2
]:
ts_
ctx_n2
,
feed_target_names
[
3
]:
ts_
ctx_n1
,
feed_target_names
[
4
]:
ts_
ctx_0
,
feed_target_names
[
5
]:
ts_
ctx_p1
,
feed_target_names
[
6
]:
ts_
ctx_p2
,
feed_target_names
[
7
]:
ts_
mark
feed_target_names
[
0
]:
word
,
feed_target_names
[
1
]:
pred
,
feed_target_names
[
2
]:
ctx_n2
,
feed_target_names
[
3
]:
ctx_n1
,
feed_target_names
[
4
]:
ctx_0
,
feed_target_names
[
5
]:
ctx_p1
,
feed_target_names
[
6
]:
ctx_p2
,
feed_target_names
[
7
]:
mark
},
fetch_list
=
fetch_targets
,
return_numpy
=
False
)
...
...
python/paddle/v2/fluid/tests/book/test_word2vec.py
浏览文件 @
c796e013
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
# # Licensed under the Apache License, Version 2.0 (the "License");
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
...
...
@@ -21,6 +22,7 @@ import sys
def
create_random_lodtensor
(
lod
,
place
,
low
,
high
):
# The range of data elements is [low, high]
data
=
np
.
random
.
random_integers
(
low
,
high
,
[
lod
[
-
1
],
1
]).
astype
(
"int64"
)
res
=
fluid
.
LoDTensor
()
res
.
set
(
data
,
place
)
...
...
@@ -28,54 +30,7 @@ def create_random_lodtensor(lod, place, low, high):
return
res
def
infer
(
use_cuda
,
save_dirname
=
None
):
if
save_dirname
is
None
:
return
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
# Use fluid.io.load_inference_model to obtain the inference program desc,
# the feed_target_names (the names of variables that will be feeded
# data using feed operators), and the fetch_targets (variables that
# we want to obtain data from using fetch operators).
[
inference_program
,
feed_target_names
,
fetch_targets
]
=
fluid
.
io
.
load_inference_model
(
save_dirname
,
exe
)
word_dict
=
paddle
.
dataset
.
imikolov
.
build_dict
()
dict_size
=
len
(
word_dict
)
-
1
# Setup input, by creating 4 words, and setting up lod required for
# lookup_table_op
lod
=
[
0
,
1
]
first_word
=
create_random_lodtensor
(
lod
,
place
,
low
=
0
,
high
=
dict_size
)
second_word
=
create_random_lodtensor
(
lod
,
place
,
low
=
0
,
high
=
dict_size
)
third_word
=
create_random_lodtensor
(
lod
,
place
,
low
=
0
,
high
=
dict_size
)
fourth_word
=
create_random_lodtensor
(
lod
,
place
,
low
=
0
,
high
=
dict_size
)
assert
feed_target_names
[
0
]
==
'firstw'
assert
feed_target_names
[
1
]
==
'secondw'
assert
feed_target_names
[
2
]
==
'thirdw'
assert
feed_target_names
[
3
]
==
'forthw'
# Construct feed as a dictionary of {feed_target_name: feed_target_data}
# and results will contain a list of data corresponding to fetch_targets.
results
=
exe
.
run
(
inference_program
,
feed
=
{
feed_target_names
[
0
]:
first_word
,
feed_target_names
[
1
]:
second_word
,
feed_target_names
[
2
]:
third_word
,
feed_target_names
[
3
]:
fourth_word
},
fetch_list
=
fetch_targets
,
return_numpy
=
False
)
print
(
results
[
0
].
lod
())
np_data
=
np
.
array
(
results
[
0
])
print
(
"Inference Shape: "
,
np_data
.
shape
)
print
(
"Inference results: "
,
np_data
)
def
train
(
use_cuda
,
is_sparse
,
parallel
,
save_dirname
):
def
train
(
use_cuda
,
is_sparse
,
is_parallel
,
save_dirname
):
PASS_NUM
=
100
EMBED_SIZE
=
32
HIDDEN_SIZE
=
256
...
...
@@ -130,7 +85,7 @@ def train(use_cuda, is_sparse, parallel, save_dirname):
forth_word
=
fluid
.
layers
.
data
(
name
=
'forthw'
,
shape
=
[
1
],
dtype
=
'int64'
)
next_word
=
fluid
.
layers
.
data
(
name
=
'nextw'
,
shape
=
[
1
],
dtype
=
'int64'
)
if
not
parallel
:
if
not
is_
parallel
:
avg_cost
,
predict_word
=
__network__
(
[
first_word
,
second_word
,
third_word
,
forth_word
,
next_word
])
else
:
...
...
@@ -176,11 +131,61 @@ def train(use_cuda, is_sparse, parallel, save_dirname):
raise
AssertionError
(
"Cost is too large {0:2.2}"
.
format
(
avg_cost_np
[
0
]))
def
main
(
use_cuda
,
is_sparse
,
parallel
):
def
infer
(
use_cuda
,
save_dirname
=
None
):
if
save_dirname
is
None
:
return
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
# Use fluid.io.load_inference_model to obtain the inference program desc,
# the feed_target_names (the names of variables that will be feeded
# data using feed operators), and the fetch_targets (variables that
# we want to obtain data from using fetch operators).
[
inference_program
,
feed_target_names
,
fetch_targets
]
=
fluid
.
io
.
load_inference_model
(
save_dirname
,
exe
)
word_dict
=
paddle
.
dataset
.
imikolov
.
build_dict
()
dict_size
=
len
(
word_dict
)
# Setup inputs, by creating 4 words, the lod of which should be [0, 1]
lod
=
[
0
,
1
]
first_word
=
create_random_lodtensor
(
lod
,
place
,
low
=
0
,
high
=
dict_size
-
1
)
second_word
=
create_random_lodtensor
(
lod
,
place
,
low
=
0
,
high
=
dict_size
-
1
)
third_word
=
create_random_lodtensor
(
lod
,
place
,
low
=
0
,
high
=
dict_size
-
1
)
fourth_word
=
create_random_lodtensor
(
lod
,
place
,
low
=
0
,
high
=
dict_size
-
1
)
assert
feed_target_names
[
0
]
==
'firstw'
assert
feed_target_names
[
1
]
==
'secondw'
assert
feed_target_names
[
2
]
==
'thirdw'
assert
feed_target_names
[
3
]
==
'forthw'
# Construct feed as a dictionary of {feed_target_name: feed_target_data}
# and results will contain a list of data corresponding to fetch_targets.
results
=
exe
.
run
(
inference_program
,
feed
=
{
feed_target_names
[
0
]:
first_word
,
feed_target_names
[
1
]:
second_word
,
feed_target_names
[
2
]:
third_word
,
feed_target_names
[
3
]:
fourth_word
},
fetch_list
=
fetch_targets
,
return_numpy
=
False
)
print
(
results
[
0
].
lod
())
np_data
=
np
.
array
(
results
[
0
])
print
(
"Inference Shape: "
,
np_data
.
shape
)
def
main
(
use_cuda
,
is_sparse
,
is_parallel
):
if
use_cuda
and
not
fluid
.
core
.
is_compiled_with_cuda
():
return
save_dirname
=
"word2vec.inference.model"
train
(
use_cuda
,
is_sparse
,
parallel
,
save_dirname
)
if
not
is_parallel
:
save_dirname
=
"word2vec.inference.model"
else
:
save_dirname
=
None
train
(
use_cuda
,
is_sparse
,
is_parallel
,
save_dirname
)
infer
(
use_cuda
,
save_dirname
)
...
...
@@ -193,10 +198,10 @@ class W2VTest(unittest.TestCase):
pass
def
inject_test_method
(
use_cuda
,
is_sparse
,
parallel
):
def
inject_test_method
(
use_cuda
,
is_sparse
,
is_
parallel
):
fn_name
=
"test_{0}_{1}_{2}"
.
format
(
"cuda"
if
use_cuda
else
"cpu"
,
"sparse"
if
is_sparse
else
"dense"
,
"parallel"
if
parallel
else
"normal"
)
if
is_
parallel
else
"normal"
)
def
__impl__
(
*
args
,
**
kwargs
):
prog
=
fluid
.
Program
()
...
...
@@ -204,10 +209,12 @@ def inject_test_method(use_cuda, is_sparse, parallel):
scope
=
fluid
.
core
.
Scope
()
with
fluid
.
scope_guard
(
scope
):
with
fluid
.
program_guard
(
prog
,
startup_prog
):
main
(
use_cuda
=
use_cuda
,
is_sparse
=
is_sparse
,
parallel
=
parallel
)
main
(
use_cuda
=
use_cuda
,
is_sparse
=
is_sparse
,
is_parallel
=
is_parallel
)
# run only 2 cases: use_cuda is either True or False
if
is_sparse
==
False
and
parallel
==
False
:
if
use_cuda
and
is_sparse
:
fn
=
__impl__
else
:
# skip the other test when on CI server
...
...
@@ -219,8 +226,8 @@ def inject_test_method(use_cuda, is_sparse, parallel):
for
use_cuda
in
(
False
,
True
):
for
is_sparse
in
(
False
,
True
):
for
parallel
in
(
False
,
True
):
inject_test_method
(
use_cuda
,
is_sparse
,
parallel
)
for
is_
parallel
in
(
False
,
True
):
inject_test_method
(
use_cuda
,
is_sparse
,
is_
parallel
)
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录