lod_tensor.cc 13.8 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14

F
fengjiayi 已提交
15 16 17 18 19
#include <stdint.h>
#include <string.h>
#include <algorithm>
#include <iterator>

Y
Yi Wang 已提交
20 21
#include "paddle/fluid/framework/data_type.h"
#include "paddle/fluid/framework/framework.pb.h"
F
fengjiayi 已提交
22
#include "paddle/fluid/framework/lod_tensor.h"
S
sneaxiy 已提交
23
#include "paddle/fluid/framework/var_type.h"
24

Y
Yi Wang 已提交
25 26
#include "paddle/fluid/memory/memcpy.h"
#include "paddle/fluid/memory/memory.h"
27

Y
Yu Yang 已提交
28 29 30
#include "paddle/fluid/recordio/scanner.h"
#include "paddle/fluid/recordio/writer.h"

31 32 33
namespace paddle {
namespace framework {

武毅 已提交
34
std::ostream &operator<<(std::ostream &os, const LoD &lod) {
35
  os << "{";
武毅 已提交
36
  for (auto &v : lod) {
37
    os << "{";
L
Liu Yiqun 已提交
38
    bool is_first = true;
武毅 已提交
39
    for (auto &i : v) {
L
Liu Yiqun 已提交
40 41 42 43 44 45
      if (is_first) {
        os << i;
        is_first = false;
      } else {
        os << ", " << i;
      }
46 47 48 49 50 51 52 53
    }
    os << "}";
  }
  os << "}";

  return os;
}

Y
Yang Yang 已提交
54
std::ostream &operator<<(std::ostream &os, const LoDTensor &t) {
55 56
  if (!platform::is_cpu_place(t.place())) {
    LoDTensor tt;
Y
Yi Wang 已提交
57
    framework::TensorCopy(t, platform::CPUPlace(), &tt);
58 59 60 61 62 63 64 65
    platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
    auto &dev_ctx = *pool.Get(t.place());
    dev_ctx.Wait();

    os << tt;
    return os;
  }

Y
Yang Yang 已提交
66 67 68 69 70 71
  os << "dim: " << t.dims() << "\n";
  os << "lod: " << t.lod() << "\n";

  // only print first ten elements
  int64_t size = t.numel() < 10 ? t.numel() : 10;
  for (int64_t i = 0; i < size; ++i) {
S
sneaxiy 已提交
72
    if (IsType<float>(t.type())) {
73
      os << t.data<float>()[i] << " ";
S
sneaxiy 已提交
74
    } else if (IsType<int64_t>(t.type())) {
75 76 77 78
      os << t.data<int64_t>()[i] << " ";
    } else {
      PADDLE_THROW("LoDTensor data type not in [float, int64_t]");
    }
Y
Yang Yang 已提交
79 80 81 82 83
  }

  return os;
}

Q
Qiao Longfei 已提交
84 85 86 87 88 89
std::string LoDToString(const LoD &lod) {
  std::ostringstream stream;
  stream << lod;
  return stream.str();
}

武毅 已提交
90
LoD SliceInLevel(const LoD &in, size_t level, size_t elem_begin,
Q
qijun 已提交
91
                 size_t elem_end) {
92
  PADDLE_ENFORCE_LT(level, in.size());
93
  PADDLE_ENFORCE_LT(elem_begin, elem_end);
94 95 96 97 98 99 100 101
  PADDLE_ENFORCE_LT(elem_end, in[level].size());

  LoD res;
  res.resize(in.size() - level);
  // copy the first level
  res[0].assign(in[level].begin() + elem_begin,
                in[level].begin() + elem_end + 1);
  for (size_t lvl = 1; lvl < res.size(); lvl++) {
武毅 已提交
102 103 104
    const auto &in_level = in[level + lvl];
    const auto &above_level = res[lvl - 1];
    auto &out_level = res[lvl];
105 106
    out_level.assign(in_level.begin() + above_level.front(),
                     in_level.begin() + above_level.back() + 1);
107
  }
108 109 110 111
  for (size_t lvl = 0; lvl < res.size(); lvl++) {
    // to make the first offset equals 0, all the elements minus the first
    // element
    size_t front = res[lvl].front();
武毅 已提交
112
    for (auto &ele : res[lvl]) {
113 114 115 116 117 118
      ele -= front;
    }
  }
  return res;
}

武毅 已提交
119
LoD ToAbsOffset(const LoD &in) {
120 121 122
  // the lowest level stores relative offsets
  if (in.empty() || in.size() == 1) return in;
  LoD result = in;
Q
Qiao Longfei 已提交
123 124 125 126
  for (auto level = static_cast<int>(in.size() - 2); level >= 0; level--) {
    for (size_t i = 0; i < in[level].size(); ++i) {
      size_t index = in[level][i];
      result[level][i] = result[level + 1][index];
127 128 129
    }
  }
  return result;
130 131
}

武毅 已提交
132
bool operator==(const LoD &a, const LoD &b) {
133 134 135 136 137
  if (a.size() != b.size()) {
    return false;
  }

  for (size_t i = 0; i < a.size(); i++) {
武毅 已提交
138 139
    const auto &a_level = a[i];
    const auto &b_level = b[i];
140 141 142 143 144 145 146 147 148 149
    if (a_level.size() != b_level.size()) {
      return false;
    }
    for (size_t j = 0; j < a_level.size(); j++) {
      if (a_level[j] != b_level[j]) {
        return false;
      }
    }
  }
  return true;
150 151
}

Y
Yan Chunwei 已提交
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
bool CheckLoD(const LoD &in, int tensor_height) {
  if (in.empty()) return true;
  for (const auto &level : in) {
    // check: there should be more than 2 offsets existing in each level.
    if (level.size() < 2) return false;
    // check: the first offset(the begin offset) of each level should be 0.
    if (level.front() != 0) return false;
    // check: all the offsets in a level should be ascending(no same items
    // allows).
    if (!std::is_sorted(level.begin(), level.begin(), [](size_t a, size_t b) {
          if (a < b) return true;
          return false;
        })) {
      LOG(INFO) << "ascending error";
      return false;
    }
  }
  // check: the lowest level's last offset should equals `tensor_height` if
  //        tensor_height>0.
  if (tensor_height > 0 && (size_t)tensor_height != in.back().back())
    return false;

  // check: the higher level's last offset should equals the lower level's
  // size-1.
  // NOTE LoD store the levels from top to bottom, so the higher level goes
  // first.
  for (size_t level = 0; level < in.size() - 1; level++) {
    if (in[level].back() != in[level + 1].size() - 1) return false;
  }
  return true;
}

bool CheckAbsLoD(const LoD &in, int tensor_height) {
  if (in.empty()) return true;
  for (const auto &level : in) {
    // check: all the offsets in a level should be ascending(no same items
    // allows).
    if (!std::is_sorted(level.begin(), level.begin(), [](size_t a, size_t b) {
          if (a < b) return true;
          return false;
        })) {
      return false;
    }

    // check: there should be more than 2 offsets existing in each level.
    if (level.size() < 2) return false;

    // check: the first offset of each level should be 0, and the last should be
    // the same(the height of underlying tensor).
    if (level.front() != 0) return false;
    if (tensor_height < 0) {
      tensor_height = level.back();
    } else if ((size_t)tensor_height != level.back()) {
      return false;
    }
  }
  return true;
}

211
using LoDAndOffset = std::pair<LoD, std::pair<size_t, size_t>>;
武毅 已提交
212
LoDAndOffset GetSubLoDAndAbsoluteOffset(const LoD &lod, size_t start_idx,
213 214 215 216 217 218
                                        size_t end_idx, size_t start_level) {
  LoD sub_lod;

  for (size_t level_idx = start_level; level_idx < lod.size(); ++level_idx) {
    PADDLE_ENFORCE_LE(start_idx, end_idx);
    PADDLE_ENFORCE_LT(end_idx, lod[level_idx].size());
219 220 221 222
    std::vector<size_t> level_lens;
    for (size_t i = start_idx; i < end_idx; ++i) {
      level_lens.push_back(lod[level_idx][i + 1] - lod[level_idx][i]);
    }
223
    sub_lod.emplace_back(level_lens);
224 225 226
    start_idx = lod[level_idx][start_idx];
    end_idx = lod[level_idx][end_idx];
  }
227 228

  return LoDAndOffset{sub_lod, {start_idx, end_idx}};
229 230
}

武毅 已提交
231
void AppendLoD(LoD *lod, const LoD &lod_length) {
232 233
  PADDLE_ENFORCE(
      lod->empty() || lod->size() == lod_length.size(),
234
      "The lod_length should has the same size with the appended lod.");
235
  if (lod->empty()) {
Y
Yang Yu 已提交
236 237 238
    for (size_t i = 0; i < lod_length.size(); ++i) {
      lod->emplace_back(1, 0);  // size = 1, value = 0;
    }
239 240
    *lod = LoD(lod_length.size(), std::vector<size_t>({0}));
  }
241
  for (size_t i = 0; i < lod->size(); ++i) {
武毅 已提交
242
    auto &level = (*lod)[i];
243 244 245 246 247 248
    for (size_t len : lod_length[i]) {
      level.push_back(level.back() + len);
    }
  }
}

武毅 已提交
249 250
void SerializeToStream(std::ostream &os, const LoDTensor &tensor,
                       const platform::DeviceContext &dev_ctx) {
251
  {  // the 1st field, uint32_t version for LoDTensor
武毅 已提交
252 253 254
    constexpr uint32_t version = 0;
    os.write(reinterpret_cast<const char *>(&version), sizeof(version));
  }
255 256 257 258 259 260
  {
    // the 2st field, LoD information
    // uint64_t lod_level
    // uint64_t lod_level_1 size in byte.
    // int*     lod_level_1 data
    // ...
武毅 已提交
261 262 263 264 265 266 267 268 269 270 271
    auto lod = tensor.lod();
    uint64_t size = lod.size();
    os.write(reinterpret_cast<const char *>(&size), sizeof(size));

    for (auto &each : lod) {
      size = each.size() * sizeof(framework::LoD::value_type::value_type);
      os.write(reinterpret_cast<const char *>(&size), sizeof(size));
      os.write(reinterpret_cast<const char *>(each.data()),
               static_cast<std::streamsize>(size));
    }
  }
272
  // the 3st field, Tensor
Y
Yi Wang 已提交
273
  TensorToStream(os, static_cast<Tensor>(tensor), dev_ctx);
武毅 已提交
274 275
}

Y
Yancey 已提交
276 277
void DeserializeFromStream(std::istream &is, LoDTensor *tensor,
                           const platform::DeviceContext &dev_ctx) {
278
  {
Y
Yancey 已提交
279
    // the 1st field, unit32_t version for LoDTensor
280 281 282
    uint32_t version;
    is.read(reinterpret_cast<char *>(&version), sizeof(version));
    PADDLE_ENFORCE_EQ(version, 0U, "Only version 0 is supported");
武毅 已提交
283
  }
284 285
  {
    // the 2st field, LoD information
武毅 已提交
286 287 288 289 290 291 292 293 294 295 296 297 298
    uint64_t lod_level;
    is.read(reinterpret_cast<char *>(&lod_level), sizeof(lod_level));
    auto &lod = *tensor->mutable_lod();
    lod.resize(lod_level);
    for (uint64_t i = 0; i < lod_level; ++i) {
      uint64_t size;
      is.read(reinterpret_cast<char *>(&size), sizeof(size));
      std::vector<size_t> tmp(size / sizeof(size_t));
      is.read(reinterpret_cast<char *>(tmp.data()),
              static_cast<std::streamsize>(size));
      lod[i] = tmp;
    }
  }
299
  // the 3st filed, Tensor
Y
Yi Wang 已提交
300
  TensorFromStream(is, static_cast<Tensor *>(tensor), dev_ctx);
武毅 已提交
301 302
}

F
fengjiayi 已提交
303
void WriteToRecordIO(recordio::Writer *writer,
Y
Yu Yang 已提交
304 305 306 307 308 309 310 311
                     const std::vector<LoDTensor> &tensor,
                     const platform::DeviceContext &dev_ctx) {
  std::stringstream buffer;
  size_t sz = tensor.size();
  buffer.write(reinterpret_cast<const char *>(&sz), sizeof(uint32_t));
  for (auto &each : tensor) {
    SerializeToStream(buffer, each, dev_ctx);
  }
F
fengjiayi 已提交
312
  writer->Write(buffer.str());
Y
Yu Yang 已提交
313 314
}

Y
yuyang18 已提交
315 316 317 318 319
bool ReadFromRecordIO(recordio::Scanner *scanner,
                      const platform::DeviceContext &dev_ctx,
                      std::vector<LoDTensor> *result_ptr) {
  if (!scanner->HasNext()) {
    return false;
Y
Yu Yang 已提交
320
  }
Y
yuyang18 已提交
321 322 323 324 325 326 327 328 329 330
  std::istringstream sin(scanner->Next());
  uint32_t sz;
  sin.read(reinterpret_cast<char *>(&sz), sizeof(uint32_t));
  auto &result = *result_ptr;
  result.resize(sz);
  for (uint32_t i = 0; i < sz; ++i) {
    DeserializeFromStream(sin, &result[i], dev_ctx);
  }

  return true;
Y
Yu Yang 已提交
331 332
}

Y
Yang Yang 已提交
333 334 335
std::vector<LoDTensor> LoDTensor::SplitLoDTensor(
    const std::vector<platform::Place> places) const {
  check_memory_size();
Y
Yang Yang 已提交
336 337 338 339
  int batch_size =
      lod().empty() ? dims()[0] : static_cast<int>(lod()[0].size()) - 1;
  size_t result_size = std::min(static_cast<size_t>(batch_size), places.size());
  size_t remainder = batch_size % places.size();
Y
Yu Yang 已提交
340 341 342 343

  std::vector<LoDTensor> results;
  results.reserve(result_size);

Y
Yang Yang 已提交
344
  int step_width = static_cast<int>(batch_size / result_size);
Y
Yu Yang 已提交
345 346 347 348 349 350
  for (size_t i = 0; i < result_size; ++i) {
    int begin = static_cast<int>(i * step_width);
    int end = static_cast<int>((i + 1) * step_width);
    if (i + 1 == places.size()) {  // last
      end += remainder;
    }
Y
Yang Yang 已提交
351

352
    LoDTensor dst;
Y
Yang Yang 已提交
353 354
    if (lod().empty()) {
      auto src = Slice(begin, end);
Y
Yang Yang 已提交
355
      auto &dst_place = places[i];
Y
Yi Wang 已提交
356
      framework::TensorCopy(src, dst_place, &dst);
Y
Yang Yang 已提交
357 358 359 360 361
    } else {
      auto lod_and_offset = GetSubLoDAndAbsoluteOffset(lod(), begin, end, 0);

      auto &offset = lod_and_offset.second;
      auto src = Slice(offset.first, offset.second);
Y
Yang Yang 已提交
362
      auto &dst_place = places[i];
Y
Yi Wang 已提交
363
      framework::TensorCopy(src, dst_place, &dst);
Y
Yang Yang 已提交
364 365 366 367 368 369 370 371 372 373 374

      LoD my_lod;
      for (auto &l : lod_and_offset.first) {
        std::vector<size_t> v{0};
        for (auto &ll : l) {
          v.push_back(ll + v.back());
        }
        my_lod.emplace_back(v);
      }
      dst.set_lod(my_lod);
    }
Y
Yang Yang 已提交
375
    results.emplace_back(dst);
Y
Yang Yang 已提交
376 377
  }

Y
Yu Yang 已提交
378
  return results;
Y
Yang Yang 已提交
379 380
}

Y
Yang Yang 已提交
381
void LoDTensor::MergeLoDTensor(
382 383
    const std::vector<const LoDTensor *> &lod_tensors,
    platform::Place dst_place) {
Y
Yang Yang 已提交
384
  PADDLE_ENFORCE(!lod_tensors.empty());
Y
Yang Yang 已提交
385

Y
Yang Yang 已提交
386 387
  framework::DDim new_dim = lod_tensors[0]->dims();
  std::type_index new_type = lod_tensors[0]->type();
Y
Yang Yang 已提交
388 389 390 391
  framework::DataLayout new_layout = lod_tensors[0]->layout();
  LoD new_lod = lod_tensors[0]->lod();
  for (size_t i = 1; i < lod_tensors.size(); ++i) {
    auto *t = lod_tensors[i];
S
sneaxiy 已提交
392
    PADDLE_ENFORCE_EQ(new_type, t->type());
Y
Yang Yang 已提交
393 394 395 396 397 398 399
    PADDLE_ENFORCE_EQ(new_layout, t->layout());

    PADDLE_ENFORCE_EQ(framework::product(new_dim) / new_dim[0],
                      framework::product(t->dims()) / t->dims()[0]);
    new_dim[0] += t->dims()[0];

    auto &lod = t->lod();
F
fengjiayi 已提交
400
    PADDLE_ENFORCE_EQ(new_lod.size(), lod.size());
Y
Yang Yang 已提交
401 402 403 404 405 406 407
    for (size_t j = 0; j < lod.size(); ++j) {
      auto &sub_lod = new_lod[j];
      auto &offset = sub_lod.back();
      for (size_t k = 1; k < lod[j].size(); ++k) {
        sub_lod.push_back(lod[j][k] + offset);
      }
    }
Y
Yang Yang 已提交
408 409
  }
  Resize(new_dim);
410
  set_layout(new_layout);
Y
Yang Yang 已提交
411
  set_lod(new_lod);
412
  mutable_data(dst_place, new_type);
Y
Yang Yang 已提交
413

414
  int begin = 0;
Y
Yang Yang 已提交
415
  for (auto *src : lod_tensors) {
416 417
    int end = begin + src->dims()[0];
    auto dst = Slice(begin, end);
Y
Yi Wang 已提交
418
    framework::TensorCopy(*src, dst_place, &dst);
419
    begin = end;
Y
Yang Yang 已提交
420 421 422
  }
}

423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455
LoD ConvertToLengthBasedLoD(const LoD &offset_lod) {
  LoD length_lod;
  length_lod.reserve(offset_lod.size());
  for (size_t lvl = 0; lvl < offset_lod.size(); ++lvl) {
    std::vector<size_t> level;
    if (offset_lod[lvl].size() > 0) {
      level.reserve(offset_lod[lvl].size() - 1);
    }
    for (size_t idx = 0; idx < offset_lod[lvl].size() - 1; ++idx) {
      level.push_back(offset_lod[lvl][idx + 1] - offset_lod[lvl][idx]);
    }
    length_lod.push_back(level);
  }
  return length_lod;
}

LoD ConvertToOffsetBasedLoD(const LoD &length_lod) {
  LoD offset_lod;
  offset_lod.reserve(length_lod.size());
  for (size_t lvl = 0; lvl < length_lod.size(); ++lvl) {
    std::vector<size_t> level;
    level.reserve(length_lod[lvl].size() + 1);
    size_t tmp = 0;
    level.push_back(tmp);
    for (size_t idx = 0; idx < length_lod[lvl].size(); ++idx) {
      tmp += length_lod[lvl][idx];
      level.push_back(tmp);
    }
    offset_lod.push_back(level);
  }
  return offset_lod;
}

456 457
}  // namespace framework
}  // namespace paddle