bbox.py 11.1 KB
Newer Older
F
FDInSky 已提交
1 2
import numpy as np
import paddle.fluid as fluid
W
wangxinxin08 已提交
3 4 5
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
F
FDInSky 已提交
6
from ppdet.core.workspace import register
7
from . import ops
F
FDInSky 已提交
8 9 10


@register
11
class BBoxPostProcess(object):
12
    __shared__ = ['num_classes']
13 14
    __inject__ = ['decode_clip_nms']

F
FDInSky 已提交
15
    def __init__(self,
16 17
                 decode_clip_nms,
                 num_classes=81,
18
                 cls_agnostic=False,
F
FDInSky 已提交
19 20
                 decode=None,
                 clip=None,
21 22 23
                 nms=None,
                 score_stage=[0, 1, 2],
                 delta_stage=[2]):
F
FDInSky 已提交
24
        super(BBoxPostProcess, self).__init__()
25
        self.num_classes = num_classes
F
FDInSky 已提交
26 27 28 29
        self.decode = decode
        self.clip = clip
        self.nms = nms
        self.decode_clip_nms = decode_clip_nms
30 31 32 33
        self.score_stage = score_stage
        self.delta_stage = delta_stage
        self.out_dim = 2 if cls_agnostic else num_classes
        self.cls_agnostic = cls_agnostic
F
FDInSky 已提交
34

35
    def __call__(self, inputs, bboxheads, rois):
F
FDInSky 已提交
36 37 38 39 40
        # TODO: split into 3 steps
        # TODO: modify related ops for deploying
        # decode
        # clip
        # nms
41 42 43 44 45
        if isinstance(rois, tuple):
            proposal, proposal_num = rois
            score, delta = bboxheads[0]
            bbox_prob = fluid.layers.softmax(score)
            delta = fluid.layers.reshape(delta, (-1, self.out_dim, 4))
46
        else:
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
            num_stage = len(rois)
            proposal_list = []
            prob_list = []
            delta_list = []
            for stage, (proposals, bboxhead) in zip(rois, bboxheads):
                score, delta = bboxhead
                proposal, proposal_num = proposals
                if stage in self.score_stage:
                    bbox_prob = fluid.layers.softmax(score)
                    prob_list.append(bbox_prob)
                if stage in self.delta_stage:
                    proposal_list.append(proposal)
                    delta_list.append(delta)
            bbox_prob = fluid.layers.mean(prob_list)
            delta = fluid.layers.mean(delta_list)
            proposal = fluid.layers.mean(proposal_list)
            delta = fluid.layers.reshape(delta, (-1, self.out_dim, 4))
            if self.cls_agnostic:
                delta = delta[:, 1:2, :]
                delta = fluid.layers.expand(delta, [1, self.num_classes, 1])
        bboxes = (proposal, proposal_num)
        bboxes, bbox_nums = self.decode_clip_nms(bboxes, bbox_prob, delta,
                                                 inputs['im_info'])
        return bboxes, bbox_nums
F
FDInSky 已提交
71 72


73 74 75
@register
class BBoxPostProcessYOLO(object):
    __shared__ = ['num_classes']
76
    __inject__ = ['yolo_box', 'nms']
77

78
    def __init__(self, yolo_box, nms, num_classes=80, decode=None, clip=None):
79
        super(BBoxPostProcessYOLO, self).__init__()
80 81
        self.yolo_box = yolo_box
        self.nms = nms
82 83 84 85
        self.num_classes = num_classes
        self.decode = decode
        self.clip = clip

W
wangguanzhong 已提交
86
    def __call__(self, im_size, yolo_head_out, mask_anchors):
87 88 89 90 91
        # TODO: split yolo_box into 2 steps
        # decode
        # clip
        boxes_list = []
        scores_list = []
W
wangguanzhong 已提交
92 93 94
        for i, head_out in enumerate(yolo_head_out):
            boxes, scores = self.yolo_box(head_out, im_size, mask_anchors[i],
                                          self.num_classes, i)
95 96

            boxes_list.append(boxes)
W
wangxinxin08 已提交
97 98 99
            scores_list.append(paddle.transpose(scores, perm=[0, 2, 1]))
        yolo_boxes = paddle.concat(boxes_list, axis=1)
        yolo_scores = paddle.concat(scores_list, axis=2)
W
wangguanzhong 已提交
100
        bbox = self.nms(bboxes=yolo_boxes, scores=yolo_scores)
101 102
        # TODO: parse the lod of nmsed_bbox
        # default batch size is 1
W
wangguanzhong 已提交
103 104
        bbox_num = np.array([int(bbox.shape[0])], dtype=np.int32)
        return bbox, bbox_num
105 106


F
FDInSky 已提交
107
@register
108
class AnchorRPN(object):
F
FDInSky 已提交
109 110
    __inject__ = ['anchor_generator', 'anchor_target_generator']

111
    def __init__(self, anchor_generator, anchor_target_generator):
112
        super(AnchorRPN, self).__init__()
F
FDInSky 已提交
113 114 115
        self.anchor_generator = anchor_generator
        self.anchor_target_generator = anchor_target_generator

116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
    def __call__(self, rpn_feats):
        anchors = []
        num_level = len(rpn_feats)
        for i, rpn_feat in enumerate(rpn_feats):
            anchor, var = self.anchor_generator(rpn_feat, i)
            anchors.append((anchor, var))
        return anchors

    def _get_target_input(self, rpn_feats, anchors):
        rpn_score_list = []
        rpn_delta_list = []
        anchor_list = []
        for (rpn_score, rpn_delta), (anchor, var) in zip(rpn_feats, anchors):
            rpn_score = fluid.layers.transpose(rpn_score, perm=[0, 2, 3, 1])
            rpn_delta = fluid.layers.transpose(rpn_delta, perm=[0, 2, 3, 1])
            rpn_score = fluid.layers.reshape(x=rpn_score, shape=(0, -1, 1))
            rpn_delta = fluid.layers.reshape(x=rpn_delta, shape=(0, -1, 4))

            anchor = fluid.layers.reshape(anchor, shape=(-1, 4))
            var = fluid.layers.reshape(var, shape=(-1, 4))

            rpn_score_list.append(rpn_score)
            rpn_delta_list.append(rpn_delta)
            anchor_list.append(anchor)

        rpn_scores = fluid.layers.concat(rpn_score_list, axis=1)
        rpn_deltas = fluid.layers.concat(rpn_delta_list, axis=1)
        anchors = fluid.layers.concat(anchor_list)
        return rpn_scores, rpn_deltas, anchors

    def generate_loss_inputs(self, inputs, rpn_head_out, anchors):
        assert len(rpn_head_out) == len(
            anchors
        ), "rpn_head_out and anchors should have same length, but received rpn_head_out' length is {} and anchors' length is {}".format(
            len(rpn_head_out), len(anchors))
        rpn_score, rpn_delta, anchors = self._get_target_input(rpn_head_out,
                                                               anchors)
F
FDInSky 已提交
153 154

        score_pred, roi_pred, score_tgt, roi_tgt, roi_weight = self.anchor_target_generator(
155 156 157
            bbox_pred=rpn_delta,
            cls_logits=rpn_score,
            anchor_box=anchors,
F
FDInSky 已提交
158 159
            gt_boxes=inputs['gt_bbox'],
            is_crowd=inputs['is_crowd'],
160
            im_info=inputs['im_info'])
F
FDInSky 已提交
161 162 163 164 165 166 167 168 169
        outs = {
            'rpn_score_pred': score_pred,
            'rpn_score_target': score_tgt,
            'rpn_rois_pred': roi_pred,
            'rpn_rois_target': roi_tgt,
            'rpn_rois_weight': roi_weight
        }
        return outs

170 171 172

@register
class AnchorYOLO(object):
W
wangguanzhong 已提交
173
    __inject__ = ['anchor_generator', 'anchor_post_process']
174

W
wangguanzhong 已提交
175
    def __init__(self, anchor_generator, anchor_post_process):
176 177 178 179
        super(AnchorYOLO, self).__init__()
        self.anchor_generator = anchor_generator
        self.anchor_post_process = anchor_post_process

W
wangguanzhong 已提交
180 181
    def __call__(self):
        return self.anchor_generator()
182

W
wangguanzhong 已提交
183 184
    def post_process(self, im_size, yolo_head_out, mask_anchors):
        return self.anchor_post_process(im_size, yolo_head_out, mask_anchors)
F
FDInSky 已提交
185 186 187 188 189 190 191 192


@register
class Proposal(object):
    __inject__ = [
        'proposal_generator', 'proposal_target_generator', 'bbox_post_process'
    ]

193 194
    def __init__(self, proposal_generator, proposal_target_generator,
                 bbox_post_process):
F
FDInSky 已提交
195 196 197 198
        super(Proposal, self).__init__()
        self.proposal_generator = proposal_generator
        self.proposal_target_generator = proposal_target_generator
        self.bbox_post_process = bbox_post_process
199

200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
    def generate_proposal(self, inputs, rpn_head_out, anchor_out):
        rpn_rois_list = []
        rpn_prob_list = []
        rpn_rois_num_list = []
        for (rpn_score, rpn_delta), (anchor, var) in zip(rpn_head_out,
                                                         anchor_out):
            rpn_prob = fluid.layers.sigmoid(rpn_score)
            rpn_rois, rpn_rois_prob, rpn_rois_num, post_nms_top_n = self.proposal_generator(
                scores=rpn_prob,
                bbox_deltas=rpn_delta,
                anchors=anchor,
                variances=var,
                im_info=inputs['im_info'],
                mode=inputs['mode'])
            if len(rpn_head_out) == 1:
                return rpn_rois, rpn_rois_num
            rpn_rois_list.append(rpn_rois)
            rpn_prob_list.append(rpn_rois_prob)
            rpn_rois_num_list.append(rpn_rois_num)

        start_level = 2
        end_level = start_level + len(rpn_head_out)
222
        rois_collect, rois_num_collect = ops.collect_fpn_proposals(
223 224 225 226 227 228 229 230 231
            rpn_rois_list,
            rpn_prob_list,
            start_level,
            end_level,
            post_nms_top_n,
            rois_num_per_level=rpn_rois_num_list)
        return rois_collect, rois_num_collect

    def generate_proposal_target(self, inputs, rois, rois_num, stage=0):
F
FDInSky 已提交
232
        outs = self.proposal_target_generator(
233
            rpn_rois=rois,
234
            rpn_rois_num=rois_num,
F
FDInSky 已提交
235 236 237 238
            gt_classes=inputs['gt_class'],
            is_crowd=inputs['is_crowd'],
            gt_boxes=inputs['gt_bbox'],
            im_info=inputs['im_info'],
239 240 241 242
            stage=stage)
        rois = outs[0]
        rois_num = outs[-1]
        targets = {
F
FDInSky 已提交
243 244 245
            'labels_int32': outs[1],
            'bbox_targets': outs[2],
            'bbox_inside_weights': outs[3],
246
            'bbox_outside_weights': outs[4]
F
FDInSky 已提交
247
        }
248
        return rois, rois_num, targets
249

250 251 252
    def refine_bbox(self, rois, bbox_delta, stage=0):
        out_dim = bbox_delta.shape[1] / 4
        bbox_delta_r = fluid.layers.reshape(bbox_delta, (-1, out_dim, 4))
253 254 255 256 257 258
        bbox_delta_s = fluid.layers.slice(
            bbox_delta_r, axes=[1], starts=[1], ends=[2])

        refined_bbox = fluid.layers.box_coder(
            prior_box=rois,
            prior_box_var=self.proposal_target_generator.bbox_reg_weights[
259
                stage],
260 261 262 263 264
            target_box=bbox_delta_s,
            code_type='decode_center_size',
            box_normalized=False,
            axis=1)
        refined_bbox = fluid.layers.reshape(refined_bbox, shape=[-1, 4])
265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
        return refined_bbox

    def __call__(self,
                 inputs,
                 rpn_head_out,
                 anchor_out,
                 stage=0,
                 proposal_out=None,
                 bbox_head_outs=None,
                 refined=False):
        if refined:
            assert proposal_out is not None, "If proposal has been refined, proposal_out should not be None."
            return proposal_out
        if stage == 0:
            roi, rois_num = self.generate_proposal(inputs, rpn_head_out,
                                                   anchor_out)
            self.proposals_list = []
            self.targets_list = []
F
FDInSky 已提交
283

284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
        else:
            bbox_delta = bbox_head_outs[stage][0]
            roi = self.refine_bbox(proposal_out[0], bbox_delta, stage - 1)
            rois_num = proposal_out[1]
        if inputs['mode'] == 'train':
            roi, rois_num, targets = self.generate_proposal_target(
                inputs, roi, rois_num, stage)
            self.targets_list.append(targets)
        self.proposals_list.append((roi, rois_num))
        return roi, rois_num

    def get_targets(self):
        return self.targets_list

    def get_proposals(self):
        return self.proposals_list

    def post_process(self, inputs, bbox_head_out, rois):
        bboxes = self.bbox_post_process(inputs, bbox_head_out, rois)
        return bboxes