bbox.py 11.1 KB
Newer Older
F
FDInSky 已提交
1 2
import numpy as np
import paddle.fluid as fluid
W
wangxinxin08 已提交
3 4 5
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
F
FDInSky 已提交
6 7 8 9
from ppdet.core.workspace import register


@register
10
class BBoxPostProcess(object):
11
    __shared__ = ['num_classes']
12 13
    __inject__ = ['decode_clip_nms']

F
FDInSky 已提交
14
    def __init__(self,
15 16
                 decode_clip_nms,
                 num_classes=81,
17
                 cls_agnostic=False,
F
FDInSky 已提交
18 19
                 decode=None,
                 clip=None,
20 21 22
                 nms=None,
                 score_stage=[0, 1, 2],
                 delta_stage=[2]):
F
FDInSky 已提交
23
        super(BBoxPostProcess, self).__init__()
24
        self.num_classes = num_classes
F
FDInSky 已提交
25 26 27 28
        self.decode = decode
        self.clip = clip
        self.nms = nms
        self.decode_clip_nms = decode_clip_nms
29 30 31 32
        self.score_stage = score_stage
        self.delta_stage = delta_stage
        self.out_dim = 2 if cls_agnostic else num_classes
        self.cls_agnostic = cls_agnostic
F
FDInSky 已提交
33

34
    def __call__(self, inputs, bboxheads, rois):
F
FDInSky 已提交
35 36 37 38 39
        # TODO: split into 3 steps
        # TODO: modify related ops for deploying
        # decode
        # clip
        # nms
40 41 42 43 44
        if isinstance(rois, tuple):
            proposal, proposal_num = rois
            score, delta = bboxheads[0]
            bbox_prob = fluid.layers.softmax(score)
            delta = fluid.layers.reshape(delta, (-1, self.out_dim, 4))
45
        else:
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
            num_stage = len(rois)
            proposal_list = []
            prob_list = []
            delta_list = []
            for stage, (proposals, bboxhead) in zip(rois, bboxheads):
                score, delta = bboxhead
                proposal, proposal_num = proposals
                if stage in self.score_stage:
                    bbox_prob = fluid.layers.softmax(score)
                    prob_list.append(bbox_prob)
                if stage in self.delta_stage:
                    proposal_list.append(proposal)
                    delta_list.append(delta)
            bbox_prob = fluid.layers.mean(prob_list)
            delta = fluid.layers.mean(delta_list)
            proposal = fluid.layers.mean(proposal_list)
            delta = fluid.layers.reshape(delta, (-1, self.out_dim, 4))
            if self.cls_agnostic:
                delta = delta[:, 1:2, :]
                delta = fluid.layers.expand(delta, [1, self.num_classes, 1])
        bboxes = (proposal, proposal_num)
        bboxes, bbox_nums = self.decode_clip_nms(bboxes, bbox_prob, delta,
                                                 inputs['im_info'])
        return bboxes, bbox_nums
F
FDInSky 已提交
70 71


72 73 74
@register
class BBoxPostProcessYOLO(object):
    __shared__ = ['num_classes']
75
    __inject__ = ['yolo_box', 'nms']
76

77
    def __init__(self, yolo_box, nms, num_classes=80, decode=None, clip=None):
78
        super(BBoxPostProcessYOLO, self).__init__()
79 80
        self.yolo_box = yolo_box
        self.nms = nms
81 82 83 84
        self.num_classes = num_classes
        self.decode = decode
        self.clip = clip

W
wangguanzhong 已提交
85
    def __call__(self, im_size, yolo_head_out, mask_anchors):
86 87 88 89 90
        # TODO: split yolo_box into 2 steps
        # decode
        # clip
        boxes_list = []
        scores_list = []
W
wangguanzhong 已提交
91 92 93
        for i, head_out in enumerate(yolo_head_out):
            boxes, scores = self.yolo_box(head_out, im_size, mask_anchors[i],
                                          self.num_classes, i)
94 95

            boxes_list.append(boxes)
W
wangxinxin08 已提交
96 97 98
            scores_list.append(paddle.transpose(scores, perm=[0, 2, 1]))
        yolo_boxes = paddle.concat(boxes_list, axis=1)
        yolo_scores = paddle.concat(scores_list, axis=2)
W
wangguanzhong 已提交
99
        bbox = self.nms(bboxes=yolo_boxes, scores=yolo_scores)
100 101
        # TODO: parse the lod of nmsed_bbox
        # default batch size is 1
W
wangguanzhong 已提交
102 103
        bbox_num = np.array([int(bbox.shape[0])], dtype=np.int32)
        return bbox, bbox_num
104 105


F
FDInSky 已提交
106
@register
107
class AnchorRPN(object):
F
FDInSky 已提交
108 109
    __inject__ = ['anchor_generator', 'anchor_target_generator']

110
    def __init__(self, anchor_generator, anchor_target_generator):
111
        super(AnchorRPN, self).__init__()
F
FDInSky 已提交
112 113 114
        self.anchor_generator = anchor_generator
        self.anchor_target_generator = anchor_target_generator

115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
    def __call__(self, rpn_feats):
        anchors = []
        num_level = len(rpn_feats)
        for i, rpn_feat in enumerate(rpn_feats):
            anchor, var = self.anchor_generator(rpn_feat, i)
            anchors.append((anchor, var))
        return anchors

    def _get_target_input(self, rpn_feats, anchors):
        rpn_score_list = []
        rpn_delta_list = []
        anchor_list = []
        for (rpn_score, rpn_delta), (anchor, var) in zip(rpn_feats, anchors):
            rpn_score = fluid.layers.transpose(rpn_score, perm=[0, 2, 3, 1])
            rpn_delta = fluid.layers.transpose(rpn_delta, perm=[0, 2, 3, 1])
            rpn_score = fluid.layers.reshape(x=rpn_score, shape=(0, -1, 1))
            rpn_delta = fluid.layers.reshape(x=rpn_delta, shape=(0, -1, 4))

            anchor = fluid.layers.reshape(anchor, shape=(-1, 4))
            var = fluid.layers.reshape(var, shape=(-1, 4))

            rpn_score_list.append(rpn_score)
            rpn_delta_list.append(rpn_delta)
            anchor_list.append(anchor)

        rpn_scores = fluid.layers.concat(rpn_score_list, axis=1)
        rpn_deltas = fluid.layers.concat(rpn_delta_list, axis=1)
        anchors = fluid.layers.concat(anchor_list)
        return rpn_scores, rpn_deltas, anchors

    def generate_loss_inputs(self, inputs, rpn_head_out, anchors):
        assert len(rpn_head_out) == len(
            anchors
        ), "rpn_head_out and anchors should have same length, but received rpn_head_out' length is {} and anchors' length is {}".format(
            len(rpn_head_out), len(anchors))
        rpn_score, rpn_delta, anchors = self._get_target_input(rpn_head_out,
                                                               anchors)
F
FDInSky 已提交
152 153

        score_pred, roi_pred, score_tgt, roi_tgt, roi_weight = self.anchor_target_generator(
154 155 156
            bbox_pred=rpn_delta,
            cls_logits=rpn_score,
            anchor_box=anchors,
F
FDInSky 已提交
157 158
            gt_boxes=inputs['gt_bbox'],
            is_crowd=inputs['is_crowd'],
159
            im_info=inputs['im_info'])
F
FDInSky 已提交
160 161 162 163 164 165 166 167 168
        outs = {
            'rpn_score_pred': score_pred,
            'rpn_score_target': score_tgt,
            'rpn_rois_pred': roi_pred,
            'rpn_rois_target': roi_tgt,
            'rpn_rois_weight': roi_weight
        }
        return outs

169 170 171

@register
class AnchorYOLO(object):
W
wangguanzhong 已提交
172
    __inject__ = ['anchor_generator', 'anchor_post_process']
173

W
wangguanzhong 已提交
174
    def __init__(self, anchor_generator, anchor_post_process):
175 176 177 178
        super(AnchorYOLO, self).__init__()
        self.anchor_generator = anchor_generator
        self.anchor_post_process = anchor_post_process

W
wangguanzhong 已提交
179 180
    def __call__(self):
        return self.anchor_generator()
181

W
wangguanzhong 已提交
182 183
    def post_process(self, im_size, yolo_head_out, mask_anchors):
        return self.anchor_post_process(im_size, yolo_head_out, mask_anchors)
F
FDInSky 已提交
184 185 186 187 188 189 190 191


@register
class Proposal(object):
    __inject__ = [
        'proposal_generator', 'proposal_target_generator', 'bbox_post_process'
    ]

192 193
    def __init__(self, proposal_generator, proposal_target_generator,
                 bbox_post_process):
F
FDInSky 已提交
194 195 196 197
        super(Proposal, self).__init__()
        self.proposal_generator = proposal_generator
        self.proposal_target_generator = proposal_target_generator
        self.bbox_post_process = bbox_post_process
198

199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
    def generate_proposal(self, inputs, rpn_head_out, anchor_out):
        rpn_rois_list = []
        rpn_prob_list = []
        rpn_rois_num_list = []
        for (rpn_score, rpn_delta), (anchor, var) in zip(rpn_head_out,
                                                         anchor_out):
            rpn_prob = fluid.layers.sigmoid(rpn_score)
            rpn_rois, rpn_rois_prob, rpn_rois_num, post_nms_top_n = self.proposal_generator(
                scores=rpn_prob,
                bbox_deltas=rpn_delta,
                anchors=anchor,
                variances=var,
                im_info=inputs['im_info'],
                mode=inputs['mode'])
            if len(rpn_head_out) == 1:
                return rpn_rois, rpn_rois_num
            rpn_rois_list.append(rpn_rois)
            rpn_prob_list.append(rpn_rois_prob)
            rpn_rois_num_list.append(rpn_rois_num)

        start_level = 2
        end_level = start_level + len(rpn_head_out)
        rois_collect, rois_num_collect = fluid.layers.collect_fpn_proposals(
            rpn_rois_list,
            rpn_prob_list,
            start_level,
            end_level,
            post_nms_top_n,
            rois_num_per_level=rpn_rois_num_list)
        return rois_collect, rois_num_collect

    def generate_proposal_target(self, inputs, rois, rois_num, stage=0):
F
FDInSky 已提交
231
        outs = self.proposal_target_generator(
232
            rpn_rois=rois,
233
            rpn_rois_num=rois_num,
F
FDInSky 已提交
234 235 236 237
            gt_classes=inputs['gt_class'],
            is_crowd=inputs['is_crowd'],
            gt_boxes=inputs['gt_bbox'],
            im_info=inputs['im_info'],
238 239 240 241
            stage=stage)
        rois = outs[0]
        rois_num = outs[-1]
        targets = {
F
FDInSky 已提交
242 243 244
            'labels_int32': outs[1],
            'bbox_targets': outs[2],
            'bbox_inside_weights': outs[3],
245
            'bbox_outside_weights': outs[4]
F
FDInSky 已提交
246
        }
247
        return rois, rois_num, targets
248

249 250 251
    def refine_bbox(self, rois, bbox_delta, stage=0):
        out_dim = bbox_delta.shape[1] / 4
        bbox_delta_r = fluid.layers.reshape(bbox_delta, (-1, out_dim, 4))
252 253 254 255 256 257
        bbox_delta_s = fluid.layers.slice(
            bbox_delta_r, axes=[1], starts=[1], ends=[2])

        refined_bbox = fluid.layers.box_coder(
            prior_box=rois,
            prior_box_var=self.proposal_target_generator.bbox_reg_weights[
258
                stage],
259 260 261 262 263
            target_box=bbox_delta_s,
            code_type='decode_center_size',
            box_normalized=False,
            axis=1)
        refined_bbox = fluid.layers.reshape(refined_bbox, shape=[-1, 4])
264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
        return refined_bbox

    def __call__(self,
                 inputs,
                 rpn_head_out,
                 anchor_out,
                 stage=0,
                 proposal_out=None,
                 bbox_head_outs=None,
                 refined=False):
        if refined:
            assert proposal_out is not None, "If proposal has been refined, proposal_out should not be None."
            return proposal_out
        if stage == 0:
            roi, rois_num = self.generate_proposal(inputs, rpn_head_out,
                                                   anchor_out)
            self.proposals_list = []
            self.targets_list = []
F
FDInSky 已提交
282

283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
        else:
            bbox_delta = bbox_head_outs[stage][0]
            roi = self.refine_bbox(proposal_out[0], bbox_delta, stage - 1)
            rois_num = proposal_out[1]
        if inputs['mode'] == 'train':
            roi, rois_num, targets = self.generate_proposal_target(
                inputs, roi, rois_num, stage)
            self.targets_list.append(targets)
        self.proposals_list.append((roi, rois_num))
        return roi, rois_num

    def get_targets(self):
        return self.targets_list

    def get_proposals(self):
        return self.proposals_list

    def post_process(self, inputs, bbox_head_out, rois):
        bboxes = self.bbox_post_process(inputs, bbox_head_out, rois)
        return bboxes