bbox.py 11.5 KB
Newer Older
F
FDInSky 已提交
1 2 3 4 5 6
import numpy as np
import paddle.fluid as fluid
from ppdet.core.workspace import register


@register
7
class BBoxPostProcess(object):
8
    __shared__ = ['num_classes']
9 10
    __inject__ = ['decode_clip_nms']

F
FDInSky 已提交
11
    def __init__(self,
12 13
                 decode_clip_nms,
                 num_classes=81,
14
                 cls_agnostic=False,
F
FDInSky 已提交
15 16
                 decode=None,
                 clip=None,
17 18 19
                 nms=None,
                 score_stage=[0, 1, 2],
                 delta_stage=[2]):
F
FDInSky 已提交
20
        super(BBoxPostProcess, self).__init__()
21
        self.num_classes = num_classes
F
FDInSky 已提交
22 23 24 25
        self.decode = decode
        self.clip = clip
        self.nms = nms
        self.decode_clip_nms = decode_clip_nms
26 27 28 29
        self.score_stage = score_stage
        self.delta_stage = delta_stage
        self.out_dim = 2 if cls_agnostic else num_classes
        self.cls_agnostic = cls_agnostic
F
FDInSky 已提交
30

31
    def __call__(self, inputs, bboxheads, rois):
F
FDInSky 已提交
32 33 34 35 36
        # TODO: split into 3 steps
        # TODO: modify related ops for deploying
        # decode
        # clip
        # nms
37 38 39 40 41
        if isinstance(rois, tuple):
            proposal, proposal_num = rois
            score, delta = bboxheads[0]
            bbox_prob = fluid.layers.softmax(score)
            delta = fluid.layers.reshape(delta, (-1, self.out_dim, 4))
42
        else:
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
            num_stage = len(rois)
            proposal_list = []
            prob_list = []
            delta_list = []
            for stage, (proposals, bboxhead) in zip(rois, bboxheads):
                score, delta = bboxhead
                proposal, proposal_num = proposals
                if stage in self.score_stage:
                    bbox_prob = fluid.layers.softmax(score)
                    prob_list.append(bbox_prob)
                if stage in self.delta_stage:
                    proposal_list.append(proposal)
                    delta_list.append(delta)
            bbox_prob = fluid.layers.mean(prob_list)
            delta = fluid.layers.mean(delta_list)
            proposal = fluid.layers.mean(proposal_list)
            delta = fluid.layers.reshape(delta, (-1, self.out_dim, 4))
            if self.cls_agnostic:
                delta = delta[:, 1:2, :]
                delta = fluid.layers.expand(delta, [1, self.num_classes, 1])
        bboxes = (proposal, proposal_num)
        bboxes, bbox_nums = self.decode_clip_nms(bboxes, bbox_prob, delta,
                                                 inputs['im_info'])
        return bboxes, bbox_nums
F
FDInSky 已提交
67 68


69 70 71
@register
class BBoxPostProcessYOLO(object):
    __shared__ = ['num_classes']
72
    __inject__ = ['yolo_box', 'nms']
73

74
    def __init__(self, yolo_box, nms, num_classes=80, decode=None, clip=None):
75
        super(BBoxPostProcessYOLO, self).__init__()
76 77
        self.yolo_box = yolo_box
        self.nms = nms
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
        self.num_classes = num_classes
        self.decode = decode
        self.clip = clip

    def __call__(self, inputs):
        # TODO: split yolo_box into 2 steps
        # decode
        # clip
        boxes_list = []
        scores_list = []
        for i, out in enumerate(inputs['yolo_outs']):
            boxes, scores = self.yolo_box(out, inputs['im_size'],
                                          inputs['mask_anchors'][i], i,
                                          "yolo_box_" + str(i))

            boxes_list.append(boxes)
            scores_list.append(fluid.layers.transpose(scores, perm=[0, 2, 1]))
        yolo_boxes = fluid.layers.concat(boxes_list, axis=1)
        yolo_scores = fluid.layers.concat(scores_list, axis=2)
        nmsed_bbox = self.nms(bboxes=yolo_boxes, scores=yolo_scores)
        # TODO: parse the lod of nmsed_bbox
        # default batch size is 1
        bbox_nums = np.array([0, int(nmsed_bbox.shape[0])], dtype=np.int32)
        outs = {"predicted_bbox_nums": bbox_nums, "predicted_bbox": nmsed_bbox}
        return outs


F
FDInSky 已提交
105
@register
106
class AnchorRPN(object):
F
FDInSky 已提交
107 108
    __inject__ = ['anchor_generator', 'anchor_target_generator']

109
    def __init__(self, anchor_generator, anchor_target_generator):
110
        super(AnchorRPN, self).__init__()
F
FDInSky 已提交
111 112 113
        self.anchor_generator = anchor_generator
        self.anchor_target_generator = anchor_target_generator

114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
    def __call__(self, rpn_feats):
        anchors = []
        num_level = len(rpn_feats)
        for i, rpn_feat in enumerate(rpn_feats):
            anchor, var = self.anchor_generator(rpn_feat, i)
            anchors.append((anchor, var))
        return anchors

    def _get_target_input(self, rpn_feats, anchors):
        rpn_score_list = []
        rpn_delta_list = []
        anchor_list = []
        for (rpn_score, rpn_delta), (anchor, var) in zip(rpn_feats, anchors):
            rpn_score = fluid.layers.transpose(rpn_score, perm=[0, 2, 3, 1])
            rpn_delta = fluid.layers.transpose(rpn_delta, perm=[0, 2, 3, 1])
            rpn_score = fluid.layers.reshape(x=rpn_score, shape=(0, -1, 1))
            rpn_delta = fluid.layers.reshape(x=rpn_delta, shape=(0, -1, 4))

            anchor = fluid.layers.reshape(anchor, shape=(-1, 4))
            var = fluid.layers.reshape(var, shape=(-1, 4))

            rpn_score_list.append(rpn_score)
            rpn_delta_list.append(rpn_delta)
            anchor_list.append(anchor)

        rpn_scores = fluid.layers.concat(rpn_score_list, axis=1)
        rpn_deltas = fluid.layers.concat(rpn_delta_list, axis=1)
        anchors = fluid.layers.concat(anchor_list)
        return rpn_scores, rpn_deltas, anchors

    def generate_loss_inputs(self, inputs, rpn_head_out, anchors):
        assert len(rpn_head_out) == len(
            anchors
        ), "rpn_head_out and anchors should have same length, but received rpn_head_out' length is {} and anchors' length is {}".format(
            len(rpn_head_out), len(anchors))
        rpn_score, rpn_delta, anchors = self._get_target_input(rpn_head_out,
                                                               anchors)
F
FDInSky 已提交
151 152

        score_pred, roi_pred, score_tgt, roi_tgt, roi_weight = self.anchor_target_generator(
153 154 155
            bbox_pred=rpn_delta,
            cls_logits=rpn_score,
            anchor_box=anchors,
F
FDInSky 已提交
156 157
            gt_boxes=inputs['gt_bbox'],
            is_crowd=inputs['is_crowd'],
158
            im_info=inputs['im_info'])
F
FDInSky 已提交
159 160 161 162 163 164 165 166 167
        outs = {
            'rpn_score_pred': score_pred,
            'rpn_score_target': score_tgt,
            'rpn_rois_pred': roi_pred,
            'rpn_rois_target': roi_tgt,
            'rpn_rois_weight': roi_weight
        }
        return outs

168 169 170 171 172 173 174

@register
class AnchorYOLO(object):
    __inject__ = [
        'anchor_generator', 'anchor_target_generator', 'anchor_post_process'
    ]

175 176
    def __init__(self, anchor_generator, anchor_target_generator,
                 anchor_post_process):
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
        super(AnchorYOLO, self).__init__()
        self.anchor_generator = anchor_generator
        self.anchor_target_generator = anchor_target_generator
        self.anchor_post_process = anchor_post_process

    def __call__(self, inputs):
        outs = self.generate_anchors(inputs)
        return outs

    def generate_anchors(self, inputs):
        outs = self.anchor_generator(inputs['yolo_outs'])
        outs['anchor_module'] = self
        return outs

    def generate_anchors_target(self, inputs):
        outs = self.anchor_target_generator()
        return outs

    def post_process(self, inputs):
        return self.anchor_post_process(inputs)
F
FDInSky 已提交
197 198 199 200 201 202 203 204


@register
class Proposal(object):
    __inject__ = [
        'proposal_generator', 'proposal_target_generator', 'bbox_post_process'
    ]

205 206
    def __init__(self, proposal_generator, proposal_target_generator,
                 bbox_post_process):
F
FDInSky 已提交
207 208 209 210
        super(Proposal, self).__init__()
        self.proposal_generator = proposal_generator
        self.proposal_target_generator = proposal_target_generator
        self.bbox_post_process = bbox_post_process
211

212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
    def generate_proposal(self, inputs, rpn_head_out, anchor_out):
        rpn_rois_list = []
        rpn_prob_list = []
        rpn_rois_num_list = []
        for (rpn_score, rpn_delta), (anchor, var) in zip(rpn_head_out,
                                                         anchor_out):
            rpn_prob = fluid.layers.sigmoid(rpn_score)
            rpn_rois, rpn_rois_prob, rpn_rois_num, post_nms_top_n = self.proposal_generator(
                scores=rpn_prob,
                bbox_deltas=rpn_delta,
                anchors=anchor,
                variances=var,
                im_info=inputs['im_info'],
                mode=inputs['mode'])
            if len(rpn_head_out) == 1:
                return rpn_rois, rpn_rois_num
            rpn_rois_list.append(rpn_rois)
            rpn_prob_list.append(rpn_rois_prob)
            rpn_rois_num_list.append(rpn_rois_num)

        start_level = 2
        end_level = start_level + len(rpn_head_out)
        rois_collect, rois_num_collect = fluid.layers.collect_fpn_proposals(
            rpn_rois_list,
            rpn_prob_list,
            start_level,
            end_level,
            post_nms_top_n,
            rois_num_per_level=rpn_rois_num_list)
        return rois_collect, rois_num_collect

    def generate_proposal_target(self, inputs, rois, rois_num, stage=0):
F
FDInSky 已提交
244
        outs = self.proposal_target_generator(
245
            rpn_rois=rois,
246
            rpn_rois_num=rois_num,
F
FDInSky 已提交
247 248 249 250
            gt_classes=inputs['gt_class'],
            is_crowd=inputs['is_crowd'],
            gt_boxes=inputs['gt_bbox'],
            im_info=inputs['im_info'],
251 252 253 254
            stage=stage)
        rois = outs[0]
        rois_num = outs[-1]
        targets = {
F
FDInSky 已提交
255 256 257
            'labels_int32': outs[1],
            'bbox_targets': outs[2],
            'bbox_inside_weights': outs[3],
258
            'bbox_outside_weights': outs[4]
F
FDInSky 已提交
259
        }
260
        return rois, rois_num, targets
261

262 263 264
    def refine_bbox(self, rois, bbox_delta, stage=0):
        out_dim = bbox_delta.shape[1] / 4
        bbox_delta_r = fluid.layers.reshape(bbox_delta, (-1, out_dim, 4))
265 266 267 268 269 270
        bbox_delta_s = fluid.layers.slice(
            bbox_delta_r, axes=[1], starts=[1], ends=[2])

        refined_bbox = fluid.layers.box_coder(
            prior_box=rois,
            prior_box_var=self.proposal_target_generator.bbox_reg_weights[
271
                stage],
272 273 274 275 276
            target_box=bbox_delta_s,
            code_type='decode_center_size',
            box_normalized=False,
            axis=1)
        refined_bbox = fluid.layers.reshape(refined_bbox, shape=[-1, 4])
277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
        return refined_bbox

    def __call__(self,
                 inputs,
                 rpn_head_out,
                 anchor_out,
                 stage=0,
                 proposal_out=None,
                 bbox_head_outs=None,
                 refined=False):
        if refined:
            assert proposal_out is not None, "If proposal has been refined, proposal_out should not be None."
            return proposal_out
        if stage == 0:
            roi, rois_num = self.generate_proposal(inputs, rpn_head_out,
                                                   anchor_out)
            self.proposals_list = []
            self.targets_list = []
F
FDInSky 已提交
295

296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
        else:
            bbox_delta = bbox_head_outs[stage][0]
            roi = self.refine_bbox(proposal_out[0], bbox_delta, stage - 1)
            rois_num = proposal_out[1]
        if inputs['mode'] == 'train':
            roi, rois_num, targets = self.generate_proposal_target(
                inputs, roi, rois_num, stage)
            self.targets_list.append(targets)
        self.proposals_list.append((roi, rois_num))
        return roi, rois_num

    def get_targets(self):
        return self.targets_list

    def get_proposals(self):
        return self.proposals_list

    def post_process(self, inputs, bbox_head_out, rois):
        bboxes = self.bbox_post_process(inputs, bbox_head_out, rois)
        return bboxes