layers.py 200.2 KB
Newer Older
1
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
Z
zhangjinchao01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import functools
16
import collections
Y
Yu Yang 已提交
17
import inspect
Z
zhangjinchao01 已提交
18

19
import paddle.trainer.config_parser as cp
Z
zhangjinchao01 已提交
20 21
from paddle.trainer.config_parser import *
from .activations import LinearActivation, SigmoidActivation, TanhActivation, \
Y
Yu Yang 已提交
22
    ReluActivation, IdentityActivation, SoftmaxActivation, BaseActivation
Z
zhangjinchao01 已提交
23
from .evaluators import *
24 25
from .poolings import MaxPooling, AvgPooling, BasePoolingType, \
    CudnnAvgPooling, CudnnMaxPooling
Z
zhangjinchao01 已提交
26 27
from .attrs import *
from .default_decorators import *
28

Z
zhangjinchao01 已提交
29 30 31 32 33 34
try:
    import cPickle as pickle
except ImportError:
    import pickle
import copy

Q
qijun 已提交
35
__all__ = [
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
    'full_matrix_projection',
    'AggregateLevel',
    'ExpandLevel',
    'identity_projection',
    'dotmul_projection',
    'dotmul_operator',
    'repeat_layer',
    'seq_reshape_layer',
    'table_projection',
    'mixed_layer',
    'data_layer',
    'embedding_layer',
    'fc_layer',
    'grumemory',
    'pooling_layer',
    'lstmemory',
    'last_seq',
    'first_seq',
    'cos_sim',
    'hsigmoid',
    'conv_projection',
    'mse_cost',
    'regression_cost',
    'classification_cost',
    'LayerOutput',
    'img_conv_layer',
    'img_pool_layer',
    'batch_norm_layer',
    'img_cmrnorm_layer',
    'addto_layer',
    'concat_layer',
    'seq_concat_layer',
    'lstm_step_layer',
    'recurrent_group',
    'memory',
    'StaticInput',
    'expand_layer',
    'scaling_layer',
    'scaling_projection',
    'power_layer',
    'interpolation_layer',
    'bilinear_interp_layer',
    'trans_layer',
    'rotate_layer',
    'sum_to_one_norm_layer',
G
guosheng 已提交
81
    'row_l2_norm_layer',
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
    'get_output_layer',
    'LayerType',
    'context_projection',
    'beam_search',
    'maxid_layer',
    'GeneratedInput',
    'SubsequenceInput',
    'gru_step_layer',
    'gru_step_naive_layer',
    'recurrent_layer',
    'BaseGeneratedInput',
    'conv_operator',
    'conv_shift_layer',
    'tensor_layer',
    'selective_fc_layer',
    'sampling_id_layer',
    'slope_intercept_layer',
    'trans_full_matrix_projection',
    'linear_comb_layer',
    'convex_comb_layer',
    'ctc_layer',
    'warp_ctc_layer',
    'crf_layer',
    'crf_decoding_layer',
    'nce_layer',
    'cross_entropy_with_selfnorm',
    'cross_entropy',
    'multi_binary_label_cross_entropy',
    'sum_cost',
    'rank_cost',
    'lambda_cost',
    'huber_cost',
    'block_expand_layer',
    'maxout_layer',
    'out_prod_layer',
    'printer_layer',
    'print_layer',
    'priorbox_layer',
    'cross_channel_norm_layer',
    'multibox_loss_layer',
    'detection_output_layer',
    'spp_layer',
    'pad_layer',
    'eos_layer',
    'smooth_l1_cost',
    'layer_support',
    'multiplex_layer',
    'row_conv_layer',
    'dropout_layer',
    'prelu_layer',
    'gated_unit_layer',
    'crop_layer',
134
    'sub_nested_seq_layer',
135
    'clip_layer',
136
    'slice_projection',
137
    'kmax_sequence_score_layer',
G
guosheng 已提交
138
    'scale_shift_layer',
Q
qijun 已提交
139
]
Z
zhangjinchao01 已提交
140 141 142 143 144 145 146


class LayerType(object):
    """
    Layer type enumerations.
    """

147 148 149 150 151 152 153 154
    DATA = 'data'
    MIXED_LAYER = 'mixed'
    LSTMEMORY = 'lstmemory'
    GRUMEMORY = 'gated_recurrent'
    SEQUENCE_LAST_INSTANCE = 'seqlastins'
    SEQUENCE_FIRST_INSTANCE = 'seqfirstins'
    SEQUENCE_RESHAPE = 'seqreshape'
    POOLING_MAX = 'max'
Z
zhangjinchao01 已提交
155
    POOLING_AVG = 'average'
156
    FC_LAYER = 'fc'
Z
zhangjinchao01 已提交
157
    COST = 'cost'
158 159
    COSINE_SIM_VEC = 'cos_vm'
    COSINE_SIM = 'cos'
Z
zhangjinchao01 已提交
160
    HSIGMOID = 'hsigmoid'
161 162 163 164 165 166
    CONV_LAYER = 'conv'
    CONVTRANS_LAYER = 'convt'
    EXCONV_LAYER = 'exconv'
    EXCONVTRANS_LAYER = 'exconvt'
    CUDNNCONV_LAYER = 'cudnn_conv'
    POOL_LAYER = 'pool'
Z
zhangjinchao01 已提交
167 168 169
    BATCH_NORM_LAYER = 'batch_norm'
    NORM_LAYER = 'norm'
    SUM_TO_ONE_NORM_LAYER = 'sum_to_one_norm'
G
guosheng 已提交
170
    ROW_L2_NORM_LAYER = 'row_l2_norm'
Z
zhangjinchao01 已提交
171 172 173 174
    ADDTO_LAYER = 'addto'

    CONCAT_LAYER = 'concat'
    CONCAT_PROJ_LAYER = 'concat2'
175
    SEQUENCE_CONCAT_LAYER = 'seqconcat'
Z
zhangjinchao01 已提交
176 177 178 179 180 181 182

    LSTM_STEP_LAYER = 'lstm_step'
    GRU_STEP_LAYER = 'gru_step'
    GET_OUTPUT_LAYER = 'get_output'

    EXPAND_LAYER = 'expand'
    INTERPOLATION_LAYER = 'interpolation'
L
liaogang 已提交
183
    BILINEAR_INTERP_LAYER = 'bilinear_interp'
Z
zhangjinchao01 已提交
184 185 186
    POWER_LAYER = 'power'
    SCALING_LAYER = 'scaling'
    TRANS_LAYER = 'trans'
187
    ROTATE_LAYER = 'rotate'
H
Haonan 已提交
188
    OUT_PROD_LAYER = 'out_prod'
X
xuwei06 已提交
189
    FEATURE_MAP_EXPAND_LAYER = 'featmap_expand'
Z
zhangjinchao01 已提交
190 191 192 193 194 195 196 197 198 199 200

    MEMORY = 'memory'
    MAXID_LAYER = 'maxid'
    EOSID_LAYER = 'eos_id'
    RECURRENT_LAYER = 'recurrent'

    CONV_SHIFT_LAYER = "conv_shift"
    TENSOR_LAYER = "tensor"
    SEL_FC_LAYER = "selective_fc"
    SAMPLING_ID_LAYER = "sampling_id"
    SLOPE_INTERCEPT_LAYER = "slope_intercept"
201
    LINEAR_COMBINATION_LAYER = "convex_comb"
Z
zhangjinchao01 已提交
202
    BLOCK_EXPAND = "blockexpand"
203
    MAXOUT = "maxout"
Q
qijun 已提交
204
    SPP_LAYER = "spp"
D
dangqingqing 已提交
205
    PAD_LAYER = "pad"
W
wwhu 已提交
206
    MULTIPLEX_LAYER = "multiplex"
D
dangqingqing 已提交
207
    ROW_CONV_LAYER = "row_conv"
D
dangqingqing 已提交
208 209 210

    PRINT_LAYER = 'print'
    PRIORBOX_LAYER = 'priorbox'
211 212
    MULTIBOX_LOSS_LAYER = 'multibox_loss'
    DETECTION_OUTPUT_LAYER = 'detection_output'
D
dangqingqing 已提交
213 214 215 216 217

    CTC_LAYER = 'ctc'
    WARP_CTC_LAYER = 'warp_ctc'
    CRF_LAYER = 'crf'
    CRF_DECODING_LAYER = 'crf_decoding'
218
    NCE_LAYER = 'nce'
Z
zhangjinchao01 已提交
219

220 221 222 223 224 225 226 227 228 229 230
    RANK_COST = 'rank-cost'
    LAMBDA_COST = 'lambda_cost'
    HUBER = 'huber'
    CROSS_ENTROPY = 'multi-class-cross-entropy'
    CROSS_ENTROPY_WITH_SELFNORM = 'multi_class_cross_entropy_with_selfnorm'
    SOFT_BIN_CLASS_CROSS_ENTROPY = 'soft_binary_class_cross_entropy'
    MULTI_BIN_LABEL_CROSS_ENTROPY = 'multi_binary_label_cross_entropy'
    SUM_COST = 'sum_cost'
    SMOOTH_L1 = 'smooth_l1'

    PRELU = 'prelu'
231
    CROP_LAYER = 'crop'
C
caoying03 已提交
232
    SUB_NESTED_SEQ = 'sub_nested_seq'
G
guosheng 已提交
233
    CLIP_LAYER = 'clip'
Z
zhangjinchao01 已提交
234

235
    KMAX_SEQ_SCORE = 'kmax_seq_score'
G
guosheng 已提交
236
    SCALE_SHIFT_LAYER = 'scale_shift'
237

Z
zhangjinchao01 已提交
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
    @staticmethod
    def is_layer_type(type_name):
        """
        If type_name is a layer type.

        :param type_name: layer type name. Because layer type enumerations are
                          strings.
        :type type_name: basestring
        :return: True if is a layer_type
        :rtype: bool
        """
        for key in dir(LayerType):
            if key.isupper():
                att = getattr(LayerType, key)
                if isinstance(att, basestring) and type_name == att:
                    return True
        return False


class AggregateLevel(object):
258
    """
L
Luo Tao 已提交
259
    PaddlePaddle supports three sequence types:
260 261 262

    - :code:`SequenceType.NO_SEQUENCE` means the sample is not a sequence.
    - :code:`SequenceType.SEQUENCE` means the sample is a sequence.
L
Luo Tao 已提交
263 264
    - :code:`SequenceType.SUB_SEQUENCE` means the sample is a nested sequence,
      each timestep of which is also a sequence.
265

L
Luo Tao 已提交
266
    Accordingly, AggregateLevel supports two modes:
267

L
Luo Tao 已提交
268
    - :code:`AggregateLevel.TO_NO_SEQUENCE` means the aggregation acts on each
L
Luo Tao 已提交
269
      timestep of a sequence, both :code:`SUB_SEQUENCE` and :code:`SEQUENCE` will
270 271
      be aggregated to :code:`NO_SEQUENCE`.

L
Luo Tao 已提交
272
    - :code:`AggregateLevel.TO_SEQUENCE` means the aggregation acts on each
273 274 275
      sequence of a nested sequence, :code:`SUB_SEQUENCE` will be aggregated to
      :code:`SEQUENCE`.
    """
L
Luo Tao 已提交
276 277
    TO_NO_SEQUENCE = 'non-seq'
    TO_SEQUENCE = 'seq'
278 279 280
    # compatible with previous configuration
    EACH_TIMESTEP = TO_NO_SEQUENCE
    EACH_SEQUENCE = TO_SEQUENCE
Z
zhangjinchao01 已提交
281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302


class LayerOutput(object):
    """
    LayerOutput is output for layer function. It is used internally by several
    reasons.

    - Check layer connection make sense.

        - FC(Softmax) => Cost(MSE Error) is not good for example.

    - Tracking layer connection.

    - Pass to layer methods as input.

    :param name: Layer output name.
    :type name: basestring
    :param layer_type: Current Layer Type. One of LayerType enumeration.
    :type layer_type: basestring
    :param activation: Layer Activation.
    :type activation: BaseActivation.
    :param parents: Layer's parents.
303
    :type parents: list|tuple|collections.Sequence
Z
zhangjinchao01 已提交
304 305
    """

Q
qijun 已提交
306 307 308 309 310 311 312 313 314
    def __init__(self,
                 name,
                 layer_type,
                 parents=None,
                 activation=None,
                 num_filters=None,
                 img_norm_type=None,
                 size=None,
                 outputs=None,
315
                 reverse=None):
Z
zhangjinchao01 已提交
316 317
        assert isinstance(name, basestring)
        assert isinstance(layer_type, basestring)
X
xuwei06 已提交
318
        assert size is not None
Z
zhangjinchao01 已提交
319 320
        assert LayerType.is_layer_type(layer_type)
        self.name = name
X
xuwei06 已提交
321
        self.full_name = MakeLayerNameInSubmodel(name)
Z
zhangjinchao01 已提交
322
        self.layer_type = layer_type
323 324
        if parents is not None and type(parents) != list:
            parents = [parents]
Z
zhangjinchao01 已提交
325 326 327 328 329 330 331 332
        self.parents = [] if parents is None else parents
        self.activation = activation
        self.num_filters = num_filters
        self.img_norm_type = img_norm_type
        self.size = size
        if outputs is None:
            outputs = ['default']
        self.outputs = outputs
333
        self.reverse = reverse
Z
zhangjinchao01 已提交
334

335 336 337 338 339 340 341 342
    @property
    def width(self):
        return cp.g_layer_map[self.full_name].width

    @property
    def height(self):
        return cp.g_layer_map[self.full_name].height

343 344 345 346 347 348 349 350
    def set_input(self, input):
        """
        Set the input for a memory layer. Can only be used for memory layer
        """
        assert isinstance(input, LayerOutput)
        assert self.layer_type == LayerType.MEMORY
        SetMemoryInput(self.name, input.name)

Z
zhangjinchao01 已提交
351 352 353

ERROR_CLIPPING = 'error_clipping_threshold'
DROPOUT = 'drop_rate'
354
DEVICE = 'device'
Z
zhangjinchao01 已提交
355 356 357


def layer_support(*attrs):
358
    attrs_list = list(attrs)
359
    attrs_list.append(DEVICE)
Q
qijun 已提交
360

Z
zhangjinchao01 已提交
361 362 363
    def decorator(method):
        @functools.wraps(method)
        def wrapper(*args, **kwargs):
364
            for attr in attrs_list:
Z
zhangjinchao01 已提交
365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380
                for each in args:
                    if isinstance(each, ExtraLayerAttribute):
                        setattr(each, '_'.join(['can', attr]), True)
                for key in kwargs:
                    val = kwargs[key]
                    if isinstance(val, ExtraLayerAttribute):
                        setattr(val, '_'.join(['can', attr]), True)
            for each in args:
                if isinstance(each, ExtraLayerAttribute):
                    each.check(method.__name__)
            for key in kwargs:
                val = kwargs[key]
                if isinstance(val, ExtraLayerAttribute):
                    val.check(method.__name__)
            return method(*args, **kwargs)

Y
Yu Yang 已提交
381 382 383 384 385
        if hasattr(method, 'argspec'):
            wrapper.argspec = method.argspec
        else:
            wrapper.argspec = inspect.getargspec(method)

Z
zhangjinchao01 已提交
386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
        return wrapper

    return decorator


@wrap_param_attr_default()
def full_matrix_projection(input, size=0, param_attr=None):
    """
    Full Matrix Projection. It performs full matrix multiplication.

    ..  math::
        out.row[i] += in.row[i] * weight

    There are two styles of usage.

    1. When used in mixed_layer like this, you can only set the input:

    .. code-block:: python

       with mixed_layer(size=100) as m:
           m += full_matrix_projection(input=layer)

    2. When used as an independant object like this, you must set the size:

    .. code-block:: python

       proj = full_matrix_projection(input=layer,
                                     size=100,
                                     param_attr=ParamAttr(name='_proj'))

    :param input: input layer
    :type input: LayerOutput
    :param size: The parameter size. Means the width of parameter.
    :type size: int
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A FullMatrixProjection Object.
    :rtype: FullMatrixProjection
    """
Q
qijun 已提交
425 426
    proj = FullMatrixProjection(
        input_layer_name=input.name, size=size, **param_attr.attr)
Z
zhangjinchao01 已提交
427 428 429 430
    proj.origin = input
    return proj


431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460
@wrap_param_attr_default()
def trans_full_matrix_projection(input, size=0, param_attr=None):
    """
    Different from full_matrix_projection, this projection performs matrix
    multiplication, using transpose of weight.

    ..  math::
        out.row[i] += in.row[i] * w^\mathrm{T}

    :math:`w^\mathrm{T}` means transpose of weight.
    The simply usage is:

    .. code-block:: python

       proj = trans_full_matrix_projection(input=layer,
                                           size=100,
                                           param_attr=ParamAttr(
                                                name='_proj',
                                                initial_mean=0.0,
                                                initial_std=0.01))

    :param input: input layer
    :type input: LayerOutput
    :param size: The parameter size. Means the width of parameter.
    :type size: int
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A TransposedFullMatrixProjection Object.
    :rtype: TransposedFullMatrixProjection
    """
Q
qijun 已提交
461 462
    proj = TransposedFullMatrixProjection(
        input_layer_name=input.name, size=size, **param_attr.attr)
463 464 465 466
    proj.origin = input
    return proj


Z
zhangjinchao01 已提交
467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505
@wrap_param_attr_default()
def table_projection(input, size=0, param_attr=None):
    """
    Table Projection. It selects rows from parameter where row\_id
    is in input\_ids.

    .. math::
       out.row[i] += table.row[ids[i]]

    where :math:`out` is output, :math:`table` is parameter, :math:`ids` is input\_ids,
    and :math:`i` is row\_id.

    There are two styles of usage.

    1. When used in mixed_layer like this, you can only set the input:

    .. code-block:: python

       with mixed_layer(size=100) as m:
           m += table_projection(input=layer)

    2. When used as an independant object like this, you must set the size:

    .. code-block:: python

       proj = table_projection(input=layer,
                               size=100,
                               param_attr=ParamAttr(name='_proj'))


    :param input: Input layer, which must contains id fields.
    :type input: LayerOutput
    :param size: The parameter size. Means the width of parameter.
    :type size: int
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A TableProjection Object.
    :rtype: TableProjection
    """
Q
qijun 已提交
506 507
    proj = TableProjection(
        input_layer_name=input.name, size=size, **param_attr.attr)
Z
zhangjinchao01 已提交
508 509 510 511
    proj.origin = input
    return proj


512
def identity_projection(input, offset=None, size=None):
Z
zhangjinchao01 已提交
513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542
    """
    1. IdentityProjection if offset=None. It performs:

    .. math::
       out.row[i] += in.row[i]

    The example usage is:

    .. code-block:: python

       proj = identity_projection(input=layer)


    2. IdentityOffsetProjection if offset!=None. It likes IdentityProjection,
    but layer size may be smaller than input size.
    It select dimesions [offset, offset+layer_size) from input:

    .. math::
       out.row[i] += in.row[i + \\textrm{offset}]

    The example usage is:

    .. code-block:: python

       proj = identity_projection(input=layer,
                                  offset=10)

    Note that both of two projections should not have any parameter.

    :param input: Input Layer.
543
    :type input: LayerOutput
Z
zhangjinchao01 已提交
544 545
    :param offset: Offset, None if use default.
    :type offset: int
X
xuwei06 已提交
546
    :return: A IdentityProjection or IdentityOffsetProjection object
Z
zhangjinchao01 已提交
547 548 549 550 551 552
    :rtype: IdentityProjection or IdentityOffsetProjection
    """
    if offset is None:
        proj = IdentityProjection(input_layer_name=input.name)
        proj.origin = input
    else:
553 554
        if size is None:
            size = input.size - offset
Q
qijun 已提交
555
        proj = IdentityOffsetProjection(
556
            input_layer_name=input.name, offset=offset, size=size)
Z
zhangjinchao01 已提交
557 558 559 560
        proj.origin = input
    return proj


561 562
def slice_projection(input, slices):
    """
563 564
    slice_projection can slice the input value into multiple parts,
    and then select some of them to merge into a new output.
565 566

    .. math::
567
       output = [input.slices()]
568 569 570 571 572 573 574 575 576 577 578 579 580 581

    The example usage is:

    .. code-block:: python

       proj = slice_projection(input=layer, slices=[(0, 10), (20, 30)])

    Note that slice_projection should not have any parameter.

    :param input: Input Layer.
    :type input: LayerOutput
    :param slices: An array of slice parameters.
                   Each slice contains the start and end offsets based
                   on the input.
H
hedaoyuan 已提交
582
    :type slices: pair of int
583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599
    :return: A SliceProjection object
    :rtype: SliceProjection
    """
    assert len(slices) >= 1
    start = 0
    for i in xrange(len(slices)):
        assert len(slices[i]) == 2
        # The start position of the next slice needs to be greater than
        # or equal to the end position of the previous slice.
        assert slices[i][0] >= start
        assert slices[i][1] >= slices[i][0]
        start = slices[i][1]
    proj = SliceProjection(input_layer_name=input.name, slices=slices)
    proj.origin = input
    return proj


X
xuwei06 已提交
600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621
@wrap_param_attr_default()
def scaling_projection(input, param_attr=None):
    """
    scaling_projection multiplies the input with a scalar parameter and add to
    the output.

    .. math::
       out += w * in

    The example usage is:

    .. code-block:: python

       proj = scaling_projection(input=layer)

    :param input: Input Layer.
    :type input: LayerOutput
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A ScalingProjection object
    :rtype: ScalingProjection
    """
L
Luo Tao 已提交
622
    proj = ScalingProjection(input_layer_name=input.name, **param_attr.attr)
X
xuwei06 已提交
623 624 625 626
    proj.origin = input
    return proj


Z
zhangjinchao01 已提交
627
@wrap_param_attr_default()
628
def dotmul_projection(input, param_attr=None):
Z
zhangjinchao01 已提交
629
    """
630
    DotMulProjection with a layer as input.
Z
zhangjinchao01 已提交
631 632 633 634 635 636 637 638 639 640 641 642 643
    It performs element-wise multiplication with weight.

    ..  math::
        out.row[i] += in.row[i] .* weight

    where :math:`.*` means element-wise multiplication.

    The example usage is:

    .. code-block:: python

       proj = dotmul_projection(input=layer)

644 645 646 647 648 649 650
    :param input: Input layer.
    :type input: LayerOutput
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A DotMulProjection Object.
    :rtype: DotMulProjection
    """
Q
qijun 已提交
651 652
    proj = DotMulProjection(
        input_layer_name=input.name, size=input.size, **param_attr.attr)
653
    proj.origin = input
654
    return proj
Z
zhangjinchao01 已提交
655

656 657

def dotmul_operator(a=None, b=None, scale=1, **kwargs):
658 659
    """
    DotMulOperator takes two inputs and performs element-wise multiplication:
660

Z
zhangjinchao01 已提交
661
    .. math::
L
Luo Tao 已提交
662
       out.row[i] += scale * (a.row[i] .* b.row[i])
663

Z
zhangjinchao01 已提交
664 665
    where :math:`.*` means element-wise multiplication, and
    scale is a config scalar, its default value is one.
666

Z
zhangjinchao01 已提交
667
    The example usage is:
668

Z
zhangjinchao01 已提交
669
    .. code-block:: python
670

L
Luo Tao 已提交
671
       op = dotmul_operator(a=layer1, b=layer2, scale=0.5)
672

673 674 675 676
    :param a: Input layer1
    :type a: LayerOutput
    :param b: Input layer2
    :type b: LayerOutput
Z
zhangjinchao01 已提交
677 678
    :param scale: config scalar, default value is one.
    :type scale: float
679 680
    :return: A DotMulOperator Object.
    :rtype: DotMulOperator
Z
zhangjinchao01 已提交
681
    """
682 683 684
    if 'x' in kwargs or 'y' in kwargs:
        logger.warning('x and y arguments for dotmul_operator is deprecated. '
                       'Please use a and b as parameter.')
Q
qijun 已提交
685
    a = kwargs.get('x', a)  # For Backward capacity.
686 687 688 689 690 691
    b = kwargs.get('y', b)
    assert isinstance(a, LayerOutput)
    assert isinstance(b, LayerOutput)
    if a.size is not None and b.size is not None:
        assert a.size == b.size

Q
qijun 已提交
692
    op = DotMulOperator(input_layer_names=[a.name, b.name], scale=scale)
693
    op.origin = [a, b]
694
    return op
Z
zhangjinchao01 已提交
695

696

Z
zhangjinchao01 已提交
697
@wrap_bias_attr_default(['padding_attr'])
Q
qijun 已提交
698 699 700
def context_projection(input,
                       context_len,
                       context_start=None,
Z
zhangjinchao01 已提交
701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736
                       padding_attr=False):
    """
    Context Projection.

    It just simply reorganizes input sequence, combines "context_len" sequence
    to one context from context_start. "context_start" will be set to
    -(context_len - 1) / 2 by default. If context position out of sequence
    length, padding will be filled as zero if padding_attr = False, otherwise
    it is trainable.

    For example, origin sequence is [A B C D E F G], context len is 3, then
    after context projection and not set padding_attr, sequence will
    be [ 0AB ABC BCD CDE DEF EFG FG0 ].

    :param input: Input Sequence.
    :type input: LayerOutput
    :param context_len: context length.
    :type context_len: int
    :param context_start: context start position. Default is
                          -(context_len - 1)/2
    :type context_start: int
    :param padding_attr: Padding Parameter Attribute. If false, it means padding
                         always be zero. Otherwise Padding is learnable, and
                         parameter attribute is set by this parameter.
    :type padding_attr: bool|ParameterAttribute
    :return: Projection
    :rtype: Projection
    """
    context_start = -(
        context_len - 1) / 2 if context_start is None else context_start

    extra_dict = dict()
    trainable = isinstance(padding_attr, ParameterAttribute)
    if trainable:
        extra_dict = padding_attr.attr

Q
qijun 已提交
737 738 739 740 741 742
    proj = ContextProjection(
        input_layer_name=input.name,
        context_length=context_len,
        context_start=context_start,
        trainable_padding=trainable,
        **extra_dict)
Z
zhangjinchao01 已提交
743 744 745 746 747 748 749 750 751 752 753 754 755
    proj.origin = input
    return proj


class MixedLayerType(LayerOutput):
    """
    The internal object for trainer_helpers.
    """

    class AddToSealedMixedLayerException(Exception):
        def __init__(self):
            Exception.__init__(self)

Q
qijun 已提交
756
    def __init__(self, name, size, act, bias_attr, layer_attr, parents=None):
Z
zhangjinchao01 已提交
757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772
        """
        Ctor.
        :param name: layer name.
        :type name: basestring
        :param size: layer size.
        :type size: int
        :param act: activation type.
        :type act: BaseActivation
        :param bias_attr: The Bias Attribute. If no bias, then pass False or
                          something not type of ParameterAttribute. None will
                          get a default Bias.
        :type bias_attr: ParameterAttribute or None means has bias. Any other
                         type means no bias.
        :param layer_attr: Extra Layer Attribute.
        :type layer_attr: ExtraLayerAttribute or None
        """
Q
qijun 已提交
773 774 775 776 777 778 779
        LayerOutput.__init__(
            self,
            name,
            LayerType.MIXED_LAYER,
            parents,
            size=size,
            activation=act)
Z
zhangjinchao01 已提交
780 781 782 783 784
        self.bias_attr = bias_attr
        self.layer_attr = layer_attr
        self.inputs = []
        self.finalized = False

785
    def __iadd__(self, other):
Z
zhangjinchao01 已提交
786 787 788 789 790 791 792 793
        """
        + += operator
        :param other: Other projection.
        :type other: Projection
        :return: self.
        :rtype: MixedLayerType
        """
        if not self.finalized:
794
            assert isinstance(other, Projection) or isinstance(other, Operator)
Z
zhangjinchao01 已提交
795
            self.inputs.append(other)
796 797 798 799
            if isinstance(other, Projection):
                self.parents.append(other.origin)
            else:
                self.parents.extend(other.origin)
Z
zhangjinchao01 已提交
800 801 802 803 804 805 806 807
            return self
        else:
            raise MixedLayerType.AddToSealedMixedLayerException()

    def __enter__(self):
        assert len(self.inputs) == 0
        return self

808
    def __exit__(self, exc_type, exc_value, tb):
W
wangyang59 已提交
809 810
        if exc_value is not None:
            raise exc_value
Z
zhangjinchao01 已提交
811
        assert len(self.inputs) != 0
812
        ml = MixedLayer(
Z
zhangjinchao01 已提交
813 814 815 816 817
            name=self.name,
            size=self.size,
            active_type=self.activation.name,
            bias=ParamAttr.to_bias(self.bias_attr),
            inputs=self.inputs,
Q
qijun 已提交
818
            **ExtraLayerAttribute.to_kwargs(self.layer_attr))
819 820 821
        # update the size which might be computed inside MixedLayer
        # according to the operator's output size
        self.size = ml.config.size
822
        self.finalized = True
Z
zhangjinchao01 已提交
823 824 825 826 827 828


@wrap_name_default("mixed")
@wrap_act_default(act=LinearActivation())
@wrap_bias_attr_default(has_bias=False)
@layer_support(ERROR_CLIPPING, DROPOUT)
Q
qijun 已提交
829 830 831 832 833
def mixed_layer(size=0,
                input=None,
                name=None,
                act=None,
                bias_attr=False,
Z
zhangjinchao01 已提交
834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877
                layer_attr=None):
    """
    Mixed Layer. A mixed layer will add all inputs together, then activate.
    Each inputs is a projection or operator.

    There are two styles of usages.

    1. When not set inputs parameter, use mixed_layer like this:

    .. code-block:: python

       with mixed_layer(size=256) as m:
           m += full_matrix_projection(input=layer1)
           m += identity_projection(input=layer2)

    2. You can also set all inputs when invoke mixed_layer as follows:

    .. code-block:: python

       m = mixed_layer(size=256,
                       input=[full_matrix_projection(input=layer1),
                              full_matrix_projection(input=layer2)])

    :param name: mixed layer name. Can be referenced by other layer.
    :type name: basestring
    :param size: layer size.
    :type size: int
    :param input: inputs layer. It is an optional parameter. If set,
                  then this function will just return layer's name.
    :param act: Activation Type.
    :type act: BaseActivation
    :param bias_attr: The Bias Attribute. If no bias, then pass False or
                      something not type of ParameterAttribute. None will get a
                      default Bias.
    :type bias_attr: ParameterAttribute or None or bool
    :param layer_attr: The extra layer config. Default is None.
    :type layer_attr: ExtraLayerAttribute
    :return: MixedLayerType object can add inputs or layer name.
    :rtype: MixedLayerType
    """

    if input is None:
        return MixedLayerType(name, size, act, bias_attr, layer_attr)
    else:
Q
qijun 已提交
878 879 880 881 882 883
        with mixed_layer(
                name=name,
                size=size,
                act=act,
                bias_attr=bias_attr,
                layer_attr=layer_attr) as m:
884
            if isinstance(input, collections.Sequence):
Z
zhangjinchao01 已提交
885 886 887 888 889 890 891 892
                for each in input:
                    m += each
            else:
                m += input
        return m


@layer_support()
L
Luo Tao 已提交
893
def data_layer(name, size, height=None, width=None, layer_attr=None):
Z
zhangjinchao01 已提交
894 895 896 897 898 899 900
    """
    Define DataLayer For NeuralNetwork.

    The example usage is:

    ..  code-block:: python

Y
Yu Yang 已提交
901
        data = data_layer(name="input", size=1000)
Z
zhangjinchao01 已提交
902 903 904 905 906

    :param name: Name of this data layer.
    :type name: basestring
    :param size: Size of this data layer.
    :type size: int
L
Luo Tao 已提交
907
    :param height: Height of this data layer, used for image
Y
Yu Yang 已提交
908
    :type height: int|None
L
Luo Tao 已提交
909
    :param width: Width of this data layer, used for image
Y
Yu Yang 已提交
910
    :type width: int|None
Z
zhangjinchao01 已提交
911 912
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
913
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
914 915
    :rtype: LayerOutput
    """
Q
qijun 已提交
916 917 918 919
    Layer(
        type=LayerType.DATA,
        name=name,
        size=size,
L
Luo Tao 已提交
920 921
        height=height,
        width=width,
Q
qijun 已提交
922
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
923

924 925 926 927 928 929 930
    num_filters = None
    if height is not None and width is not None:
        num_filters = size / (width * height)
        assert num_filters * width * height == size, \
            "size=%s width=%s height=%s" % (size, width, height)

    return LayerOutput(name, LayerType.DATA, size=size, num_filters=num_filters)
Z
zhangjinchao01 已提交
931 932 933 934


@wrap_name_default("embedding")
@wrap_param_attr_default()
935
@layer_support(ERROR_CLIPPING, DROPOUT)
Z
zhangjinchao01 已提交
936 937 938 939 940 941 942 943 944 945 946 947 948 949 950
def embedding_layer(input, size, name=None, param_attr=None, layer_attr=None):
    """
    Define a embedding Layer.

    :param name: Name of this embedding layer.
    :type name: basestring
    :param input: The input layer for this embedding. NOTE: must be Index Data.
    :type input: LayerOutput
    :param size: The embedding dimension.
    :type size: int
    :param param_attr: The embedding parameter attribute. See ParameterAttribute
                      for details.
    :type param_attr: ParameterAttribute|None
    :param layer_attr: Extra layer Config. Default is None.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
951
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
952 953
    :rtype: LayerOutput
    """
Q
qijun 已提交
954 955 956 957 958 959
    with mixed_layer(
            name=name,
            size=size,
            act=LinearActivation(),
            bias_attr=False,
            layer_attr=layer_attr) as mix:
Z
zhangjinchao01 已提交
960 961 962 963 964 965 966 967 968
        mix += table_projection(input=input, size=size, param_attr=param_attr)
    return mix


@wrap_name_default()
@wrap_param_attr_default()
@wrap_bias_attr_default()
@wrap_act_default()
@layer_support(ERROR_CLIPPING, DROPOUT)
Q
qijun 已提交
969 970 971 972 973 974 975
def fc_layer(input,
             size,
             act=None,
             name=None,
             param_attr=None,
             bias_attr=None,
             layer_attr=None):
Z
zhangjinchao01 已提交
976 977 978 979 980 981 982 983 984 985 986 987
    """
    Helper for declare fully connected layer.

    The example usage is:

    .. code-block:: python

       fc = fc_layer(input=layer,
                     size=1024,
                     act=LinearActivation(),
                     bias_attr=False)

L
luotao02 已提交
988
    which is equal to:
Z
zhangjinchao01 已提交
989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010

    .. code-block:: python

       with mixed_layer(size=1024) as fc:
           fc += full_matrix_projection(input=layer)

    :param name: The Layer Name.
    :type name: basestring
    :param input: The input layer. Could be a list/tuple of input layer.
    :type input: LayerOutput|list|tuple
    :param size: The layer dimension.
    :type size: int
    :param act: Activation Type. Default is tanh.
    :type act: BaseActivation
    :param param_attr: The Parameter Attribute|list.
    :type param_attr: ParameterAttribute
    :param bias_attr: The Bias Attribute. If no bias, then pass False or
                      something not type of ParameterAttribute. None will get a
                      default Bias.
    :type bias_attr: ParameterAttribute|None|Any
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
1011
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1012 1013 1014 1015
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
1016
        assert not isinstance(param_attr, collections.Sequence)
Z
zhangjinchao01 已提交
1017 1018
        param_attr = [param_attr]
    else:
1019
        if isinstance(param_attr, collections.Sequence):
Z
zhangjinchao01 已提交
1020 1021 1022 1023
            assert len(input) == len(param_attr)
        else:
            param_attr = [copy.deepcopy(param_attr) for _ in range(len(input))]

1024
    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
1025 1026

    Layer(
Q
qijun 已提交
1027 1028 1029
        inputs=[
            Input(ipt.name, **attr.attr) for ipt, attr in zip(input, param_attr)
        ],
Z
zhangjinchao01 已提交
1030 1031 1032 1033 1034
        name=name,
        type=LayerType.FC_LAYER,
        size=size,
        bias=ParamAttr.to_bias(bias_attr),
        active_type=act.name,
Q
qijun 已提交
1035 1036 1037
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.FC_LAYER, input, activation=act, size=size)
Z
zhangjinchao01 已提交
1038

1039

1040
@wrap_name_default("print")
1041
def printer_layer(input, format=None, name=None):
1042 1043
    """
    Print the output value of input layers. This layer is useful for debugging.
1044 1045 1046 1047 1048

    :param name: The Layer Name.
    :type name: basestring
    :param input: The input layer. Could be a list/tuple of input layer.
    :type input: LayerOutput|list|tuple
1049
    :return: LayerOutput
1050
    """
1051 1052 1053 1054 1055
    if isinstance(input, LayerOutput):
        input = [input]
    assert isinstance(input, collections.Sequence)  # list or tuple
    for each in input:
        assert isinstance(each, LayerOutput)
1056 1057 1058

    Layer(
        name=name,
1059
        format=format,
1060
        type=LayerType.PRINT_LAYER,
Q
qijun 已提交
1061
        inputs=[l.name for l in input], )
1062
    # this layer don't return anything, can not be input of other layer.
1063

X
xuwei06 已提交
1064 1065 1066 1067 1068 1069 1070
# Keep print_layer for compatibility with V1 API.
# 'print_layer' does not work for V2 API because it will be changed to
# 'print' for V2 API. But 'print' is a reserved key word in python.


print_layer = printer_layer

Z
zhangjinchao01 已提交
1071

Y
yuan 已提交
1072
@wrap_name_default("priorbox")
G
gaoyuan 已提交
1073
def priorbox_layer(input,
G
gaoyuan 已提交
1074
                   image,
G
gaoyuan 已提交
1075 1076 1077 1078 1079
                   aspect_ratio,
                   variance,
                   min_size,
                   max_size=[],
                   name=None):
Y
yuan 已提交
1080 1081 1082 1083 1084 1085 1086
    """
    Compute the priorbox and set the variance. This layer is necessary for ssd.

    :param name: The Layer Name.
    :type name: basestring
    :param input: The input layer.
    :type input: LayerOutput
G
gaoyuan 已提交
1087 1088
    :param image: The network input image.
    :type image: LayerOutput
Y
yuan 已提交
1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099
    :param aspect_ratio: The aspect ratio.
    :type aspect_ratio: list
    :param variance: The bounding box variance.
    :type min_size: The min size of the priorbox width/height.
    :param min_size: list
    :type max_size: The max size of the priorbox width/height. Could be NULL.
    :param max_size: list
    :return: LayerOutput
    """
    # plus one for ratio 1.
    num_filters = (len(aspect_ratio) * 2 + 1 + len(max_size)) * 4
G
gaoyuan 已提交
1100
    size = (input.size / input.num_filters) * num_filters * 2
Y
yuan 已提交
1101 1102 1103
    Layer(
        name=name,
        type=LayerType.PRIORBOX_LAYER,
G
gaoyuan 已提交
1104
        inputs=[input.name, image.name],
Y
yuan 已提交
1105 1106 1107 1108 1109 1110
        size=size,
        min_size=min_size,
        max_size=max_size,
        aspect_ratio=aspect_ratio,
        variance=variance)
    return LayerOutput(
G
gaoyuan 已提交
1111 1112
        name,
        LayerType.PRIORBOX_LAYER,
G
gaoyuan 已提交
1113
        parents=[input, image],
G
gaoyuan 已提交
1114 1115 1116
        num_filters=num_filters,
        size=size)

Z
zhangjinchao01 已提交
1117

1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133
@wrap_name_default("multibox_loss")
def multibox_loss_layer(input_loc,
                        input_conf,
                        priorbox,
                        label,
                        num_classes,
                        overlap_threshold=0.5,
                        neg_pos_ratio=3.0,
                        neg_overlap=0.5,
                        background_id=0,
                        name=None):
    """
    Compute the location loss and the confidence loss for ssd.

    :param name: The Layer Name.
    :type name: basestring
Y
yangyaming 已提交
1134 1135
    :param input_loc: The input predict locations.
    :type input_loc: LayerOutput | List of LayerOutput
1136
    :param input_conf: The input priorbox confidence.
Y
yangyaming 已提交
1137
    :type input_conf: LayerOutput | List of LayerOutput
1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158
    :param priorbox: The input priorbox location and the variance.
    :type priorbox: LayerOutput
    :param label: The input label.
    :type label: LayerOutput
    :param num_classes: The number of the classification.
    :type num_classes: int
    :param overlap_threshold: The threshold of the overlap.
    :type overlap_threshold: float
    :param neg_pos_ratio: The ratio of the negative bbox to the positive bbox.
    :type neg_pos_ratio: float
    :param neg_overlap: The negative bbox overlap threshold.
    :type neg_overlap: float
    :param background_id: The background class index.
    :type background_id: int
    :return: LayerOutput
    """
    if isinstance(input_loc, LayerOutput):
        input_loc = [input_loc]
    assert isinstance(input_loc, collections.Sequence)  # list or tuple
    for each in input_loc:
        assert isinstance(each, LayerOutput)
1159
    input_loc_num = len(input_loc)
1160 1161 1162 1163 1164 1165

    if isinstance(input_conf, LayerOutput):
        input_conf = [input_conf]
    assert isinstance(input_conf, collections.Sequence)  # list or tuple
    for each in input_conf:
        assert isinstance(each, LayerOutput)
1166
    input_conf_num = len(input_conf)
1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207
    # Check the input layer number.
    assert input_loc_num == input_conf_num

    inputs = [priorbox.name, label.name]
    inputs.extend([l.name for l in input_loc])
    inputs.extend([l.name for l in input_conf])
    parents = [priorbox, label]
    parents.extend(input_loc)
    parents.extend(input_conf)

    Layer(
        name=name,
        type=LayerType.MULTIBOX_LOSS_LAYER,
        inputs=inputs,
        input_num=input_loc_num,
        num_classes=num_classes,
        overlap_threshold=overlap_threshold,
        neg_pos_ratio=neg_pos_ratio,
        neg_overlap=neg_overlap,
        background_id=background_id)
    return LayerOutput(
        name, LayerType.MULTIBOX_LOSS_LAYER, parents=parents, size=1)


@wrap_name_default("detection_output")
def detection_output_layer(input_loc,
                           input_conf,
                           priorbox,
                           num_classes,
                           nms_threshold=0.45,
                           nms_top_k=400,
                           keep_top_k=200,
                           confidence_threshold=0.01,
                           background_id=0,
                           name=None):
    """
    Apply the NMS to the output of network and compute the predict bounding
    box location.

    :param name: The Layer Name.
    :type name: basestring
Y
yangyaming 已提交
1208 1209
    :param input_loc: The input predict locations.
    :type input_loc: LayerOutput | List of LayerOutput.
1210
    :param input_conf: The input priorbox confidence.
Y
yangyaming 已提交
1211
    :type input_conf: LayerOutput | List of LayerOutput.
1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232
    :param priorbox: The input priorbox location and the variance.
    :type priorbox: LayerOutput
    :param num_classes: The number of the classification.
    :type num_classes: int
    :param nms_threshold: The Non-maximum suppression threshold.
    :type nms_threshold: float
    :param nms_top_k: The bbox number kept of the NMS's output
    :type nms_top_k: int
    :param keep_top_k: The bbox number kept of the layer's output
    :type keep_top_k: int
    :param confidence_threshold: The classification confidence threshold
    :type confidence_threshold: float
    :param background_id: The background class index.
    :type background_id: int
    :return: LayerOutput
    """
    if isinstance(input_loc, LayerOutput):
        input_loc = [input_loc]
    assert isinstance(input_loc, collections.Sequence)  # list or tuple
    for each in input_loc:
        assert isinstance(each, LayerOutput)
Y
yangyaming 已提交
1233
    input_loc_num = len(input_loc)
1234 1235 1236 1237 1238 1239

    if isinstance(input_conf, LayerOutput):
        input_conf = [input_conf]
    assert isinstance(input_conf, collections.Sequence)  # list or tuple
    for each in input_conf:
        assert isinstance(each, LayerOutput)
Y
yangyaming 已提交
1240 1241
    input_conf_num = len(input_conf)

1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269
    # Check the input layer number.
    assert input_loc_num == input_conf_num

    inputs = [priorbox.name]
    inputs.extend([l.name for l in input_loc])
    inputs.extend([l.name for l in input_conf])
    parents = [priorbox]
    parents.extend(input_loc)
    parents.extend(input_conf)

    size = keep_top_k * 7

    Layer(
        name=name,
        type=LayerType.DETECTION_OUTPUT_LAYER,
        inputs=inputs,
        size=size,
        input_num=input_loc_num,
        num_classes=num_classes,
        nms_threshold=nms_threshold,
        nms_top_k=nms_top_k,
        keep_top_k=keep_top_k,
        confidence_threshold=confidence_threshold,
        background_id=background_id)
    return LayerOutput(
        name, LayerType.DETECTION_OUTPUT_LAYER, parents=parents, size=size)


1270 1271
@wrap_name_default("cross_channel_norm")
def cross_channel_norm_layer(input, name=None, param_attr=None):
G
gaoyuan 已提交
1272 1273 1274 1275 1276
    """
    Normalize a layer's output. This layer is necessary for ssd.
    This layer applys normalize across the channels of each sample to
    a conv layer's output and scale the output by a group of trainable
    factors which dimensions equal to the channel's number.
G
gaoyuan 已提交
1277

G
gaoyuan 已提交
1278 1279 1280 1281 1282 1283 1284 1285
    :param name: The Layer Name.
    :type name: basestring
    :param input: The input layer.
    :type input: LayerOutput
    :param param_attr: The Parameter Attribute|list.
    :type param_attr: ParameterAttribute
    :return: LayerOutput
    """
1286
    assert input.num_filters is not None
G
gaoyuan 已提交
1287 1288
    Layer(
        name=name,
1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301
        type=LayerType.NORM_LAYER,
        inputs=[
            Input(
                input.name,
                norm=Norm(
                    norm_type="cross-channel-norm",
                    channels=input.num_filters,
                    size=input.size,
                    scale=0,
                    pow=0,
                    blocked=0),
                **param_attr.attr)
        ])
G
gaoyuan 已提交
1302 1303
    return LayerOutput(
        name,
1304
        LayerType.NORM_LAYER,
G
gaoyuan 已提交
1305 1306 1307 1308 1309
        parents=input,
        num_filters=input.num_filters,
        size=input.size)


Z
zhangjinchao01 已提交
1310 1311 1312 1313
@wrap_name_default("seq_pooling")
@wrap_bias_attr_default(has_bias=False)
@wrap_param_default(['pooling_type'], default_factory=lambda _: MaxPooling())
@layer_support()
Q
qijun 已提交
1314 1315 1316 1317
def pooling_layer(input,
                  pooling_type=None,
                  name=None,
                  bias_attr=None,
L
Luo Tao 已提交
1318
                  agg_level=AggregateLevel.TO_NO_SEQUENCE,
1319
                  stride=-1,
Z
zhangjinchao01 已提交
1320 1321 1322 1323
                  layer_attr=None):
    """
    Pooling layer for sequence inputs, not used for Image.

1324 1325
    If stride > 0, this layer slides a window whose size is determined by stride,
    and return the pooling value of the window as the output. Thus, a long sequence
X
xuwei06 已提交
1326 1327 1328
    will be shorten.

    The parameter stride specifies the intervals at which to apply the pooling
L
Luo Tao 已提交
1329
    operation. Note that for sequence with sub-sequence, the default value
1330 1331
    of stride is -1.

Z
zhangjinchao01 已提交
1332 1333 1334 1335 1336 1337
    The example usage is:

    .. code-block:: python

       seq_pool = pooling_layer(input=layer,
                                pooling_type=AvgPooling(),
L
Luo Tao 已提交
1338
                                agg_level=AggregateLevel.TO_NO_SEQUENCE)
Z
zhangjinchao01 已提交
1339

L
Luo Tao 已提交
1340 1341
    :param agg_level: AggregateLevel.TO_NO_SEQUENCE or
                      AggregateLevel.TO_SEQUENCE
Z
zhangjinchao01 已提交
1342 1343 1344 1345 1346 1347 1348 1349
    :type agg_level: AggregateLevel
    :param name: layer name.
    :type name: basestring
    :param input: input layer name.
    :type input: LayerOutput
    :param pooling_type: Type of pooling, MaxPooling(default), AvgPooling,
                         SumPooling, SquareRootNPooling.
    :type pooling_type: BasePoolingType|None
L
Luo Tao 已提交
1350
    :param stride: The step size between successive pooling regions.
1351
    :type stride: Int
Z
zhangjinchao01 已提交
1352 1353 1354 1355
    :param bias_attr: Bias parameter attribute. False if no bias.
    :type bias_attr: ParameterAttribute|None|False
    :param layer_attr: The Extra Attributes for layer, such as dropout.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
1356
    :return: LayerOutput object.
Y
Yu Yang 已提交
1357
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
1358 1359
    """
    extra_dict = dict()
1360
    # noinspection PyUnresolvedReferences
Z
zhangjinchao01 已提交
1361 1362
    if isinstance(pooling_type, AvgPooling):
        extra_dict['average_strategy'] = pooling_type.strategy
1363 1364 1365 1366
    elif isinstance(pooling_type, MaxPooling) and \
                    pooling_type.output_max_index is not None:
        assert isinstance(pooling_type.output_max_index, bool)
        extra_dict['output_max_index'] = pooling_type.output_max_index
Z
zhangjinchao01 已提交
1367 1368
    extra_dict.update(ExtraLayerAttribute.to_kwargs(layer_attr))

1369 1370 1371
    if agg_level == AggregateLevel.TO_SEQUENCE:
        assert stride == -1

Z
zhangjinchao01 已提交
1372 1373 1374 1375 1376 1377
    Layer(
        name=name,
        type=pooling_type.name,
        inputs=[Input(input.name)],
        bias=ParamAttr.to_bias(bias_attr),
        trans_type=agg_level,
1378
        stride=stride,
Q
qijun 已提交
1379
        **extra_dict)
Z
zhangjinchao01 已提交
1380

Q
qijun 已提交
1381 1382
    return LayerOutput(
        name, pooling_type.name, parents=[input], size=input.size)
Z
zhangjinchao01 已提交
1383

Q
qijun 已提交
1384

Z
zhangjinchao01 已提交
1385 1386
@wrap_bias_attr_default()
@wrap_param_attr_default()
Q
qijun 已提交
1387
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
Z
zhangjinchao01 已提交
1388 1389
@wrap_act_default(param_names=["act", 'state_act'], act=TanhActivation())
@wrap_name_default("lstmemory")
1390
@layer_support()
Q
qijun 已提交
1391 1392
def lstmemory(input,
              name=None,
1393
              size=None,
Q
qijun 已提交
1394 1395 1396 1397 1398 1399
              reverse=False,
              act=None,
              gate_act=None,
              state_act=None,
              bias_attr=None,
              param_attr=None,
Z
zhangjinchao01 已提交
1400 1401 1402 1403 1404 1405 1406 1407
              layer_attr=None):
    """
    Long Short-term Memory Cell.

    The memory cell was implemented as follow equations.

    ..  math::

L
luotao02 已提交
1408
        i_t & = \\sigma(W_{xi}x_{t} + W_{hi}h_{t-1} + W_{ci}c_{t-1} + b_i)
Z
zhangjinchao01 已提交
1409

L
luotao02 已提交
1410
        f_t & = \\sigma(W_{xf}x_{t} + W_{hf}h_{t-1} + W_{cf}c_{t-1} + b_f)
Z
zhangjinchao01 已提交
1411

L
luotao02 已提交
1412
        c_t & = f_tc_{t-1} + i_t tanh (W_{xc}x_t+W_{hc}h_{t-1} + b_c)
Z
zhangjinchao01 已提交
1413

L
luotao02 已提交
1414
        o_t & = \\sigma(W_{xo}x_{t} + W_{ho}h_{t-1} + W_{co}c_t + b_o)
Z
zhangjinchao01 已提交
1415

L
luotao02 已提交
1416
        h_t & = o_t tanh(c_t)
Z
zhangjinchao01 已提交
1417 1418


C
caoying03 已提交
1419
    NOTE: In PaddlePaddle's implementation, the multiplications
Z
zhangjinchao01 已提交
1420
    :math:`W_{xi}x_{t}` , :math:`W_{xf}x_{t}`,
C
caoying03 已提交
1421 1422 1423 1424
    :math:`W_{xc}x_t`, :math:`W_{xo}x_{t}` are not done in the lstmemory layer,
    so an additional mixed_layer with full_matrix_projection or a fc_layer must
    be included in the configuration file to complete the input-to-hidden
    mappings before lstmemory is called.
Z
zhangjinchao01 已提交
1425

C
caoying03 已提交
1426
    NOTE: This is a low level user interface. You can use network.simple_lstm
Z
zhangjinchao01 已提交
1427 1428
    to config a simple plain lstm layer.

C
caoying03 已提交
1429 1430 1431 1432
    Please refer to **Generating Sequences With Recurrent Neural Networks** for
    more details about LSTM.

    Link_ goes as below.
Z
zhangjinchao01 已提交
1433 1434 1435 1436 1437

    .. _Link: http://arxiv.org/abs/1308.0850

    :param name: The lstmemory layer name.
    :type name: basestring
1438 1439
    :param size: DEPRECATED. size of the lstm cell
    :type size: int
Z
zhangjinchao01 已提交
1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457
    :param input: input layer name.
    :type input: LayerOutput
    :param reverse: is sequence process reversed or not.
    :type reverse: bool
    :param act: activation type, TanhActivation by default. :math:`h_t`
    :type act: BaseActivation
    :param gate_act: gate activation type, SigmoidActivation by default.
    :type gate_act: BaseActivation
    :param state_act: state activation type, TanhActivation by default.
    :type state_act: BaseActivation

    :param bias_attr: Bias attribute. None means default bias. False means no
                      bias.
    :type bias_attr: ParameterAttribute|None|False
    :param param_attr: Parameter Attribute.
    :type param_attr: ParameterAttribute|None|False
    :param layer_attr: Extra Layer attribute
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
1458
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1459 1460 1461 1462 1463 1464
    :rtype: LayerOutput
    """

    assert gate_act.support_hppl
    assert state_act.support_hppl
    assert act.support_hppl
1465
    assert input.size is not None and input.size % 4 == 0
1466

1467 1468 1469 1470 1471
    if size is not None:
        if input.size / 4 == size:
            plog = logger.warning
        else:
            plog = logger.fatal
1472 1473 1474
        plog("size of lstmemory layer: %s is automatically set to "
             "size of input layer / 4. The parameter size passing to "
             "this layer is ignored." % (name))
Z
zhangjinchao01 已提交
1475

Q
qijun 已提交
1476 1477 1478 1479 1480 1481 1482 1483 1484 1485
    Layer(
        name=name,
        type=LayerType.LSTMEMORY,
        active_type=act.name,
        active_state_type=state_act.name,
        active_gate_type=gate_act.name,
        reversed=reverse,
        bias=ParamAttr.to_bias(bias_attr),
        inputs=[Input(input.name, **param_attr.attr)],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
1486

Q
qijun 已提交
1487 1488 1489 1490 1491
    return LayerOutput(
        name,
        LayerType.LSTMEMORY, [input],
        size=input.size / 4,
        reverse=reverse)
1492

Z
zhangjinchao01 已提交
1493 1494 1495

@wrap_bias_attr_default()
@wrap_param_attr_default()
Q
qijun 已提交
1496
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
Z
zhangjinchao01 已提交
1497 1498
@wrap_act_default(param_names=["act"], act=TanhActivation())
@wrap_name_default("gru")
1499
@layer_support()
Q
qijun 已提交
1500
def grumemory(input,
1501
              size=None,
Q
qijun 已提交
1502 1503 1504 1505 1506 1507
              name=None,
              reverse=False,
              act=None,
              gate_act=None,
              bias_attr=None,
              param_attr=None,
Z
zhangjinchao01 已提交
1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528
              layer_attr=None):
    """
    Gate Recurrent Unit Layer.

    The memory cell was implemented as follow equations.

    1. update gate :math:`z`: defines how much of the previous memory to
    keep around or the unit updates its activations. The update gate
    is computed by:

    ..  math::

        z_t = \\sigma(W_{z}x_{t} + U_{z}h_{t-1} + b_z)

    2. reset gate :math:`r`: determines how to combine the new input with the
    previous memory. The reset gate is computed similarly to the update gate:

    ..  math::

        r_t = \\sigma(W_{r}x_{t} + U_{r}h_{t-1} + b_r)

C
caoying03 已提交
1529 1530
    3. The candidate activation :math:`\\tilde{h_t}` is computed similarly to
    that of the traditional recurrent unit:
Z
zhangjinchao01 已提交
1531 1532 1533 1534 1535

    ..  math::

        {\\tilde{h_t}} = tanh(W x_{t} + U (r_{t} \odot h_{t-1}) + b)

C
caoying03 已提交
1536 1537 1538
    4. The hidden activation :math:`h_t` of the GRU at time t is a linear
    interpolation between the previous activation :math:`h_{t-1}` and the
    candidate activation :math:`\\tilde{h_t}`:
Z
zhangjinchao01 已提交
1539 1540 1541 1542 1543

    ..  math::

        h_t = (1 - z_t) h_{t-1} + z_t {\\tilde{h_t}}

C
caoying03 已提交
1544
    NOTE: In PaddlePaddle's implementation, the multiplication operations
Z
zhangjinchao01 已提交
1545
    :math:`W_{r}x_{t}`, :math:`W_{z}x_{t}` and :math:`W x_t` are not computed in
C
caoying03 已提交
1546 1547 1548
    gate_recurrent layer. Consequently, an additional mixed_layer with
    full_matrix_projection or a fc_layer must be included before grumemory
    is called.
Z
zhangjinchao01 已提交
1549

C
caoying03 已提交
1550 1551 1552
    More details can be found by referring to `Empirical Evaluation of Gated
    Recurrent Neural Networks on Sequence Modeling.
    <https://arxiv.org/abs/1412.3555>`_
Z
zhangjinchao01 已提交
1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563

    The simple usage is:

    .. code-block:: python

       gru = grumemory(input)

    :param name: The gru layer name.
    :type name: None|basestring
    :param input: input layer.
    :type input: LayerOutput.
1564 1565
    :param size: DEPRECATED. size of the gru cell
    :type size: int
1566
    :param reverse: Whether sequence process is reversed or not.
Z
zhangjinchao01 已提交
1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581
    :type reverse: bool
    :param act: activation type, TanhActivation by default. This activation
                affects the :math:`{\\tilde{h_t}}`.
    :type act: BaseActivation
    :param gate_act: gate activation type, SigmoidActivation by default.
                     This activation affects the :math:`z_t` and :math:`r_t`. It is the
                     :math:`\\sigma` in the above formula.
    :type gate_act: BaseActivation
    :param bias_attr: Bias attribute. None means default bias. False means no
                      bias.
    :type bias_attr: ParameterAttribute|None|False
    :param param_attr: Parameter Attribute.
    :type param_attr: ParameterAttribute|None|False
    :param layer_attr: Extra Layer attribute
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
1582
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1583 1584 1585 1586
    :rtype: LayerOutput
    """
    assert act.support_hppl
    assert gate_act.support_hppl
1587 1588 1589 1590 1591 1592
    assert input.size is not None and input.size % 3 == 0
    if size is not None:
        if input.size / 3 == size:
            plog = logger.warning
        else:
            plog = logger.fatal
1593 1594 1595
        plog("size of grumemory layer: %s is automatically set to "
             "size of input layer / 3. The parameter size passing to this "
             "layer is ignored." % (name))
Z
zhangjinchao01 已提交
1596

Q
qijun 已提交
1597 1598 1599 1600 1601 1602 1603 1604 1605
    Layer(
        name=name,
        type=LayerType.GRUMEMORY,
        active_type=act.name,
        active_gate_type=gate_act.name,
        reversed=reverse,
        bias=ParamAttr.to_bias(bias_attr),
        inputs=[Input(input.name, **param_attr.attr)],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
1606

Q
qijun 已提交
1607 1608 1609 1610 1611
    return LayerOutput(
        name,
        LayerType.GRUMEMORY, [input],
        size=input.size / 3,
        reverse=reverse)
1612

Z
zhangjinchao01 已提交
1613 1614 1615

@wrap_name_default()
@layer_support()
Q
qijun 已提交
1616 1617
def last_seq(input,
             name=None,
L
Luo Tao 已提交
1618
             agg_level=AggregateLevel.TO_NO_SEQUENCE,
1619
             stride=-1,
Z
zhangjinchao01 已提交
1620 1621 1622 1623
             layer_attr=None):
    """
    Get Last Timestamp Activation of a sequence.

1624 1625 1626
    If stride > 0, this layer slides a window whose size is determined by stride,
    and return the last value of the window as the output. Thus, a long sequence
    will be shorten. Note that for sequence with sub-sequence, the default value
L
Luo Tao 已提交
1627
    of stride is -1.
1628

L
Luo Tao 已提交
1629 1630 1631 1632 1633 1634
    The simple usage is:

    .. code-block:: python

       seq = last_seq(input=layer)

Z
zhangjinchao01 已提交
1635 1636 1637 1638 1639
    :param agg_level: Aggregated level
    :param name: Layer name.
    :type name: basestring
    :param input: Input layer name.
    :type input: LayerOutput
L
Luo Tao 已提交
1640
    :param stride: The step size between successive pooling regions.
1641
    :type stride: Int
Z
zhangjinchao01 已提交
1642 1643
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
1644
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1645 1646
    :rtype: LayerOutput
    """
1647 1648 1649 1650 1651 1652
    if input.reverse is not None and input.reverse:
        logger.warning("You are getting the last instance of a sequence that"
                       " is a output of a REVERSED layer. There is no time"
                       " series information at all. Maybe you want to use"
                       " first_seq instead.")

L
Luo Tao 已提交
1653
    if agg_level == AggregateLevel.TO_SEQUENCE:
1654 1655
        assert stride == -1

Z
zhangjinchao01 已提交
1656 1657 1658 1659 1660
    Layer(
        name=name,
        type=LayerType.SEQUENCE_LAST_INSTANCE,
        inputs=[input.name],
        trans_type=agg_level,
1661
        stride=stride,
Q
qijun 已提交
1662 1663 1664 1665 1666 1667
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.SEQUENCE_LAST_INSTANCE,
        parents=[input],
        size=input.size)
Z
zhangjinchao01 已提交
1668 1669 1670 1671


@wrap_name_default()
@layer_support()
Q
qijun 已提交
1672 1673
def first_seq(input,
              name=None,
L
Luo Tao 已提交
1674
              agg_level=AggregateLevel.TO_NO_SEQUENCE,
1675
              stride=-1,
Z
zhangjinchao01 已提交
1676 1677 1678 1679
              layer_attr=None):
    """
    Get First Timestamp Activation of a sequence.

1680 1681 1682
    If stride > 0, this layer slides a window whose size is determined by stride,
    and return the first value of the window as the output. Thus, a long sequence
    will be shorten. Note that for sequence with sub-sequence, the default value
L
Luo Tao 已提交
1683
    of stride is -1.
1684

L
Luo Tao 已提交
1685 1686 1687 1688 1689 1690
    The simple usage is:

    .. code-block:: python

       seq = first_seq(input=layer)

Z
zhangjinchao01 已提交
1691 1692 1693 1694 1695
    :param agg_level: aggregation level
    :param name: Layer name.
    :type name: basestring
    :param input: Input layer name.
    :type input: LayerOutput
L
Luo Tao 已提交
1696
    :param stride: The step size between successive pooling regions.
1697
    :type stride: Int
Z
zhangjinchao01 已提交
1698 1699
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
1700
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1701 1702
    :rtype: LayerOutput
    """
1703 1704 1705 1706 1707 1708 1709

    if input.reverse is not None and not input.reverse:
        logger.warning('You are getting the first instance for a time series,'
                       ' and it is a normal recurrent layer output. There is no'
                       ' time series information at all. Maybe you want to use'
                       ' last_seq instead.')

L
Luo Tao 已提交
1710
    if agg_level == AggregateLevel.TO_SEQUENCE:
1711 1712
        assert stride == -1

Z
zhangjinchao01 已提交
1713 1714 1715 1716 1717
    Layer(
        name=name,
        type=LayerType.SEQUENCE_FIRST_INSTANCE,
        inputs=[input.name],
        trans_type=agg_level,
1718
        stride=stride,
Q
qijun 已提交
1719 1720 1721 1722 1723 1724
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.SEQUENCE_FIRST_INSTANCE,
        parents=[input],
        size=input.size)
Z
zhangjinchao01 已提交
1725 1726 1727


class ExpandLevel(object):
1728 1729 1730 1731 1732
    """
    Please refer to AggregateLevel first.

    ExpandLevel supports two modes:

L
Luo Tao 已提交
1733 1734
    - :code:`ExpandLevel.FROM_NO_SEQUENCE` means the expansion acts on
      :code:`NO_SEQUENCE`, which will be expanded to
1735 1736
      :code:`SEQUENCE` or :code:`SUB_SEQUENCE`.

L
Luo Tao 已提交
1737 1738
    - :code:`ExpandLevel.FROM_SEQUENCE` means the expansion acts on
      :code:`SEQUENCE`, which will be expanded to
1739 1740
      :code:`SUB_SEQUENCE`.
    """
L
Luo Tao 已提交
1741 1742
    FROM_NO_SEQUENCE = AggregateLevel.TO_NO_SEQUENCE
    FROM_SEQUENCE = AggregateLevel.TO_SEQUENCE
1743 1744
    # compatible with previous configuration
    FROM_TIMESTEP = FROM_NO_SEQUENCE
Z
zhangjinchao01 已提交
1745

1746

Z
zhangjinchao01 已提交
1747 1748
@wrap_name_default()
@layer_support()
Q
qijun 已提交
1749 1750
def expand_layer(input,
                 expand_as,
Z
zhangjinchao01 已提交
1751 1752
                 name=None,
                 bias_attr=False,
L
Luo Tao 已提交
1753
                 expand_level=ExpandLevel.FROM_NO_SEQUENCE,
Z
zhangjinchao01 已提交
1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764
                 layer_attr=None):
    """
    A layer for "Expand Dense data or (sequence data where the length of each
    sequence is one) to sequence data."

    The example usage is:

    .. code-block:: python

       expand = expand_layer(input=layer1,
                             expand_as=layer2,
L
Luo Tao 已提交
1765
                             expand_level=ExpandLevel.FROM_NO_SEQUENCE)
Z
zhangjinchao01 已提交
1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779

    :param input: Input layer
    :type input: LayerOutput
    :param expand_as: Expand as this layer's sequence info.
    :type expand_as: LayerOutput
    :param name: Layer name.
    :type name: basestring
    :param bias_attr: Bias attribute. None means default bias. False means no
                      bias.
    :type bias_attr: ParameterAttribute|None|False
    :param expand_level: whether input layer is timestep(default) or sequence.
    :type expand_level: ExpandLevel
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
1780
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1781 1782 1783 1784 1785 1786 1787 1788 1789
    :rtype: LayerOutput
    """

    Layer(
        inputs=[input.name, expand_as.name],
        name=name,
        bias=ParamAttr.to_bias(bias_attr=bias_attr),
        type=LayerType.EXPAND_LAYER,
        trans_type=expand_level,
Q
qijun 已提交
1790 1791 1792 1793 1794 1795
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        size=input.size,
        layer_type=LayerType.EXPAND_LAYER,
        parents=[input, expand_as])
Z
zhangjinchao01 已提交
1796 1797


X
xuwei06 已提交
1798
@wrap_name_default()
X
xuwei06 已提交
1799
@wrap_act_default(act=IdentityActivation())
X
xuwei06 已提交
1800
@layer_support()
X
xuwei06 已提交
1801 1802 1803
def repeat_layer(input,
                 num_repeats,
                 as_row_vector=True,
X
xuwei06 已提交
1804
                 act=None,
X
xuwei06 已提交
1805 1806
                 name=None,
                 layer_attr=None):
X
xuwei06 已提交
1807
    """
X
xuwei06 已提交
1808
    A layer for repeating the input for num_repeats times.
X
xuwei06 已提交
1809

X
xuwei06 已提交
1810
    If as_row_vector:
X
xuwei06 已提交
1811
    .. math::
X
xuwei06 已提交
1812 1813 1814 1815 1816
       y  = [x_1,\cdots, x_n, \cdots, x_1, \cdots, x_n]
    If not as_row_vector:
    .. math::
       y  = [x_1,\cdots, x_1, \cdots, x_n, \cdots, x_n]

X
xuwei06 已提交
1817 1818 1819 1820 1821

    The example usage is:

    .. code-block:: python

L
Luo Tao 已提交
1822
       expand = repeat_layer(input=layer, num_repeats=4)
X
xuwei06 已提交
1823 1824 1825 1826 1827 1828

    :param input: Input layer
    :type input: LayerOutput
    :param num_repeats: Repeat the input so many times
    :type num_repeats: int
    :param name: Layer name.
X
xuwei06 已提交
1829 1830 1831 1832 1833 1834
    :param as_row_vector: True for treating input as row vector and repeating
                          in the column direction.  This is equivalent to apply
                          concat_layer() with num_repeats same input.
                          False for treating input as column vector and repeating
                          in the row direction.
    :type as_row_vector: bool
X
xuwei06 已提交
1835 1836
    :param act: Activation type.
    :type act: BaseActivation
X
xuwei06 已提交
1837 1838 1839 1840 1841 1842 1843 1844 1845 1846
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    l = Layer(
        inputs=[input.name],
        name=name,
X
xuwei06 已提交
1847
        active_type=act.name,
X
xuwei06 已提交
1848
        num_filters=num_repeats,
X
xuwei06 已提交
1849
        as_row_vector=as_row_vector,
X
xuwei06 已提交
1850
        type=LayerType.FEATURE_MAP_EXPAND_LAYER,
Q
qijun 已提交
1851 1852 1853 1854 1855
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        size=l.config.size,
        layer_type=LayerType.FEATURE_MAP_EXPAND_LAYER,
X
xuwei06 已提交
1856
        activation=act,
Q
qijun 已提交
1857 1858
        parents=[input])

X
xuwei06 已提交
1859

1860 1861 1862
@wrap_name_default("seqreshape")
@wrap_act_default(act=IdentityActivation())
@wrap_bias_attr_default(has_bias=False)
1863
@layer_support(ERROR_CLIPPING, DROPOUT)
1864 1865 1866 1867 1868 1869 1870 1871
def seq_reshape_layer(input,
                      reshape_size,
                      act=None,
                      name=None,
                      layer_attr=None,
                      bias_attr=None):
    """
    A layer for reshaping the sequence. Assume the input sequence has T instances,
1872
    the dimension of each instance is M, and the input reshape_size is N, then the
1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914
    output sequence has T*M/N instances, the dimension of each instance is N.

    Note that T*M/N must be an integer.

    The example usage is:

    .. code-block:: python

       reshape = seq_reshape_layer(input=layer, reshape_size=4)

    :param input: Input layer.
    :type input: LayerOutput
    :param reshape_size: the size of reshaped sequence.
    :type reshape_size: int
    :param name: Layer name.
    :type name: basestring
    :param act: Activation type.
    :type act: BaseActivation
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
    :param bias_attr: The Bias Attribute. If no bias, then pass False or
                      something not type of ParameterAttribute. None will get a
                      default Bias.
    :type bias_attr: ParameterAttribute or None or bool
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    Layer(
        inputs=[input.name],
        name=name,
        size=reshape_size,
        type=LayerType.SEQUENCE_RESHAPE,
        bias=ParamAttr.to_bias(bias_attr),
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        size=reshape_size,
        layer_type=LayerType.SEQUENCE_RESHAPE,
        parents=[input])


Z
zhangjinchao01 已提交
1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942
@wrap_name_default()
@layer_support()
def interpolation_layer(input, weight, name=None, layer_attr=None):
    """
    This layer is for linear interpolation with two inputs,
    which is used in NEURAL TURING MACHINE.

    .. math::
       y.row[i] = w[i] * x_1.row[i] + (1 - w[i]) * x_2.row[i]

    where :math:`x_1` and :math:`x_2` are two (batchSize x dataDim) inputs,
    :math:`w` is (batchSize x 1) weight vector, and :math:`y` is
    (batchSize x dataDim) output.

    The example usage is:

    .. code-block:: python

       interpolation = interpolation_layer(input=[layer1, layer2], weight=layer3)

    :param input: Input layer.
    :type input: list|tuple
    :param weight: Weight layer.
    :type weight: LayerOutput
    :param name: Layer name.
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
1943
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1944 1945
    :rtype: LayerOutput
    """
1946
    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
1947
    assert len(input) == 2
1948 1949 1950 1951 1952 1953 1954
    assert isinstance(input[0], LayerOutput) and isinstance(input[1],
                                                            LayerOutput)
    if input[0].size is not None and input[1].size is not None:
        assert input[0].size == input[1].size
    assert isinstance(weight, LayerOutput)
    if weight.size is not None:
        assert weight.size == 1
Z
zhangjinchao01 已提交
1955 1956 1957 1958
    Layer(
        name=name,
        type=LayerType.INTERPOLATION_LAYER,
        inputs=[weight.name, input[0].name, input[1].name],
Q
qijun 已提交
1959 1960 1961 1962 1963 1964
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.INTERPOLATION_LAYER,
        parents=[weight, input[0], input[1]],
        size=input[0].size)
Z
zhangjinchao01 已提交
1965 1966


L
liaogang 已提交
1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982
@wrap_name_default()
@layer_support()
def bilinear_interp_layer(input,
                          out_size_x=None,
                          out_size_y=None,
                          name=None,
                          layer_attr=None):
    """
    This layer is to implement bilinear interpolation on conv layer output.

    Please refer to Wikipedia: https://en.wikipedia.org/wiki/Bilinear_interpolation

    The simple usage is:

    .. code-block:: python

L
liaogang 已提交
1983
       bilinear = bilinear_interp_layer(input=layer1, out_size_x=64, out_size_y=64)
X
xuwei06 已提交
1984

L
liaogang 已提交
1985
    :param   input:        A input layer.
L
liaogang 已提交
1986
    :type    input:        LayerOutput.
L
liaogang 已提交
1987
    :param   out_size_x:   bilinear interpolation output width.
X
xuwei06 已提交
1988
    :type    out_size_x:   int|None
L
liaogang 已提交
1989
    :param   out_size_y:   bilinear interpolation output height.
L
liaogang 已提交
1990
    :type    out_size_y:   int|None
L
liaogang 已提交
1991
    :param   name:         The layer's name, which cna not be specified.
L
liaogang 已提交
1992
    :type    name:         None|basestring
L
liaogang 已提交
1993
    :param   layer_attr:   Extra Layer attribute.
L
liaogang 已提交
1994 1995 1996 1997 1998 1999 2000
    :type    layer_attr:   ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype:  LayerOutput
    """
    assert input.layer_type == LayerType.CONV_LAYER
    assert isinstance(input.activation, LinearActivation)
    assert out_size_x > 0 and out_size_y > 0
L
liaogang 已提交
2001
    assert input.num_filters is not None
L
liaogang 已提交
2002
    num_channels = input.num_filters
Q
qijun 已提交
2003 2004 2005 2006 2007 2008 2009
    l = Layer(
        name=name,
        inputs=Input(
            input.name,
            bilinear_interp=BilinearInterp(
                out_size_x=out_size_x,
                out_size_y=out_size_y,
L
Luo Tao 已提交
2010
                channels=num_channels)),
Q
qijun 已提交
2011 2012 2013 2014 2015 2016 2017 2018 2019
        type=LayerType.BILINEAR_INTERP_LAYER,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.BILINEAR_INTERP_LAYER,
        parents=[input],
        num_filters=num_channels,
        size=l.config.size)

L
liaogang 已提交
2020

Z
zhangjinchao01 已提交
2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047
@wrap_name_default()
@layer_support()
def power_layer(input, weight, name=None, layer_attr=None):
    """
    This layer applies a power function to a vector element-wise,
    which is used in NEURAL TURING MACHINE.

    .. math::
       y = x^w

    where :math:`x` is a input vector, :math:`w` is scalar weight,
    and :math:`y` is a output vector.

    The example usage is:

    .. code-block:: python

       power = power_layer(input=layer1, weight=layer2)

    :param input: Input layer.
    :type input: LayerOutput
    :param weight: Weight layer.
    :type weight: LayerOutput
    :param name: Layer name.
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
2048
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2049 2050
    :rtype: LayerOutput
    """
2051 2052 2053
    assert isinstance(input, LayerOutput) and isinstance(weight, LayerOutput)
    if weight.size is not None:
        assert weight.size == 1
Z
zhangjinchao01 已提交
2054 2055 2056
    Layer(
        name=name,
        type=LayerType.POWER_LAYER,
2057
        inputs=[weight.name, input.name],
Q
qijun 已提交
2058 2059 2060
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.POWER_LAYER, parents=[input, weight], size=input.size)
Z
zhangjinchao01 已提交
2061 2062 2063 2064 2065 2066


@wrap_name_default()
@layer_support()
def scaling_layer(input, weight, name=None, layer_attr=None):
    """
2067
    A layer for multiplying input vector by weight scalar.
Z
zhangjinchao01 已提交
2068 2069

    .. math::
2070
       y  = w x
Z
zhangjinchao01 已提交
2071

2072 2073 2074 2075 2076
    where :math:`x` is size=dataDim input, :math:`w` is size=1 weight,
    and :math:`y` is size=dataDim output.

    Note that the above computation is for one sample. Multiple samples are
    processed in one batch.
Z
zhangjinchao01 已提交
2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091

    The example usage is:

    .. code-block:: python

       scale = scaling_layer(input=layer1, weight=layer2)

    :param input: Input layer.
    :type input: LayerOutput
    :param weight: Weight layer.
    :type weight: LayerOutput
    :param name: Layer name.
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
2092
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2093 2094
    :rtype: LayerOutput
    """
2095 2096 2097
    assert isinstance(weight, LayerOutput) and isinstance(input, LayerOutput)
    if weight.size is not None:
        assert weight.size == 1
Z
zhangjinchao01 已提交
2098 2099 2100 2101
    Layer(
        name=name,
        type=LayerType.SCALING_LAYER,
        inputs=[weight.name, input.name],
Q
qijun 已提交
2102 2103 2104
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SCALING_LAYER, parents=[weight, input], size=input.size)
Z
zhangjinchao01 已提交
2105 2106 2107 2108 2109 2110


@wrap_name_default()
@layer_support()
def trans_layer(input, name=None, layer_attr=None):
    """
2111
    A layer for transposing a minibatch matrix.
Z
zhangjinchao01 已提交
2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129

    .. math::
       y = x^\mathrm{T}

    where :math:`x` is (M x N) input, and :math:`y` is (N x M) output.

    The example usage is:

    .. code-block:: python

       trans = trans_layer(input=layer)

    :param input: Input layer.
    :type input: LayerOutput
    :param name: Layer name.
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
2130
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2131 2132 2133 2134 2135 2136
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.TRANS_LAYER,
        inputs=[input.name],
Q
qijun 已提交
2137 2138 2139
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.TRANS_LAYER, parents=[input], size=input.size)
Z
zhangjinchao01 已提交
2140 2141


2142 2143
@wrap_name_default()
@layer_support()
H
Haonan 已提交
2144
def rotate_layer(input, height, width, name=None, layer_attr=None):
2145
    """
H
Haonan 已提交
2146 2147
    A layer for rotating 90 degrees (clock-wise) for each feature channel,
    usually used when the input sample is some image or feature map.
2148 2149

    .. math::
H
Haonan 已提交
2150
       y(j,i,:) = x(M-i-1,j,:)
2151

H
Haonan 已提交
2152
    where :math:`x` is (M x N x C) input, and :math:`y` is (N x M x C) output.
2153 2154 2155 2156 2157 2158

    The example usage is:

    .. code-block:: python

       rot = rotate_layer(input=layer,
H
Haonan 已提交
2159 2160
                          height=100,
                          width=100)
2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173

    :param input: Input layer.
    :type input: LayerOutput
    :param height: The height of the sample matrix
    :type height: int
    :param name: Layer name.
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
H
Haonan 已提交
2174 2175 2176
    l = Layer(
        name=name,
        height=height,
H
Haonan 已提交
2177
        width=width,
H
Haonan 已提交
2178 2179 2180 2181 2182 2183 2184 2185
        type=LayerType.ROTATE_LAYER,
        inputs=[input.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.ROTATE_LAYER,
        parents=[input],
        size=l.config.size)
2186 2187


Z
zhangjinchao01 已提交
2188 2189
@wrap_name_default()
@layer_support()
2190
def cos_sim(a, b, scale=1, size=1, name=None, layer_attr=None):
Z
zhangjinchao01 已提交
2191 2192 2193 2194
    """
    Cosine Similarity Layer. The cosine similarity equation is here.

    ..  math::
D
dangqingqing 已提交
2195
        similarity = cos(\\theta) = {\\mathbf{a} \\cdot \\mathbf{b}
2196 2197 2198 2199 2200
        \\over \\|\\mathbf{a}\\| \\|\\mathbf{b}\\|}

    The size of a is M, size of b is M*N,
    Similarity will be calculated N times by step M. The output size is
    N. The scale will be multiplied to similarity.
Z
zhangjinchao01 已提交
2201

2202 2203
    Note that the above computation is for one sample. Multiple samples are
    processed in one batch.
Z
zhangjinchao01 已提交
2204

L
Luo Tao 已提交
2205 2206 2207 2208 2209 2210
    The example usage is:

    .. code-block:: python

       cos = cos_sim(a=layer1, b=layer2, size=3)

Z
zhangjinchao01 已提交
2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222
    :param name: layer name
    :type name: basestring
    :param a: input layer a
    :type a: LayerOutput
    :param b: input layer b
    :type b: LayerOutput
    :param scale: scale for cosine value. default is 5.
    :type scale: float
    :param size: layer size. NOTE size_a * size should equal size_b.
    :type size: int
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
2223
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2224 2225
    :rtype: LayerOutput
    """
2226
    assert isinstance(a, LayerOutput) and isinstance(b, LayerOutput)
2227 2228 2229 2230 2231 2232
    if size == 1:
        Layer(
            name=name,
            type=LayerType.COSINE_SIM,
            cos_scale=scale,
            inputs=[a.name, b.name],
Q
qijun 已提交
2233
            **ExtraLayerAttribute.to_kwargs(layer_attr))
2234
    else:
2235 2236
        if a.size is not None and b.size is not None:
            assert size == b.size / a.size
2237 2238 2239 2240 2241 2242
        Layer(
            name=name,
            type=LayerType.COSINE_SIM_VEC,
            size=size,
            cos_scale=scale,
            inputs=[a.name, b.name],
Q
qijun 已提交
2243
            **ExtraLayerAttribute.to_kwargs(layer_attr))
X
xuwei06 已提交
2244
    return LayerOutput(name, LayerType.COSINE_SIM, parents=[a, b], size=size)
Z
zhangjinchao01 已提交
2245

2246

Z
zhangjinchao01 已提交
2247 2248
@wrap_name_default()
@wrap_bias_attr_default(has_bias=True)
2249
@wrap_param_attr_default()
Z
zhangjinchao01 已提交
2250
@layer_support()
Q
qijun 已提交
2251 2252
def hsigmoid(input,
             label,
2253
             num_classes=None,
Q
qijun 已提交
2254 2255 2256 2257
             name=None,
             bias_attr=None,
             param_attr=None,
             layer_attr=None):
Z
zhangjinchao01 已提交
2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268
    """
    Organize the classes into a binary tree. At each node, a sigmoid function
    is used to calculate the probability of belonging to the right branch.
    This idea is from "F. Morin, Y. Bengio (AISTATS 05):
    Hierarchical Probabilistic Neural Network Language Model."

    The example usage is:

    ..  code-block:: python

        cost = hsigmoid(input=[layer1, layer2],
2269
                        label=data_layer)
Z
zhangjinchao01 已提交
2270 2271 2272 2273 2274 2275 2276

    :param input: Input layers. It could be a LayerOutput or list/tuple of
                 LayerOutput.
    :type input: LayerOutput|list|tuple
    :param label: Label layer.
    :type label: LayerOutput
    :param num_classes: number of classes.
2277
    :type num_classes: int|None
L
luotao02 已提交
2278 2279
    :param name: layer name
    :type name: basestring
Z
zhangjinchao01 已提交
2280 2281 2282
    :param bias_attr: Bias attribute. None means default bias.
                      False means no bias.
    :type bias_attr: ParameterAttribute|False
2283 2284
    :param param_attr: Parameter Attribute. None means default parameter.
    :type param_attr: ParameterAttribute|None
Z
zhangjinchao01 已提交
2285 2286
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
2287
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2288 2289 2290 2291
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
2292 2293 2294 2295 2296 2297 2298 2299 2300
        if not isinstance(param_attr, collections.Sequence):
            param_attr = [param_attr]
    else:
        if not isinstance(param_attr, collections.Sequence):
            param_attr = [param_attr] * len(input)
        else:
            assert len(param_attr) == len(input)

    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
2301 2302 2303
    assert isinstance(label, LayerOutput)
    assert label.layer_type == LayerType.DATA

2304 2305 2306 2307 2308
    if num_classes is None:
        num_classes = label.size
    if num_classes is None or num_classes <= 2:
        raise ValueError("hsigmoid label size must larger than 2.")

Z
zhangjinchao01 已提交
2309 2310
    ipts_for_layer = []
    parents = []
2311
    for each_input, each_param_attr in zip(input, param_attr):
Z
zhangjinchao01 已提交
2312
        assert isinstance(each_input, LayerOutput)
2313
        ipts_for_layer.append(Input(each_input.name, **each_param_attr.attr))
Z
zhangjinchao01 已提交
2314 2315 2316 2317
        parents.append(each_input)
    ipts_for_layer.append(label.name)
    parents.append(label)

X
xuwei06 已提交
2318
    l = Layer(
Z
zhangjinchao01 已提交
2319 2320 2321 2322 2323
        name=name,
        type=LayerType.HSIGMOID,
        num_classes=num_classes,
        bias=ParamAttr.to_bias(bias_attr),
        inputs=ipts_for_layer,
Q
qijun 已提交
2324 2325 2326
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.HSIGMOID, parents=parents, size=l.config.size)
Z
zhangjinchao01 已提交
2327

2328

Z
zhangjinchao01 已提交
2329 2330 2331 2332 2333
@wrap_name_default("conv")
@wrap_param_attr_default()
@wrap_bias_attr_default()
@wrap_act_default(act=ReluActivation())
@layer_support(DROPOUT)
Q
qijun 已提交
2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349
def img_conv_layer(input,
                   filter_size,
                   num_filters,
                   name=None,
                   num_channels=None,
                   act=None,
                   groups=1,
                   stride=1,
                   padding=0,
                   bias_attr=None,
                   param_attr=None,
                   shared_biases=True,
                   layer_attr=None,
                   filter_size_y=None,
                   stride_y=None,
                   padding_y=None,
2350 2351
                   trans=False,
                   layer_type=None):
Z
zhangjinchao01 已提交
2352
    """
2353
    Convolution layer for image. Paddle can support both square and non-square
2354
    input currently.
Z
zhangjinchao01 已提交
2355 2356 2357 2358

    The details of convolution layer, please refer UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/
    FeatureExtractionUsingConvolution/>`_ .
X
xuwei06 已提交
2359

2360
    Convolution Transpose (deconv) layer for image. Paddle can support both square
2361
    and non-square input currently.
2362

X
xuwei06 已提交
2363
    The details of convolution transpose layer,
2364 2365 2366
    please refer to the following explanation and references therein
    <http://datascience.stackexchange.com/questions/6107/
    what-are-deconvolutional-layers/>`_ .
Z
zhangjinchao01 已提交
2367 2368 2369 2370
    The num_channel means input image's channel number. It may be 1 or 3 when
    input is raw pixels of image(mono or RGB), or it may be the previous layer's
    num_filters * num_group.

C
caoying03 已提交
2371 2372 2373
    There are several group of filter in PaddlePaddle implementation.
    Each group will process some channel of the inputs. For example, if an input
    num_channel = 256, group = 4, num_filter=32, the PaddlePaddle will create
Z
zhangjinchao01 已提交
2374
    32*4 = 128 filters to process inputs. The channels will be split into 4
C
caoying03 已提交
2375 2376
    pieces. First 256/4 = 64 channels will process by first 32 filters. The
    rest channels will be processed by rest group of filters.
Z
zhangjinchao01 已提交
2377

L
Luo Tao 已提交
2378 2379 2380 2381 2382 2383 2384 2385 2386 2387
    The example usage is:

    ..  code-block:: python

        conv = img_conv_layer(input=data, filter_size=1, filter_size_y=1,
                              num_channels=8,
                              num_filters=16, stride=1,
                              bias_attr=False,
                              act=ReluActivation())

Z
zhangjinchao01 已提交
2388 2389 2390 2391
    :param name: Layer name.
    :type name: basestring
    :param input: Layer Input.
    :type input: LayerOutput
2392 2393 2394
    :param filter_size: The x dimension of a filter kernel. Or input a tuple for
                        two image dimension.
    :type filter_size: int|tuple|list
C
caoying03 已提交
2395 2396 2397
    :param filter_size_y: The y dimension of a filter kernel. Since PaddlePaddle
                        currently supports rectangular filters, the filter's
                        shape will be (filter_size, filter_size_y).
2398
    :type filter_size_y: int|None
Z
zhangjinchao01 已提交
2399 2400 2401 2402 2403
    :param num_filters: Each filter group's number of filter
    :param act: Activation type. Default is tanh
    :type act: BaseActivation
    :param groups: Group size of filters.
    :type groups: int
2404 2405 2406
    :param stride: The x dimension of the stride. Or input a tuple for two image
                   dimension.
    :type stride: int|tuple|list
Z
zhangjinchao01 已提交
2407 2408
    :param stride_y: The y dimension of the stride.
    :type stride_y: int
2409 2410 2411
    :param padding: The x dimension of the padding. Or input a tuple for two
                    image dimension
    :type padding: int|tuple|list
Z
zhangjinchao01 已提交
2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425
    :param padding_y: The y dimension of the padding.
    :type padding_y: int
    :param bias_attr: Convolution bias attribute. None means default bias.
                      False means no bias.
    :type bias_attr: ParameterAttribute|False
    :param num_channels: number of input channels. If None will be set
                        automatically from previous output.
    :type num_channels: int
    :param param_attr: Convolution param attribute. None means default attribute
    :type param_attr: ParameterAttribute
    :param shared_biases: Is biases will be shared between filters or not.
    :type shared_biases: bool
    :param layer_attr: Layer Extra Attribute.
    :type layer_attr: ExtraLayerAttribute
2426 2427
    :param trans: true if it is a convTransLayer, false if it is a convLayer
    :type trans: bool
2428
    :param layer_type: specify the layer_type, default is None. If trans=True,
2429 2430
                       layer_type has to be "exconvt" or "cudnn_convt",
                       otherwise layer_type has to be either "exconv" or
2431
                       "cudnn_conv"
2432
    :type layer_type: String
D
dangqingqing 已提交
2433
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2434 2435 2436 2437 2438
    :rtype: LayerOutput
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters
2439

Z
zhangjinchao01 已提交
2440
    if filter_size_y is None:
2441 2442 2443 2444 2445 2446
        if isinstance(filter_size, collections.Sequence):
            assert len(filter_size) == 2
            filter_size, filter_size_y = filter_size
        else:
            filter_size_y = filter_size

Z
zhangjinchao01 已提交
2447
    if stride_y is None:
2448 2449 2450 2451 2452 2453
        if isinstance(stride, collections.Sequence):
            assert len(stride) == 2
            stride, stride_y = stride
        else:
            stride_y = stride

Z
zhangjinchao01 已提交
2454
    if padding_y is None:
2455 2456 2457 2458 2459 2460 2461 2462
        if isinstance(padding, collections.Sequence):
            assert len(padding) == 2
            padding, padding_y = padding
        else:
            padding_y = padding

    if param_attr.attr.get('initial_smart'):
        # special initial for conv layers.
Q
qijun 已提交
2463
        init_w = (2.0 / (filter_size**2 * num_channels))**0.5
2464 2465 2466 2467
        param_attr.attr["initial_mean"] = 0.0
        param_attr.attr["initial_std"] = init_w
        param_attr.attr["initial_strategy"] = 0
        param_attr.attr["initial_smart"] = False
2468

2469 2470
    if layer_type:
        if trans:
2471
            assert layer_type in ["exconvt", "cudnn_convt"]
2472 2473 2474 2475 2476
        else:
            assert layer_type in ["exconv", "cudnn_conv"]
        lt = layer_type
    else:
        lt = LayerType.CONVTRANS_LAYER if trans else LayerType.CONV_LAYER
Q
qijun 已提交
2477

X
xuwei06 已提交
2478
    l = Layer(
Z
zhangjinchao01 已提交
2479
        name=name,
Q
qijun 已提交
2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491
        inputs=Input(
            input.name,
            conv=Conv(
                filter_size=filter_size,
                padding=padding,
                stride=stride,
                channels=num_channels,
                groups=groups,
                filter_size_y=filter_size_y,
                padding_y=padding_y,
                stride_y=stride_y),
            **param_attr.attr),
Z
zhangjinchao01 已提交
2492 2493 2494 2495
        active_type=act.name,
        num_filters=num_filters,
        bias=ParamAttr.to_bias(bias_attr),
        shared_biases=shared_biases,
2496
        type=lt,
Q
qijun 已提交
2497 2498 2499 2500 2501 2502 2503 2504
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        lt,
        parents=[input],
        activation=act,
        num_filters=num_filters,
        size=l.config.size)
Z
zhangjinchao01 已提交
2505 2506 2507 2508


@wrap_name_default("pool")
@layer_support()
Q
qijun 已提交
2509 2510 2511 2512 2513 2514 2515 2516 2517 2518
def img_pool_layer(input,
                   pool_size,
                   name=None,
                   num_channels=None,
                   pool_type=None,
                   stride=1,
                   padding=0,
                   layer_attr=None,
                   pool_size_y=None,
                   stride_y=None,
2519 2520
                   padding_y=None,
                   ceil_mode=True):
Z
zhangjinchao01 已提交
2521 2522 2523 2524 2525 2526 2527
    """
    Image pooling Layer.

    The details of pooling layer, please refer ufldl's pooling_ .

    .. _pooling: http://ufldl.stanford.edu/tutorial/supervised/Pooling/

L
Luo Tao 已提交
2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555
    - ceil_mode=True:

    ..  math::

        w = 1 + int(ceil(input\_width + 2 * padding - pool\_size) / float(stride))
        h = 1 + int(ceil(input\_height + 2 * padding\_y - pool\_size\_y) / float(stride\_y))

    - ceil_mode=False:

    ..  math::

        w = 1 + int(floor(input\_width + 2 * padding - pool\_size) / float(stride))
        h = 1 + int(floor(input\_height + 2 * padding\_y - pool\_size\_y) / float(stride\_y))

    The example usage is:

    ..  code-block:: python

        maxpool = img_pool_layer(input=conv,
                                 pool_size=3,
                                 pool_size_y=5,
                                 num_channels=8,
                                 stride=1,
                                 stride_y=2,
                                 padding=1,
                                 padding_y=2,
                                 pool_type=MaxPooling())

2556
    :param padding: pooling padding width.
Z
zhangjinchao01 已提交
2557
    :type padding: int
2558 2559
    :param padding_y: pooling padding height. It's equal to padding by default.
    :type padding_y: int|None
Z
zhangjinchao01 已提交
2560 2561 2562 2563
    :param name: name of pooling layer
    :type name: basestring.
    :param input: layer's input
    :type input: LayerOutput
2564
    :param pool_size: pooling window width
Z
zhangjinchao01 已提交
2565
    :type pool_size: int
2566 2567
    :param pool_size_y: pooling window height. It's eaqual to pool_size by default.
    :type pool_size_y: int|None
Z
zhangjinchao01 已提交
2568 2569
    :param num_channels: number of input channel.
    :type num_channels: int
2570
    :param pool_type: pooling type. MaxPooling or AvgPooling. Default is
Z
zhangjinchao01 已提交
2571 2572
                      MaxPooling.
    :type pool_type: BasePoolingType
2573
    :param stride: stride width of pooling.
Z
zhangjinchao01 已提交
2574
    :type stride: int
2575 2576
    :param stride_y: stride height of pooling. It is equal to stride by default.
    :type stride_y: int|None
Z
zhangjinchao01 已提交
2577 2578
    :param layer_attr: Extra Layer attribute.
    :type layer_attr: ExtraLayerAttribute
2579 2580 2581 2582
    :param ceil_mode: Wether to use ceil mode to calculate output height and with.
                      Defalut is True. If set false, Otherwise use floor.

    :type ceil_mode: bool
D
dangqingqing 已提交
2583 2584
    :return: LayerOutput object.
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
2585 2586 2587 2588 2589
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

2590 2591
    assert type(pool_type) in [AvgPooling, MaxPooling, CudnnAvgPooling,
                               CudnnMaxPooling], \
X
xuwei06 已提交
2592
        "only (Cudnn)AvgPooling, (Cudnn)MaxPooling are supported"
2593

Z
zhangjinchao01 已提交
2594 2595 2596 2597 2598
    if pool_type is None:
        pool_type = MaxPooling()
    elif isinstance(pool_type, AvgPooling):
        pool_type.name = 'avg'

2599
    type_name = pool_type.name + '-projection' \
Y
Yu Yang 已提交
2600
        if (
Y
Yu Yang 已提交
2601
        isinstance(pool_type, AvgPooling) or isinstance(pool_type, MaxPooling)) \
Y
Yu Yang 已提交
2602
        else pool_type.name
2603 2604 2605 2606
    pool_size_y = pool_size if pool_size_y is None else pool_size_y
    stride_y = stride if stride_y is None else stride_y
    padding_y = padding if padding_y is None else padding_y

X
xuwei06 已提交
2607
    l = Layer(
Z
zhangjinchao01 已提交
2608 2609
        name=name,
        type=LayerType.POOL_LAYER,
Q
qijun 已提交
2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621
        inputs=[
            Input(
                input.name,
                pool=Pool(
                    pool_type=type_name,
                    channels=num_channels,
                    size_x=pool_size,
                    start=None,
                    stride=stride,
                    padding=padding,
                    size_y=pool_size_y,
                    stride_y=stride_y,
L
Luo Tao 已提交
2622
                    padding_y=padding_y))
Q
qijun 已提交
2623
        ],
2624
        ceil_mode=ceil_mode,
Q
qijun 已提交
2625 2626 2627 2628 2629 2630 2631
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.POOL_LAYER,
        parents=[input],
        num_filters=num_channels,
        size=l.config.size)
Z
zhangjinchao01 已提交
2632 2633


Q
qijun 已提交
2634 2635
@wrap_name_default("spp")
@layer_support()
Q
qijun 已提交
2636 2637 2638 2639 2640 2641
def spp_layer(input,
              name=None,
              num_channels=None,
              pool_type=None,
              pyramid_height=None,
              layer_attr=None):
Q
qijun 已提交
2642 2643 2644 2645 2646
    """
    Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition.
    The details please refer to
    `Kaiming He's paper <https://arxiv.org/abs/1406.4729>`_.

L
Luo Tao 已提交
2647 2648 2649 2650
    The example usage is:

    ..  code-block:: python

2651 2652 2653
        spp = spp_layer(input=data,
                        pyramid_height=2,
                        num_channels=16,
L
Luo Tao 已提交
2654 2655
                        pool_type=MaxPooling())

Q
qijun 已提交
2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683
    :param name: layer name.
    :type name: basestring
    :param input: layer's input.
    :type input: LayerOutput
    :param num_channels: number of input channel.
    :type num_channels: int
    :param pool_type: Pooling type. MaxPooling or AveragePooling. Default is MaxPooling.
    :type scale: BasePoolingType
    :param pyramid_height: pyramid height.
    :type pyramid_height: int
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

    if pool_type is None:
        pool_type = MaxPooling()
    elif isinstance(pool_type, AvgPooling):
        pool_type.name = 'avg'

    type_name = pool_type.name
    if (isinstance(pool_type, AvgPooling) or isinstance(pool_type, MaxPooling)):
        type_name += '-projection'

Q
qijun 已提交
2684
    l = Layer(
Q
qijun 已提交
2685 2686
        name=name,
        type=LayerType.SPP_LAYER,
Q
qijun 已提交
2687 2688 2689 2690 2691
        inputs=Input(
            input.name,
            spp=SpatialPyramidPool(
                pool_type=type_name,
                channels=num_channels,
L
Luo Tao 已提交
2692
                pyramid_height=pyramid_height)),
Q
qijun 已提交
2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        layer_type=LayerType.SPP_LAYER,
        parents=[input],
        num_filters=num_channels,
        size=l.config.size)


def __img_norm_layer__(name, input, size, norm_type, scale, power, num_channels,
                       blocked, layer_attr):
Z
zhangjinchao01 已提交
2704 2705 2706 2707
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

X
xuwei06 已提交
2708
    l = Layer(
Q
qijun 已提交
2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727
        name=name,
        type=LayerType.NORM_LAYER,
        inputs=Input(
            input.name,
            norm=Norm(
                norm_type=norm_type,
                channels=num_channels,
                size=size,
                scale=scale,
                pow=power,
                blocked=blocked)),
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        layer_type=LayerType.NORM_LAYER,
        parents=[input],
        num_filters=num_channels,
        img_norm_type=norm_type,
        size=l.config.size)
Z
zhangjinchao01 已提交
2728 2729 2730 2731


@wrap_name_default("crmnorm")
@layer_support()
Q
qijun 已提交
2732 2733 2734 2735 2736 2737
def img_cmrnorm_layer(input,
                      size,
                      scale=0.0128,
                      power=0.75,
                      name=None,
                      num_channels=None,
2738
                      layer_attr=None):
Z
zhangjinchao01 已提交
2739
    """
2740
    Response normalization across feature maps.
D
dangqingqing 已提交
2741 2742
    The details please refer to
    `Alex's paper <http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf>`_.
Z
zhangjinchao01 已提交
2743

L
Luo Tao 已提交
2744 2745 2746
    The example usage is:

    ..  code-block:: python
2747

L
Luo Tao 已提交
2748 2749
        norm = img_cmrnorm_layer(input=net, size=5)

Z
zhangjinchao01 已提交
2750
    :param name: layer name.
D
dangqingqing 已提交
2751
    :type name: None|basestring
Z
zhangjinchao01 已提交
2752 2753
    :param input: layer's input.
    :type input: LayerOutput
2754
    :param size: Normalize in number of :math:`size` feature maps.
Z
zhangjinchao01 已提交
2755
    :type size: int
D
dangqingqing 已提交
2756
    :param scale: The hyper-parameter.
Z
zhangjinchao01 已提交
2757
    :type scale: float
D
dangqingqing 已提交
2758
    :param power: The hyper-parameter.
Z
zhangjinchao01 已提交
2759 2760 2761 2762 2763
    :type power: float
    :param num_channels: input layer's filers number or channels. If
                         num_channels is None, it will be set automatically.
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
2764
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2765 2766 2767
    :rtype: LayerOutput
    """
    return __img_norm_layer__(name, input, size, "cmrnorm-projection", scale,
2768
                              power, num_channels, 0, layer_attr)
Z
zhangjinchao01 已提交
2769 2770 2771


@wrap_bias_attr_default()
2772 2773
@wrap_param_attr_default(
    default_factory=lambda _: ParamAttr(initial_mean=1.0, initial_std=0.))
Z
zhangjinchao01 已提交
2774 2775
@wrap_act_default(act=ReluActivation())
@wrap_name_default("batch_norm")
2776
@layer_support(DROPOUT, ERROR_CLIPPING)
Q
qijun 已提交
2777 2778 2779 2780 2781 2782 2783
def batch_norm_layer(input,
                     act=None,
                     name=None,
                     num_channels=None,
                     bias_attr=None,
                     param_attr=None,
                     layer_attr=None,
Z
zhangjinchao01 已提交
2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804
                     batch_norm_type=None,
                     moving_average_fraction=0.9,
                     use_global_stats=None):
    """
    Batch Normalization Layer. The notation of this layer as follow.

    :math:`x` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

    The details of batch normalization please refer to this
    `paper <http://arxiv.org/abs/1502.03167>`_.

L
Luo Tao 已提交
2805 2806 2807
    The example usage is:

    ..  code-block:: python
2808

L
Luo Tao 已提交
2809 2810
        norm = batch_norm_layer(input=net, act=ReluActivation())

Z
zhangjinchao01 已提交
2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824
    :param name: layer name.
    :type name: basestring
    :param input: batch normalization input. Better be linear activation.
                Because there is an activation inside batch_normalization.
    :type input: LayerOutput
    :param batch_norm_type: We have batch_norm and cudnn_batch_norm. batch_norm
                            supports both CPU and GPU. cudnn_batch_norm requires
                            cuDNN version greater or equal to v4 (>=v4). But
                            cudnn_batch_norm is faster and needs less memory
                            than batch_norm. By default (None), we will
                            automaticly select cudnn_batch_norm for GPU and
                            batch_norm for CPU. Otherwise, select batch norm
                            type based on the specified type. If you use cudnn_batch_norm,
                            we suggested you use latest version, such as v5.1.
2825
    :type batch_norm_type: None|string, None or "batch_norm" or "cudnn_batch_norm"
Z
zhangjinchao01 已提交
2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852
    :param act: Activation Type. Better be relu. Because batch
                     normalization will normalize input near zero.
    :type act: BaseActivation
    :param num_channels: num of image channels or previous layer's number of
                         filters. None will automatically get from layer's
                         input.
    :type num_channels: int
    :param bias_attr: :math:`\\beta`, better be zero when initialize. So the
                      initial_std=0, initial_mean=1 is best practice.
    :type bias_attr: ParameterAttribute
    :param param_attr: :math:`\\gamma`, better be one when initialize. So the
                       initial_std=0, initial_mean=1 is best practice.
    :type param_attr: ParameterAttribute
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
    :param use_global_stats: whether use moving mean/variance statistics
                             during testing peroid. If None or True,
                             it will use moving mean/variance statistics during
                             testing. If False, it will use the mean
                             and variance of current batch of test data for
                             testing.
    :type use_global_stats: bool|None.
    :param moving_average_fraction: Factor used in the moving average
                                   computation, referred to as facotr,
                                   :math:`runningMean = newMean*(1-factor)
                                   + runningMean*factor`
    :type moving_average_fraction: float.
D
dangqingqing 已提交
2853
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2854 2855 2856 2857 2858 2859 2860 2861 2862 2863
    :rtype: LayerOutput
    """

    if num_channels is None:
        if input.num_filters is not None:
            num_channels = input.num_filters
        else:
            num_channels = input.size
    assert (batch_norm_type is None) or (batch_norm_type == "batch_norm") or \
           (batch_norm_type == "cudnn_batch_norm")
X
xuwei06 已提交
2864
    l = Layer(
Z
zhangjinchao01 已提交
2865
        name=name,
Q
qijun 已提交
2866 2867
        inputs=Input(
            input.name, image=Image(channels=num_channels), **param_attr.attr),
Z
zhangjinchao01 已提交
2868 2869 2870 2871 2872 2873
        active_type=act.name,
        type=LayerType.BATCH_NORM_LAYER,
        batch_norm_type=batch_norm_type,
        bias=ParamAttr.to_bias(bias_attr),
        moving_average_fraction=moving_average_fraction,
        use_global_stats=use_global_stats,
Q
qijun 已提交
2874
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
2875

Q
qijun 已提交
2876 2877 2878 2879 2880 2881 2882
    return LayerOutput(
        name=name,
        layer_type=LayerType.BATCH_NORM_LAYER,
        parents=[input],
        activation=act,
        num_filters=num_channels,
        size=l.config.size)
Z
zhangjinchao01 已提交
2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909


@wrap_name_default()
@layer_support()
def sum_to_one_norm_layer(input, name=None, layer_attr=None):
    """
    A layer for sum-to-one normalization,
    which is used in NEURAL TURING MACHINE.

    .. math::
       out[i] = \\frac {in[i]} {\sum_{k=1}^N in[k]}

    where :math:`in` is a (batchSize x dataDim) input vector,
    and :math:`out` is a (batchSize x dataDim) output vector.

    The example usage is:

    .. code-block:: python

       sum_to_one_norm = sum_to_one_norm_layer(input=layer)

    :param input: Input layer.
    :type input: LayerOutput
    :param name: Layer name.
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
2910
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2911 2912 2913 2914 2915 2916
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.SUM_TO_ONE_NORM_LAYER,
        inputs=[input.name],
Q
qijun 已提交
2917 2918 2919
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SUM_TO_ONE_NORM_LAYER, parents=[input], size=input.size)
Z
zhangjinchao01 已提交
2920 2921


G
guosheng 已提交
2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957
@wrap_name_default()
@layer_support()
def row_l2_norm_layer(input, name=None, layer_attr=None):
    """
    A layer for L2-normalization in each row.

    .. math::
       out[i] = \frac{in[i]}{\sqrt{\sum_{k=1}^N in[k]^{2}}}

    where the size of :math:`in` is (batchSize x dataDim) ,
    and the size of :math:`out` is a (batchSize x dataDim) .

    The example usage is:

    .. code-block:: python

       row_l2_norm_layer = row_l2_norm_layer(input=layer)

    :param input: Input layer.
    :type input: LayerOutput
    :param name: Layer name.
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.ROW_L2_NORM_LAYER,
        inputs=[input.name],
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.ROW_L2_NORM_LAYER, parents=[input], size=input.size)


Z
zhangjinchao01 已提交
2958 2959 2960
@wrap_name_default("addto")
@wrap_act_default(act=LinearActivation())
@wrap_bias_attr_default(has_bias=False)
2961
@layer_support(DROPOUT, ERROR_CLIPPING)
Q
qijun 已提交
2962
def addto_layer(input, act=None, name=None, bias_attr=None, layer_attr=None):
Z
zhangjinchao01 已提交
2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984
    """
    AddtoLayer.

    ..  math::

        y = f(\\sum_{i} x_i + b)

    where :math:`y` is output, :math:`x` is input, :math:`b` is bias,
    and :math:`f` is activation function.

    The example usage is:

    ..  code-block:: python

        addto = addto_layer(input=[layer1, layer2],
                            act=ReluActivation(),
                            bias_attr=False)

    This layer just simply add all input layers together, then activate the sum
    inputs. Each input of this layer should be the same size, which is also the
    output size of this layer.

C
caoying03 已提交
2985 2986 2987
    There is no weight matrix for each input, because it just a simple add
    operation. If you want a complicated operation before add, please use
    mixed_layer.
Z
zhangjinchao01 已提交
2988 2989

    It is a very good way to set dropout outside the layers. Since not all
C
caoying03 已提交
2990 2991
    PaddlePaddle layer support dropout, you can add an add_to layer, set
    dropout here.
Z
zhangjinchao01 已提交
2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005
    Please refer to dropout_layer for details.

    :param name: Layer name.
    :type name: basestring
    :param input: Input layers. It could be a LayerOutput or list/tuple of
                 LayerOutput.
    :type input: LayerOutput|list|tuple
    :param act: Activation Type, default is tanh.
    :type act: BaseActivation
    :param bias_attr: Bias attribute. If False, means no bias. None is default
                      bias.
    :type bias_attr: ParameterAttribute|bool
    :param layer_attr: Extra Layer attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3006
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3007 3008 3009 3010 3011 3012
    :rtype: LayerOutput
    """
    num_filters = None
    if isinstance(input, LayerOutput):
        input = [input]

3013
    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
3014 3015 3016 3017 3018 3019 3020
    ipts_for_layer = []
    for each_input in input:
        assert isinstance(each_input, LayerOutput)
        ipts_for_layer.append(Input(each_input.name))
        if each_input.num_filters is not None:
            num_filters = each_input.num_filters

X
xuwei06 已提交
3021
    l = Layer(
Q
qijun 已提交
3022 3023 3024
        name=name,
        type=LayerType.ADDTO_LAYER,
        inputs=ipts_for_layer,
Z
zhangjinchao01 已提交
3025 3026
        bias=ParamAttr.to_bias(bias_attr),
        active_type=act.name,
Q
qijun 已提交
3027
        **ExtraLayerAttribute.to_kwargs(layer_attr))
3028

Q
qijun 已提交
3029 3030 3031 3032 3033 3034 3035
    return LayerOutput(
        name,
        LayerType.ADDTO_LAYER,
        parents=input,
        activation=act,
        num_filters=num_filters,
        size=l.config.size)
Z
zhangjinchao01 已提交
3036 3037 3038 3039


@wrap_act_default(act=IdentityActivation())
@wrap_name_default("concat")
3040
@layer_support(DROPOUT, ERROR_CLIPPING)
3041
def concat_layer(input, act=None, name=None, layer_attr=None, bias_attr=None):
Z
zhangjinchao01 已提交
3042 3043 3044 3045
    """
    Concat all input vector into one huge vector.
    Inputs can be list of LayerOutput or list of projection.

3046 3047 3048 3049 3050 3051
    The example usage is:

    ..  code-block:: python

        concat = concat_layer(input=[layer1, layer2])

Z
zhangjinchao01 已提交
3052 3053 3054
    :param name: Layer name.
    :type name: basestring
    :param input: input layers or projections
3055
    :type input: list|tuple|collections.Sequence
Z
zhangjinchao01 已提交
3056 3057 3058 3059
    :param act: Activation type.
    :type act: BaseActivation
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3060
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3061 3062 3063 3064 3065 3066 3067 3068
    :rtype: LayerOutput
    """

    if isinstance(input, LayerOutput):
        input = [input]
    elif isinstance(input, Projection):
        input = [input]
    else:
3069
        assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
3070 3071

    def __is_type__(o, tp):
3072
        if not isinstance(o, collections.Sequence):
Z
zhangjinchao01 已提交
3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093
            if o == tp:
                return True
            elif len(o.__bases__) == 0:
                return False
            else:
                for bs in o.__bases__:
                    if __is_type__(bs, tp):
                        return True
                return False
        else:
            tmp = map(lambda _x: __is_type__(_x, tp), o)
            a = tmp[0]
            for b in tmp[1:]:
                assert a == b
            return a

    def __reduce_concat_type__(a, b):
        assert __is_type__([a, b], Projection) or __is_type__([a, b],
                                                              LayerOutput)
        return a

Q
qijun 已提交
3094 3095
    is_concat_layer = __is_type__(
        reduce(__reduce_concat_type__, map(type, input)), LayerOutput)
Z
zhangjinchao01 已提交
3096

Q
qijun 已提交
3097 3098
    layer_type = (LayerType.CONCAT_LAYER
                  if is_concat_layer else LayerType.CONCAT_PROJ_LAYER)
Z
zhangjinchao01 已提交
3099

3100 3101
    if layer_type == LayerType.CONCAT_LAYER:
        assert not bias_attr
3102

3103
    layer = Layer(
Q
qijun 已提交
3104 3105
        name=name,
        type=layer_type,
Z
zhangjinchao01 已提交
3106 3107
        inputs=[x.name for x in input] if is_concat_layer else input,
        active_type=act.name,
3108
        bias=ParamAttr.to_bias(bias_attr),
Q
qijun 已提交
3109
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3110

3111
    sz = layer.config.size
Z
zhangjinchao01 已提交
3112

Q
qijun 已提交
3113 3114 3115 3116 3117 3118 3119 3120
    return LayerOutput(
        name,
        layer_type=layer_type,
        parents=input if is_concat_layer else [x.origin for x in input],
        activation=act,
        size=sz)


3121 3122
@wrap_name_default("seqconcat")
@wrap_act_default(act=IdentityActivation())
3123
@wrap_bias_attr_default(has_bias=False)
3124
@layer_support(DROPOUT, ERROR_CLIPPING)
3125 3126 3127 3128
def seq_concat_layer(a, b, act=None, name=None, layer_attr=None,
                     bias_attr=None):
    """
    Concat sequence a with sequence b.
3129

3130
    Inputs:
X
xuwei06 已提交
3131
      - a = [a1, a2, ..., am]
3132
      - b = [b1, b2, ..., bn]
3133

X
xuwei06 已提交
3134 3135 3136 3137
    Output: [a1, ..., am, b1, ..., bn]

    Note that the above computation is for one sample. Multiple samples are
    processed in one batch.
3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154

    The example usage is:

    ..  code-block:: python

        concat = seq_concat_layer(a=layer1, b=layer2)

    :param name: Layer name.
    :type name: basestring
    :param a: input sequence layer
    :type a: LayerOutput
    :param b: input sequence layer
    :type b: LayerOutput
    :param act: Activation type.
    :type act: BaseActivation
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
3155 3156 3157 3158
    :param bias_attr: The Bias Attribute. If no bias, then pass False or
                      something not type of ParameterAttribute. None will get a
                      default Bias.
    :type bias_attr: ParameterAttribute or None or bool
3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(a, LayerOutput) and isinstance(b, LayerOutput)
    assert a.size == b.size
    Layer(
        name=name,
        type=LayerType.SEQUENCE_CONCAT_LAYER,
        inputs=[a.name, b.name],
        active_type=act.name,
        bias=ParamAttr.to_bias(bias_attr),
        **ExtraLayerAttribute.to_kwargs(layer_attr))

    return LayerOutput(
        name,
        layer_type=LayerType.SEQUENCE_CONCAT_LAYER,
        parents=[a, b],
        activation=act,
        size=a.size)


3180
@wrap_name_default("memory", "memory_name")
Q
qijun 已提交
3181 3182
def memory(name,
           size,
3183
           memory_name=None,
Q
qijun 已提交
3184 3185 3186 3187
           is_seq=False,
           boot_layer=None,
           boot_bias=None,
           boot_bias_active_type=None,
Z
zhangjinchao01 已提交
3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207
           boot_with_const_id=None):
    """
    The memory layers is a layer cross each time step. Reference this output
    as previous time step layer :code:`name` 's output.

    The default memory is zero in first time step, previous time step's
    output in the rest time steps.

    If boot_bias, the first time step value is this bias and
    with activation.

    If boot_with_const_id, then the first time stop is a IndexSlot, the
    Arguments.ids()[0] is this :code:`cost_id`.

    If boot_layer is not null, the memory is just the boot_layer's output.
    Set :code:`is_seq` is true boot layer is sequence.

    The same name layer in recurrent group will set memory on each time
    step.

3208 3209 3210 3211 3212 3213 3214 3215 3216
    .. code-block:: python

       mem = memory(size=256, name='state')
       state = fc_layer(input=mem, size=256, name='state')

    If you do not want to specify the name, you can equivalently use set_input()
    to specify the layer needs to be remembered as the following:

    .. code-block:: python
L
Liu Yiqun 已提交
3217

3218 3219 3220 3221 3222 3223 3224
       mem = memory(size=256)
       state = fc_layer(input=mem, size=256)
       mem.set_input(mem)

    :param name: the name of the layer which this memory remembers.
                 If name is None, user should call set_input() to specify the
                 name of the layer which this memory remembers.
Z
zhangjinchao01 已提交
3225 3226 3227
    :type name: basestring
    :param size: size of memory.
    :type size: int
3228 3229 3230
    :param memory_name: the name of the memory.
                        It is ignored when name is provided.
    :type memory_name: basestring
3231
    :param is_seq: DEPRECATED. is sequence for boot_layer
Z
zhangjinchao01 已提交
3232 3233 3234 3235 3236 3237 3238 3239 3240
    :type is_seq: bool
    :param boot_layer: boot layer of memory.
    :type boot_layer: LayerOutput|None
    :param boot_bias: boot layer's bias
    :type boot_bias: ParameterAttribute|None
    :param boot_bias_active_type: boot layer's active type.
    :type boot_bias_active_type: BaseActivation
    :param boot_with_const_id: boot layer's id.
    :type boot_with_const_id: int
D
dangqingqing 已提交
3241
    :return: LayerOutput object which is a memory.
Z
zhangjinchao01 已提交
3242 3243 3244 3245 3246 3247 3248 3249 3250 3251
    :rtype: LayerOutput
    """
    if boot_bias_active_type is None:
        boot_bias_active_type = LinearActivation()

    assert boot_bias is None or isinstance(boot_bias, ParameterAttribute)
    if isinstance(boot_bias, ParameterAttribute):
        boot_bias = ParamAttr.to_bias(boot_bias)

    assert boot_layer is None or isinstance(boot_layer, LayerOutput)
3252 3253
    if name is not None:
        memory_name = None
Z
zhangjinchao01 已提交
3254

3255 3256 3257 3258 3259 3260 3261 3262
    memory_name = Memory(
        name,
        size,
        boot_layer=boot_layer.name if boot_layer is not None else None,
        boot_bias=boot_bias,
        boot_bias_active_type=boot_bias_active_type.name,
        boot_with_const_id=boot_with_const_id,
        memory_name=memory_name)
Q
qijun 已提交
3263 3264

    lout = LayerOutput(
3265
        name=memory_name,
Q
qijun 已提交
3266 3267 3268
        size=size,
        layer_type=LayerType.MEMORY,
        parents=[boot_layer] if boot_layer is not None else None)
Z
zhangjinchao01 已提交
3269 3270 3271 3272
    return lout


@wrap_bias_attr_default()
3273 3274
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
@wrap_act_default(param_names=['state_act'], act=TanhActivation())
Z
zhangjinchao01 已提交
3275 3276
@wrap_act_default(act=TanhActivation())
@wrap_name_default('lstm_step')
3277
@layer_support()
Q
qijun 已提交
3278 3279
def lstm_step_layer(input,
                    state,
3280
                    size=None,
Q
qijun 已提交
3281 3282 3283 3284 3285 3286
                    act=None,
                    name=None,
                    gate_act=None,
                    state_act=None,
                    bias_attr=None,
                    layer_attr=None):
Z
zhangjinchao01 已提交
3287
    """
3288 3289
    LSTM Step Layer. This function is used only in recurrent_group.
    The lstm equations are shown as follows.
Z
zhangjinchao01 已提交
3290 3291 3292

    ..  math::

3293
        i_t & = \\sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + W_{c_i}c_{t-1} + b_i)
Z
zhangjinchao01 已提交
3294

3295
        f_t & = \\sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + W_{c_f}c_{t-1} + b_f)
Z
zhangjinchao01 已提交
3296

3297
        c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t+W_{h_c}h_{t-1} + b_c)
Z
zhangjinchao01 已提交
3298

3299
        o_t & = \\sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + W_{c_o}c_t + b_o)
Z
zhangjinchao01 已提交
3300

L
luotao02 已提交
3301
        h_t & = o_t tanh(c_t)
Z
zhangjinchao01 已提交
3302 3303


L
luotao02 已提交
3304
    The input of lstm step is :math:`Wx_t + Wh_{t-1}`, and user should use
Z
zhangjinchao01 已提交
3305
    :code:`mixed_layer` and :code:`full_matrix_projection` to calculate these
3306
    input vectors.
Z
zhangjinchao01 已提交
3307 3308 3309 3310 3311 3312 3313 3314 3315 3316

    The state of lstm step is :math:`c_{t-1}`. And lstm step layer will do

    ..  math::

        i_t = \\sigma(input + W_{ci}c_{t-1} + b_i)

        ...


3317 3318
    This layer has two outputs. Default output is :math:`h_t`. The other
    output is :math:`o_t`, whose name is 'state' and can use
Z
zhangjinchao01 已提交
3319 3320 3321 3322
    :code:`get_output_layer` to extract this output.

    :param name: Layer's name.
    :type name: basestring
3323 3324
    :param size: Layer's size. NOTE: lstm layer's size, should be equal to
                 :code:`input.size/4`, and should be equal to
Z
zhangjinchao01 已提交
3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342
                 :code:`state.size`.
    :type size: int
    :param input: input layer. :math:`Wx_t + Wh_{t-1}`
    :type input: LayerOutput
    :param state: State Layer. :math:`c_{t-1}`
    :type state: LayerOutput
    :param act: Activation type. Default is tanh
    :type act: BaseActivation
    :param gate_act: Gate Activation Type. Default is sigmoid, and should
                          be sigmoid only.
    :type gate_act: BaseActivation
    :param state_act: State Activation Type. Default is sigmoid, and should
                           be sigmoid only.
    :type state_act: BaseActivation
    :param bias_attr: Bias Attribute.
    :type bias_attr: ParameterAttribute
    :param layer_attr: layer's extra attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3343
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3344 3345
    :rtype: LayerOutput
    """
3346 3347 3348

    assert size is None or state.size == size
    size = state.size
Z
zhangjinchao01 已提交
3349 3350 3351 3352 3353 3354 3355
    Layer(
        name=name,
        type=LayerType.LSTM_STEP_LAYER,
        active_type=act.name,
        active_gate_type=gate_act.name,
        active_state_type=state_act.name,
        bias=ParamAttr.to_bias(bias_attr),
3356
        size=state.size,
Q
qijun 已提交
3357 3358
        inputs=[input.name, state.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3359

Q
qijun 已提交
3360 3361 3362 3363 3364 3365 3366
    return LayerOutput(
        name=name,
        layer_type=LayerType.LSTM_STEP_LAYER,
        parents=[input, state],
        activation=act,
        size=size,
        outputs=['default', 'state'])
Z
zhangjinchao01 已提交
3367 3368 3369


@wrap_bias_attr_default()
W
wangyang59 已提交
3370
@wrap_param_attr_default()
Q
qijun 已提交
3371
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
Z
zhangjinchao01 已提交
3372 3373 3374
@wrap_act_default(act=TanhActivation())
@wrap_name_default('gru_step')
@layer_support()
Q
qijun 已提交
3375 3376 3377 3378 3379 3380 3381
def gru_step_layer(input,
                   output_mem,
                   size=None,
                   act=None,
                   name=None,
                   gate_act=None,
                   bias_attr=None,
W
wangyang59 已提交
3382
                   param_attr=None,
Q
qijun 已提交
3383
                   layer_attr=None):
Z
zhangjinchao01 已提交
3384 3385 3386 3387 3388 3389 3390 3391 3392 3393
    """

    :param input:
    :type input: LayerOutput
    :param output_mem:
    :param size:
    :param act:
    :param name:
    :param gate_act:
    :param bias_attr:
3394 3395
    :param param_attr: the parameter_attribute for transforming the output_mem
                       from previous step.
Z
zhangjinchao01 已提交
3396
    :param layer_attr:
D
dangqingqing 已提交
3397
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3398 3399 3400 3401 3402 3403 3404 3405
    :rtype: LayerOutput
    """
    assert input.size % 3 == 0
    if size is None:
        size = input.size / 3
    Layer(
        name=name,
        type=LayerType.GRU_STEP_LAYER,
3406 3407 3408 3409
        # The parameter here is for transforming the output_mem. The input has
        # already been transformed outside this module so it does not need
        # parameter associated with it.
        # The parameter here is instead grouped with input is due to
3410
        # backward model compatibility.
3411
        inputs=[Input(input.name, **param_attr.attr), output_mem.name],
Z
zhangjinchao01 已提交
3412 3413 3414 3415
        bias=ParamAttr.to_bias(bias_attr),
        size=size,
        active_type=act.name,
        active_gate_type=gate_act.name,
Q
qijun 已提交
3416
        **ExtraAttr.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3417
    return LayerOutput(
Q
qijun 已提交
3418 3419
        name=name,
        layer_type=LayerType.GRU_STEP_LAYER,
Z
zhangjinchao01 已提交
3420
        parents=[input, output_mem],
Q
qijun 已提交
3421 3422
        size=size,
        activation=act)
Z
zhangjinchao01 已提交
3423 3424


Y
Yu Yang 已提交
3425 3426 3427 3428
@wrap_bias_attr_default()
@wrap_param_attr_default()
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
@wrap_act_default(act=TanhActivation())
Q
qijun 已提交
3429
@wrap_name_default('gru_step_naive')
Y
Yu Yang 已提交
3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496
@layer_support(ERROR_CLIPPING, DROPOUT)
def gru_step_naive_layer(input,
                         output_mem,
                         size=None,
                         name=None,
                         act=None,
                         gate_act=None,
                         bias_attr=None,
                         param_attr=None,
                         layer_attr=None):
    """
    GRU Step Layer, but using MixedLayer to generate. It support ERROR_CLIPPING
    and DROPOUT.

    :param input:
    :param output_mem:
    :param size:
    :param name:
    :param act:
    :param gate_act:
    :param bias_attr:
    :param param_attr:
    :param layer_attr:
    :return:
    """
    if input.size % 3 != 0:
        raise ValueError("GruStep input size must be divided by 3")
    if size is None:
        size = input.size / 3

    def __gate__(gate_name, offset):
        with mixed_layer(
                name=name + "_" + gate_name,
                size=size,
                layer_attr=layer_attr,
                bias_attr=bias_attr,
                act=gate_act) as gate:
            gate += identity_projection(input=input, offset=offset)
            gate += full_matrix_projection(
                input=output_mem, param_attr=param_attr)
        return gate

    update_gate = __gate__("update", 0)
    reset_gate = __gate__("reset", size)

    with mixed_layer(
            name=name + "_reset_output", bias_attr=False) as reset_output:
        reset_output += dotmul_operator(a=output_mem, b=reset_gate)

    with mixed_layer(
            name=name + "_output_candidate",
            size=size,
            layer_attr=layer_attr,
            bias_attr=bias_attr,
            act=act) as output_candidate:
        output_candidate += identity_projection(input=input, offset=2 * size)
        output_candidate += full_matrix_projection(
            input=reset_output, param_attr=param_attr)

    with mixed_layer(name=name) as output:
        output += identity_projection(output_mem)
        output += dotmul_operator(a=output_mem, b=update_gate, scale=-1.0)
        output += dotmul_operator(a=output_candidate, b=update_gate)

    return output


Z
zhangjinchao01 已提交
3497 3498 3499 3500
@wrap_name_default()
@layer_support()
def get_output_layer(input, arg_name, name=None, layer_attr=None):
    """
C
caoying03 已提交
3501 3502 3503 3504
    Get layer's output by name. In PaddlePaddle, a layer might return multiple
    values, but returns one layer's output. If the user wants to use another
    output besides the default one, please use get_output_layer first to get
    the output from input.
Z
zhangjinchao01 已提交
3505 3506 3507 3508 3509 3510 3511 3512 3513

    :param name: Layer's name.
    :type name: basestring
    :param input: get output layer's input. And this layer should contains
                   multiple outputs.
    :type input: LayerOutput
    :param arg_name: Output name from input.
    :type arg_name: basestring
    :param layer_attr: Layer's extra attribute.
D
dangqingqing 已提交
3514
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3515 3516 3517 3518 3519 3520 3521
    :rtype: LayerOutput
    """
    # GetOutputLayer
    assert arg_name in input.outputs, 'Get Output From an not existed input.' \
                                      ' The get output name is %s, which not' \
                                      ' in %s' % (
                                          arg_name, ",".join(input.outputs))
Q
qijun 已提交
3522 3523 3524 3525 3526 3527 3528
    Layer(
        name=name,
        type=LayerType.GET_OUTPUT_LAYER,
        inputs=[Input(
            input.name, input_layer_argument=arg_name)],
        size=input.size,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3529

Q
qijun 已提交
3530 3531 3532 3533 3534
    return LayerOutput(
        name=name,
        layer_type=LayerType.GET_OUTPUT_LAYER,
        parents=[input],
        size=input.size)
Z
zhangjinchao01 已提交
3535 3536 3537 3538 3539 3540 3541


@wrap_name_default()
@wrap_act_default()
@wrap_bias_attr_default()
@wrap_param_attr_default()
@layer_support()
Q
qijun 已提交
3542 3543 3544 3545 3546 3547 3548
def recurrent_layer(input,
                    act=None,
                    bias_attr=None,
                    param_attr=None,
                    name=None,
                    reverse=False,
                    layer_attr=None):
Z
zhangjinchao01 已提交
3549
    """
3550 3551
    Simple recurrent unit layer. It is just a fully connect layer through both
    time and neural network.
Z
zhangjinchao01 已提交
3552

3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579
    For each sequence [start, end] it performs the following computation\:

    ..  math::

        out_{i} = act(in_{i})     \\      \\      \\text{for} \\ i = start \\\\
        out_{i} = act(in_{i} + out_{i-1} * W) \\ \\ \\text{for} \\ start < i <= end

    If reversed is true, the order is reversed\:

    ..  math::

        out_{i} = act(in_{i})           \\    \\   \\text{for} \\ i = end  \\\\
        out_{i} = act(in_{i} + out_{i+1} * W) \\ \\ \\text{for} \\ start <= i < end


    :param input: Input Layer
    :type input: LayerOutput
    :param act: activation.
    :type act: BaseActivation
    :param bias_attr: bias attribute.
    :type bias_attr: ParameterAttribute
    :param param_attr: parameter attribute.
    :type param_attr: ParameterAttribute
    :param name: name of the layer
    :type name: basestring
    :param layer_attr: Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3580
    :return: LayerOutput object.
3581
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
3582
    """
Q
qijun 已提交
3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597
    Layer(
        name=name,
        type=LayerType.RECURRENT_LAYER,
        inputs=Input(input.name, **param_attr.attr),
        active_type=act.name,
        bias=ParamAttr.to_bias(bias_attr),
        reversed=reverse,
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.RECURRENT_LAYER,
        parents=[input],
        size=input.size,
        activation=act,
        reverse=reverse)
Z
zhangjinchao01 已提交
3598 3599 3600 3601 3602 3603


class StaticInput(object):
    """
    StaticInput is only used in recurrent_group which defines a read-only memory
    that can be a sequence or non-sequence.
3604 3605
    :param size: DEPRECATED
    :param is_seq: DEPRECATED
Z
zhangjinchao01 已提交
3606
    """
3607

Z
zhangjinchao01 已提交
3608 3609 3610
    def __init__(self, input, is_seq=False, size=None):
        assert isinstance(input, LayerOutput)
        self.input = input
3611
        assert input.size is not None
Z
zhangjinchao01 已提交
3612
        if size is not None:
3613
            assert input.size == size
Z
zhangjinchao01 已提交
3614 3615


3616
def SubsequenceInput(input):
Z
zhangjinchao01 已提交
3617
    """
3618
    DEPRECATED.
Z
zhangjinchao01 已提交
3619 3620 3621 3622 3623 3624 3625 3626
    Input sequence has sub-sequence, used in recurrent_group.

    The example usage is:

    .. code-block:: python

       input = SubsequenceInput(layer)
    """
3627
    return input
Z
zhangjinchao01 已提交
3628 3629 3630


@wrap_name_default("recurrent_group")
3631
def recurrent_group(step, input, reverse=False, name=None, targetInlink=None):
Z
zhangjinchao01 已提交
3632
    """
C
caoying03 已提交
3633 3634 3635 3636 3637
    Recurrent layer group is an extremely flexible recurrent unit in
    PaddlePaddle. As long as the user defines the calculation done within a
    time step, PaddlePaddle will iterate such a recurrent calculation over
    sequence input. This is extremely usefull for attention based model, or
    Neural Turning Machine like models.
Z
zhangjinchao01 已提交
3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681

    The basic usage (time steps) is:

    .. code-block:: python

       def step(input):
           output = fc_layer(input=layer,
                             size=1024,
                             act=LinearActivation(),
                             bias_attr=False)
           return output

       group = recurrent_group(input=layer,
                               step=step)

    You can see following configs for further usages:

    - time steps: lstmemory_group, paddle/gserver/tests/sequence_layer_group.conf, \
                  demo/seqToseq/seqToseq_net.py
    - sequence steps: paddle/gserver/tests/sequence_nest_layer_group.conf

    :param step: recurrent one time step function.The input of this function is
                 input of the group. The return of this function will be
                 recurrent group's return value.

                 The recurrent group scatter a sequence into time steps. And
                 for each time step, will invoke step function, and return
                 a time step result. Then gather each time step of output into
                 layer group's output.

    :type step: callable

    :param name: recurrent_group's name.
    :type name: basestring

    :param input: Input links array.

                  LayerOutput will be scattered into time steps.
                  SubsequenceInput will be scattered into sequence steps.
                  StaticInput will be imported to each time step, and doesn't change
                  through time. It's a mechanism to access layer outside step function.

    :type input: LayerOutput|StaticInput|SubsequenceInput|list|tuple

3682 3683
    :param reverse: If reverse is set true, the recurrent unit will process the
                    input sequence in a reverse order.
Z
zhangjinchao01 已提交
3684
    :type reverse: bool
3685

3686 3687
    :param targetInlink: DEPRECATED.
                         The input layer which share info with layer group's output
3688 3689 3690 3691 3692 3693 3694 3695 3696

                         Param input specifies multiple input layers. For
                         SubsequenceInput inputs, config should assign one input
                         layer that share info(the number of sentences and the number
                         of words in each sentence) with all layer group's outputs.
                         targetInlink should be one of the layer group's input.

    :type targetInlink: LayerOutput|SubsequenceInput

D
dangqingqing 已提交
3697
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3698 3699 3700 3701
    :rtype: LayerOutput
    """
    model_type('recurrent_nn')

3702
    if isinstance(input, LayerOutput) or isinstance(input, StaticInput):
Z
zhangjinchao01 已提交
3703
        input = [input]
3704
    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
3705 3706

    def is_in_links(x):
3707
        return isinstance(x, LayerOutput)
Z
zhangjinchao01 已提交
3708 3709 3710 3711

    in_links = filter(is_in_links, input)

    RecurrentLayerGroupWithoutOutLinksBegin(
Q
qijun 已提交
3712
        name=name,
3713 3714
        in_links=map(lambda x: x.name, in_links),
        seq_reversed=reverse)
Z
zhangjinchao01 已提交
3715 3716
    in_args = []
    for each_input in input:
3717
        if isinstance(each_input, StaticInput):  # StaticInput
Z
zhangjinchao01 已提交
3718
            mem_name = "__%s_memory__" % each_input.input.name
Q
qijun 已提交
3719
            mem = memory(
3720
                name=None,
Q
qijun 已提交
3721 3722
                size=each_input.input.size,
                boot_layer=each_input.input)
3723
            mem.set_input(mem)
Z
zhangjinchao01 已提交
3724
            in_args.append(mem)
3725 3726
        else:
            in_args.append(each_input)
L
Luo Tao 已提交
3727

Z
zhangjinchao01 已提交
3728 3729 3730 3731 3732
    layer_outs = step(*in_args)

    if isinstance(layer_outs, LayerOutput):
        layer_outs = [layer_outs]

3733 3734 3735 3736 3737 3738
    for layer_out in layer_outs:
        assert isinstance(
            layer_out, LayerOutput
        ), "Type of step function's return value must be LayerOutput."
        layer_out.reverse = reverse
        RecurrentLayerGroupSetOutLink(layer_out.name)
Z
zhangjinchao01 已提交
3739 3740 3741

    RecurrentLayerGroupEnd(name=name)

X
xuwei06 已提交
3742
    for layer_out in layer_outs:
3743 3744
        # The previous full_name is the name inside the recurrent group.
        # We need a full_name outside the recurrent group.
X
xuwei06 已提交
3745 3746
        layer_out.full_name = MakeLayerNameInSubmodel(layer_out.name)

Z
zhangjinchao01 已提交
3747 3748 3749 3750 3751
    if len(layer_outs) == 1:
        return layer_outs[0]
    else:
        return layer_outs

3752

Z
zhangjinchao01 已提交
3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766
class BaseGeneratedInput(object):
    def __init__(self):
        self.bos_id = None
        self.eos_id = None

    def before_real_step(self):
        raise NotImplementedError()

    def after_real_step(self, *args):
        raise NotImplementedError()


class GeneratedInput(BaseGeneratedInput):
    def after_real_step(self, input):
3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780
        if isinstance(input, LayerOutput):
            input = [input]
        elif isinstance(input, collections.Sequence):
            input = list(input)
            if len(input) > 1:
                logger.info(
                    ("More than one layers inside the recurrent_group "
                     "are returned as outputs of the entire recurrent_group "
                     "PLEASE garantee the first output is probability of "
                     "the predicted next word."))

        return [maxid_layer(
            input=input[0], name='__beam_search_predict__')] + (
                input[1:] if len(input) > 1 else [])
Z
zhangjinchao01 已提交
3781 3782

    def before_real_step(self):
Q
qijun 已提交
3783 3784 3785 3786 3787 3788 3789 3790 3791
        predict_id = memory(
            name='__beam_search_predict__',
            size=self.size,
            boot_with_const_id=self.bos_id)

        trg_emb = embedding_layer(
            input=predict_id,
            size=self.embedding_size,
            param_attr=ParamAttr(name=self.embedding_name))
Z
zhangjinchao01 已提交
3792 3793 3794
        return trg_emb

    def __init__(self, size, embedding_name, embedding_size):
3795
        super(GeneratedInput, self).__init__()
Z
zhangjinchao01 已提交
3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818
        self.size = size
        self.embedding_name = embedding_name
        self.embedding_size = embedding_size


@wrap_name_default()
def maxid_layer(input, name=None, layer_attr=None):
    """
    A layer for finding the id which has the maximal value for each sample.
    The result is stored in output.ids.

    The example usage is:

    .. code-block:: python

       maxid = maxid_layer(input=layer)

    :param input: Input layer name.
    :type input: LayerOutput
    :param name: Layer name.
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
3819
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3820 3821 3822 3823
    :rtype: LayerOutput
    """

    assert isinstance(input, LayerOutput)
Q
qijun 已提交
3824 3825 3826 3827 3828 3829 3830 3831 3832 3833
    l = Layer(
        name=name,
        type='maxid',
        inputs=[input.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.MAXID_LAYER,
        parents=[input],
        size=l.config.size)
Z
zhangjinchao01 已提交
3834

3835

H
Haonan 已提交
3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861
@wrap_name_default()
def out_prod_layer(input1, input2, name=None, layer_attr=None):
    """
    A layer for computing the outer product of two vectors
    The result is a matrix of size(input1) x size(input2)

    The example usage is:

    .. code-block:: python

       out_prod = out_prod_layer(input1=vec1, input2=vec2)

    :param name: Layer name.
    :type name: basestring
    :param input1: The first input layer name.
    :type input: LayerOutput
    :param input2: The second input layer name.
    :type input2: LayerOutput
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    assert isinstance(input1, LayerOutput)
    assert isinstance(input2, LayerOutput)
Q
qijun 已提交
3862 3863 3864 3865 3866 3867 3868 3869 3870 3871
    l = Layer(
        name=name,
        type=LayerType.OUT_PROD_LAYER,
        inputs=[input1.name, input2.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.OUT_PROD_LAYER,
        parents=[input1, input2],
        size=l.config.size)
3872

Z
zhangjinchao01 已提交
3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888

@wrap_name_default()
def eos_layer(input, eos_id, name=None, layer_attr=None):
    """
    A layer for checking EOS for each sample:
    - output_id = (input_id == conf.eos_id)

    The result is stored in output\_.ids.
    It is used by recurrent layer group.

    The example usage is:

    .. code-block:: python

       eos = eos_layer(input=layer, eos_id=id)

L
luotao02 已提交
3889 3890
    :param name: Layer name.
    :type name: basestring
Z
zhangjinchao01 已提交
3891 3892 3893 3894 3895 3896
    :param input: Input layer name.
    :type input: LayerOutput
    :param eos_id: end id of sequence
    :type eos_id: int
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
3897
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3898 3899
    :rtype: LayerOutput
    """
Q
qijun 已提交
3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910
    l = Layer(
        name=name,
        type=LayerType.EOSID_LAYER,
        eos_id=eos_id,
        inputs=[input.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.EOSID_LAYER,
        parents=[input],
        size=l.config.size)
Z
zhangjinchao01 已提交
3911 3912 3913


@wrap_name_default()
Q
qijun 已提交
3914 3915 3916 3917 3918 3919 3920
def beam_search(step,
                input,
                bos_id,
                eos_id,
                beam_size,
                max_length=500,
                name=None,
Z
zhangjinchao01 已提交
3921
                num_results_per_sample=None):
3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932
    """
    Beam search is a heuristic search algorithm used in sequence generation.
    It explores a graph by expanding the most promising nodes in a limited set
    to maintain tractability.

    The example usage is:

    .. code-block:: python

        def rnn_step(input):
            last_time_step_output = memory(name='rnn', size=512)
3933
            with mixed_layer(size=512, name='rnn') as simple_rnn:
3934 3935 3936 3937
                simple_rnn += full_matrix_projection(input)
                simple_rnn += last_time_step_output
            return simple_rnn

3938 3939 3940 3941 3942
        generated_word_embedding = GeneratedInput(
                               size=target_dictionary_dim,
                               embedding_name="target_language_embedding",
                               embedding_size=word_vector_dim)

3943 3944
        beam_gen = beam_search(name="decoder",
                               step=rnn_step,
3945 3946
                               input=[StaticInput(encoder_last),
                                      generated_word_embedding],
3947 3948
                               bos_id=0,
                               eos_id=1,
3949
                               beam_size=5)
3950 3951 3952 3953 3954 3955 3956 3957 3958

    Please see the following demo for more details:

    - machine translation : demo/seqToseq/translation/gen.conf \
                            demo/seqToseq/seqToseq_net.py

    :param name: Name of the recurrent unit that generates sequences.
    :type name: base string
    :param step: A callable function that defines the calculation in a time
3959
                 step, and it is applied to sequences with arbitrary length by
3960 3961 3962 3963 3964
                 sharing a same set of weights.

                 You can refer to the first parameter of recurrent_group, or
                 demo/seqToseq/seqToseq_net.py for more details.
    :type step: callable
3965 3966
    :param input: Input data for the recurrent unit, which should include the
                  previously generated words as a GeneratedInput object.
3967
                  In beam_search, none of the input's type should be LayerOutput.
3968
    :type input: list
3969 3970 3971
    :param bos_id: Index of the start symbol in the dictionary. The start symbol
                   is a special token for NLP task, which indicates the
                   beginning of a sequence. In the generation task, the start
3972
                   symbol is essential, since it is used to initialize the RNN
3973 3974 3975 3976 3977 3978 3979 3980
                   internal state.
    :type bos_id: int
    :param eos_id: Index of the end symbol in the dictionary. The end symbol is
                   a special token for NLP task, which indicates the end of a
                   sequence. The generation process will stop once the end
                   symbol is generated, or a pre-defined max iteration number
                   is exceeded.
    :type eos_id: int
3981 3982
    :param max_length: Max generated sequence length.
    :type max_length: int
3983 3984 3985 3986 3987 3988 3989 3990 3991 3992
    :param beam_size: Beam search for sequence generation is an iterative search
                      algorithm. To maintain tractability, every iteration only
                      only stores a predetermined number, called the beam_size,
                      of the most promising next words. The greater the beam
                      size, the fewer candidate words are pruned.
    :type beam_size: int
    :param num_results_per_sample: Number of the generated results per input
                                  sequence. This number must always be less than
                                  beam size.
    :type num_results_per_sample: int
3993 3994
    :return: The generated word index.
    :rtype: LayerOutput
3995 3996
    """

Z
zhangjinchao01 已提交
3997 3998 3999 4000 4001
    if num_results_per_sample is None:
        num_results_per_sample = beam_size
    if num_results_per_sample > beam_size:
        logger.warning("num_results_per_sample should be less than beam_size")

Q
qijun 已提交
4002
    if isinstance(input, StaticInput) or isinstance(input, BaseGeneratedInput):
Z
zhangjinchao01 已提交
4003 4004 4005 4006 4007 4008
        input = [input]

    generated_input_index = -1

    real_input = []
    for i, each_input in enumerate(input):
4009 4010 4011
        assert not isinstance(each_input, LayerOutput), (
            "in beam_search, "
            "none of the input should has a type of LayerOutput.")
Z
zhangjinchao01 已提交
4012
        if isinstance(each_input, BaseGeneratedInput):
4013 4014
            assert generated_input_index == -1, ("recurrent_group accepts "
                                                 "only one GeneratedInput.")
Z
zhangjinchao01 已提交
4015
            generated_input_index = i
4016

Z
zhangjinchao01 已提交
4017 4018 4019
        else:
            real_input.append(each_input)

4020
    assert generated_input_index != -1, "No GeneratedInput is given."
Z
zhangjinchao01 已提交
4021 4022 4023 4024 4025 4026 4027 4028

    gipt = input[generated_input_index]

    gipt.bos_id = bos_id
    gipt.eos_id = eos_id

    def __real_step__(*args):
        eos_name = "__%s_eos_layer__" % name
Q
qijun 已提交
4029 4030 4031 4032 4033 4034
        RecurrentLayerGroupSetGenerator(
            Generator(
                eos_layer_name=eos_name,
                max_num_frames=max_length,
                beam_size=beam_size,
                num_results_per_sample=num_results_per_sample))
Z
zhangjinchao01 已提交
4035 4036 4037 4038 4039 4040

        args = list(args)
        args.insert(generated_input_index, gipt.before_real_step())

        predict = gipt.after_real_step(step(*args))

4041
        eos_layer(input=predict[0], eos_id=eos_id, name=eos_name)
Z
zhangjinchao01 已提交
4042 4043
        return predict

4044 4045
    return recurrent_group(
        step=__real_step__, input=real_input, reverse=False, name=name)
Z
zhangjinchao01 已提交
4046

Q
qijun 已提交
4047

4048 4049
def __cost_input__(input, label, weight=None):
    """
4050
    inputs and parents for cost layers.
4051 4052 4053 4054
    """
    ipts = [Input(input.name), Input(label.name)]
    parents = [input, label]
    if weight is not None:
4055
        assert weight.size == 1
4056 4057 4058
        ipts.append(Input(weight.name))
        parents.append(weight)
    return ipts, parents
4059

Z
zhangjinchao01 已提交
4060 4061

@wrap_name_default()
L
luotao1 已提交
4062
@layer_support()
4063
def mse_cost(input, label, weight=None, name=None, coeff=1.0, layer_attr=None):
Z
zhangjinchao01 已提交
4064
    """
L
Luo Tao 已提交
4065 4066 4067 4068
    mean squared error cost:

    ..  math::

L
Liu Yiqun 已提交
4069
        \\frac{1}{N}\sum_{i=1}^N(t_i-y_i)^2
Z
zhangjinchao01 已提交
4070 4071

    :param name: layer name.
4072
    :type name: basestring
Z
zhangjinchao01 已提交
4073
    :param input: Network prediction.
4074
    :type input: LayerOutput
Z
zhangjinchao01 已提交
4075
    :param label: Data label.
4076 4077 4078 4079
    :type label: LayerOutput
    :param weight: The weight affects the cost, namely the scale of cost.
                   It is an optional argument.
    :type weight: LayerOutput
4080 4081
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float
L
luotao1 已提交
4082 4083
    :param layer_attr: layer's extra attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
4084
    :return: LayerOutput object.
4085
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
4086
    """
4087 4088
    ipts, parents = __cost_input__(input, label, weight)

Q
qijun 已提交
4089 4090 4091 4092
    Layer(
        inputs=ipts,
        type="square_error",
        name=name,
4093
        coeff=coeff,
Q
qijun 已提交
4094
        **ExtraLayerAttribute.to_kwargs(layer_attr))
X
xuwei06 已提交
4095
    return LayerOutput(name, LayerType.COST, parents=parents, size=1)
Z
zhangjinchao01 已提交
4096 4097


L
Luo Tao 已提交
4098 4099 4100
regression_cost = mse_cost


Z
zhangjinchao01 已提交
4101
@wrap_name_default("cost")
4102
@layer_support()
Q
qijun 已提交
4103 4104 4105 4106
def classification_cost(input,
                        label,
                        weight=None,
                        name=None,
4107
                        evaluator=classification_error_evaluator,
4108 4109
                        layer_attr=None,
                        coeff=1.):
Z
zhangjinchao01 已提交
4110 4111 4112 4113 4114 4115 4116 4117 4118
    """
    classification cost Layer.

    :param name: layer name.
    :type name: basestring
    :param input: input layer name. network output.
    :type input: LayerOutput
    :param label: label layer name. data_layer often.
    :type label: LayerOutput
4119 4120 4121
    :param weight: The weight affects the cost, namely the scale of cost.
                   It is an optional argument.
    :type weight: LayerOutput
Z
zhangjinchao01 已提交
4122
    :param evaluator: Evaluator method.
4123 4124
    :param layer_attr: layer's extra attribute.
    :type layer_attr: ExtraLayerAttribute
4125 4126
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float
D
dangqingqing 已提交
4127
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4128 4129 4130 4131 4132
    :rtype: LayerOutput
    """
    assert input.layer_type != LayerType.DATA
    assert isinstance(input.activation, SoftmaxActivation)
    assert label.layer_type == LayerType.DATA
4133 4134 4135

    ipts, parents = __cost_input__(input, label, weight)

Q
qijun 已提交
4136 4137 4138 4139
    Layer(
        name=name,
        type="multi-class-cross-entropy",
        inputs=ipts,
4140
        coeff=coeff,
Q
qijun 已提交
4141
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
4142 4143 4144 4145 4146 4147 4148 4149 4150 4151

    def __add_evaluator__(e):
        assert callable(e)
        assert hasattr(e, 'is_evaluator')
        assert isinstance(e.is_evaluator, bool)
        assert e.is_evaluator
        assert hasattr(e, "for_classification")
        assert isinstance(e.for_classification, bool)
        assert e.for_classification

4152
        e(name=e.__name__, input=input, label=label, weight=weight)
Z
zhangjinchao01 已提交
4153

4154
    if not isinstance(evaluator, collections.Sequence):
Z
zhangjinchao01 已提交
4155 4156 4157 4158 4159
        evaluator = [evaluator]

    for each_evaluator in evaluator:
        __add_evaluator__(each_evaluator)

X
xuwei06 已提交
4160
    return LayerOutput(name, LayerType.COST, parents=parents, size=1)
Z
zhangjinchao01 已提交
4161

4162

Q
qijun 已提交
4163 4164 4165 4166 4167 4168 4169 4170 4171
def conv_operator(img,
                  filter,
                  filter_size,
                  num_filters,
                  num_channels=None,
                  stride=1,
                  padding=0,
                  filter_size_y=None,
                  stride_y=None,
4172 4173
                  padding_y=None,
                  trans=False):
Z
zhangjinchao01 已提交
4174 4175 4176 4177 4178 4179 4180 4181 4182 4183
    """
    Different from img_conv_layer, conv_op is an Operator, which can be used
    in mixed_layer. And conv_op takes two inputs to perform convolution.
    The first input is the image and the second is filter kernel. It only
    support GPU mode.

    The example usage is:

    .. code-block:: python

4184 4185
       op = conv_operator(img=input1,
                          filter=input2,
4186
                          filter_size=3,
Z
zhangjinchao01 已提交
4187 4188 4189
                          num_filters=64,
                          num_channels=64)

4190 4191 4192 4193
    :param img: input image
    :type img: LayerOutput
    :param filter: input filter
    :type filter: LayerOutput
Z
zhangjinchao01 已提交
4194 4195
    :param filter_size: The x dimension of a filter kernel.
    :type filter_size: int
C
caoying03 已提交
4196 4197 4198
    :param filter_size_y: The y dimension of a filter kernel. Since
                        PaddlePaddle now supports rectangular filters,
                        the filter's shape can be (filter_size, filter_size_y).
Z
zhangjinchao01 已提交
4199
    :type filter_size_y: int
4200 4201
    :param num_filters: channel of output data.
    :type num_filters: int
4202 4203
    :param num_channels: channel of input data.
    :type num_channels: int
Z
zhangjinchao01 已提交
4204
    :param stride: The x dimension of the stride.
L
luotao02 已提交
4205
    :type stride: int
Z
zhangjinchao01 已提交
4206
    :param stride_y: The y dimension of the stride.
L
luotao02 已提交
4207
    :type stride_y: int
Z
zhangjinchao01 已提交
4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220
    :param padding: The x dimension of padding.
    :type padding: int
    :param padding_y: The y dimension of padding.
    :type padding_y: int
    :return: A ConvOperator Object.
    :rtype: ConvOperator
    """
    if filter_size_y is None:
        filter_size_y = filter_size
    if stride_y is None:
        stride_y = stride
    if padding_y is None:
        padding_y = padding
4221

4222 4223
    if num_channels is None:
        num_channels = img.num_filters
4224 4225

    assert isinstance(filter, LayerOutput)
4226
    assert filter.size is not None
4227

4228 4229 4230
    opCls = ConvTransOperator if trans else ConvOperator

    op = opCls(
Q
qijun 已提交
4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241
        input_layer_names=[img.name, filter.name],
        num_filters=num_filters,
        conv_conf=Conv(
            filter_size=filter_size,
            padding=padding,
            stride=stride,
            channels=num_channels,
            filter_size_y=filter_size_y,
            padding_y=padding_y,
            stride_y=stride_y,
            groups=1))
4242

4243
    op.origin = [img, filter]
Z
zhangjinchao01 已提交
4244 4245
    return op

Q
qijun 已提交
4246

4247
@wrap_param_attr_default()
Q
qijun 已提交
4248 4249 4250 4251 4252 4253 4254 4255 4256 4257
def conv_projection(input,
                    filter_size,
                    num_filters,
                    num_channels=None,
                    stride=1,
                    padding=0,
                    filter_size_y=None,
                    stride_y=None,
                    padding_y=None,
                    groups=1,
4258 4259
                    param_attr=None,
                    trans=False):
4260 4261 4262 4263 4264 4265 4266 4267 4268
    """
    Different from img_conv_layer and conv_op, conv_projection is an Projection,
    which can be used in mixed_layer and conat_layer. It use cudnn to implement
    conv and only support GPU mode.

    The example usage is:

    .. code-block:: python

D
dangqingqing 已提交
4269
       proj = conv_projection(input=input1,
4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283
                              filter_size=3,
                              num_filters=64,
                              num_channels=64)

    :param input: input layer
    :type input: LayerOutput
    :param filter_size: The x dimension of a filter kernel.
    :type filter_size: int
    :param filter_size_y: The y dimension of a filter kernel. Since
                          PaddlePaddle now supports rectangular filters,
                          the filter's shape can be (filter_size, filter_size_y).
    :type filter_size_y: int
    :param num_filters: channel of output data.
    :type num_filters: int
4284 4285
    :param num_channels: channel of input data.
    :type num_channels: int
4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297
    :param stride: The x dimension of the stride.
    :type stride: int
    :param stride_y: The y dimension of the stride.
    :type stride_y: int
    :param padding: The x dimension of padding.
    :type padding: int
    :param padding_y: The y dimension of padding.
    :type padding_y: int
    :param groups: The group number.
    :type groups: int
    :param param_attr: Convolution param attribute. None means default attribute
    :type param_attr: ParameterAttribute
4298 4299
    :param trans: whether it is convTrans or conv
    :type trans: boolean
4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329
    :return: A DotMulProjection Object.
    :rtype: DotMulProjection
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

    if filter_size_y is None:
        if isinstance(filter_size, collections.Sequence):
            assert len(filter_size) == 2
            filter_size, filter_size_y = filter_size
        else:
            filter_size_y = filter_size

    if stride_y is None:
        if isinstance(stride, collections.Sequence):
            assert len(stride) == 2
            stride, stride_y = stride
        else:
            stride_y = stride

    if padding_y is None:
        if isinstance(padding, collections.Sequence):
            assert len(padding) == 2
            padding, padding_y = padding
        else:
            padding_y = padding

    if param_attr.attr.get('initial_smart'):
        # special initial for conv layers.
Q
qijun 已提交
4330
        init_w = (2.0 / (filter_size**2 * num_channels))**0.5
4331 4332 4333 4334 4335
        param_attr.attr["initial_mean"] = 0.0
        param_attr.attr["initial_std"] = init_w
        param_attr.attr["initial_strategy"] = 0
        param_attr.attr["initial_smart"] = False

4336 4337 4338
    projCls = ConvTransProjection if trans else ConvProjection

    proj = projCls(
Q
qijun 已提交
4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350
        input_layer_name=input.name,
        num_filters=num_filters,
        conv_conf=Conv(
            filter_size=filter_size,
            padding=padding,
            stride=stride,
            channels=num_channels,
            filter_size_y=filter_size_y,
            padding_y=padding_y,
            stride_y=stride_y,
            groups=groups),
        **param_attr.attr)
4351 4352 4353 4354

    proj.origin = input
    return proj

Z
zhangjinchao01 已提交
4355

D
dangqingqing 已提交
4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372
@wrap_name_default("pad")
@layer_support()
def pad_layer(input,
              pad_c=None,
              pad_h=None,
              pad_w=None,
              name=None,
              layer_attr=None):
    """
    This operation pads zeros to the input data according to pad_c,pad_h
    and pad_w. pad_c, pad_h, pad_w specifies the which dimension and size
    of padding. And the input data shape is NCHW.

    For example, pad_c=[2,3] means padding 2 zeros before the
    input data and 3 zeros after the input data in channel dimension.
    pad_h means padding zeros in height dimension. pad_w means padding zeros
    in width dimension.
4373

D
dangqingqing 已提交
4374
    For example,
4375

4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396
    .. code-block:: python

       input(2,2,2,3)  = [
                           [ [[1,2,3], [3,4,5]],
                             [[2,3,5], [1,6,7]] ],
                           [ [[4,3,1], [1,8,7]],
                             [[3,8,9], [2,3,5]] ]
                         ]

       pad_c=[1,1], pad_h=[0,0], pad_w=[0,0]

       output(2,4,2,3) = [
                           [ [[0,0,0], [0,0,0]],
                             [[1,2,3], [3,4,5]],
                             [[2,3,5], [1,6,7]],
                             [[0,0,0], [0,0,0]] ],
                           [ [[0,0,0], [0,0,0]],
                             [[4,3,1], [1,8,7]],
                             [[3,8,9], [2,3,5]],
                             [[0,0,0], [0,0,0]] ]
                         ]
D
dangqingqing 已提交
4397 4398

    The simply usage is:
D
dangqingqing 已提交
4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459

    .. code-block:: python

       pad = pad_layer(input=ipt,
                       pad_c=[4,4],
                       pad_h=[0,0],
                       pad_w=[2,2])

    :param input: layer's input.
    :type input: LayerOutput
    :param pad_c: padding size in channel dimension.
    :type pad_c: list|None
    :param pad_h: padding size in height dimension.
    :type pad_h: list|None
    :param pad_w: padding size in width dimension.
    :type pad_w: list|None
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
    :param name: layer name.
    :type name: basestring
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    if pad_c is not None:
        assert isinstance(pad_c, collections.Sequence) and len(pad_c) == 2
    else:
        pad_c = [0, 0]

    if pad_h is not None:
        assert isinstance(pad_h, collections.Sequence) and len(pad_h) == 2
    else:
        pad_h = [0, 0]

    if pad_w is not None:
        assert isinstance(pad_w, collections.Sequence) and len(pad_w) == 2
    else:
        pad_w = [0, 0]

    assert input.num_filters is not None
    in_ch = input.num_filters
    out_ch = in_ch + pad_c[0] + pad_c[1]

    l = Layer(
        name=name,
        type=LayerType.PAD_LAYER,
        inputs=Input(
            input.name,
            pad=Pad(
                channels=in_ch,
                pad_c=pad_c,
                pad_h=pad_h,
                pad_w=pad_w, )),
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        layer_type=LayerType.PAD_LAYER,
        parents=[input],
        num_filters=out_ch,
        size=l.config.size)


Z
zhangjinchao01 已提交
4460
@wrap_name_default()
L
luotao1 已提交
4461 4462
@layer_support()
def conv_shift_layer(a, b, name=None, layer_attr=None):
Z
zhangjinchao01 已提交
4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473
    """
    This layer performs cyclic convolution for two input. For example:
      - a[in]: contains M elements.
      - b[in]: contains N elements (N should be odd).
      - c[out]: contains M elements.

    .. math::

        c[i] = \sum_{j=-(N-1)/2}^{(N-1)/2}a_{i+j} * b_{j}

    In this formular:
4474 4475 4476 4477
     - a's index is computed modulo M. When it is negative, then get item from
       the right side (which is the end of array) to the left.
     - b's index is computed modulo N. When it is negative, then get item from
       the right size (which is the end of array) to the left.
Z
zhangjinchao01 已提交
4478 4479 4480 4481 4482

    The example usage is:

    .. code-block:: python

L
Luo Tao 已提交
4483
       conv_shift = conv_shift_layer(a=layer1, b=layer2)
Z
zhangjinchao01 已提交
4484 4485 4486

    :param name: layer name
    :type name: basestring
4487 4488
    :param a: Input layer a.
    :type a: LayerOutput
L
Luo Tao 已提交
4489
    :param b: input layer b.
4490
    :type b: LayerOutput
L
luotao1 已提交
4491 4492
    :param layer_attr: layer's extra attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
4493
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4494 4495
    :rtype: LayerOutput
    """
4496 4497
    assert isinstance(a, LayerOutput) and isinstance(b, LayerOutput)
    assert b.size is None or b.size % 2 == 1  # size of b must be odd.
Z
zhangjinchao01 已提交
4498 4499 4500
    Layer(
        name=name,
        type=LayerType.CONV_SHIFT_LAYER,
4501
        inputs=[a.name, b.name],
Q
qijun 已提交
4502
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
4503

Q
qijun 已提交
4504 4505
    return LayerOutput(
        name, LayerType.CONV_SHIFT_LAYER, parents=[a, b], size=a.size)
Z
zhangjinchao01 已提交
4506 4507 4508 4509 4510


@wrap_name_default()
@wrap_param_attr_default()
@wrap_bias_attr_default()
4511
@wrap_act_default(act=LinearActivation())
Z
zhangjinchao01 已提交
4512
@layer_support(ERROR_CLIPPING, DROPOUT)
Q
qijun 已提交
4513 4514 4515 4516 4517 4518 4519 4520
def tensor_layer(a,
                 b,
                 size,
                 act=None,
                 name=None,
                 param_attr=None,
                 bias_attr=None,
                 layer_attr=None):
Z
zhangjinchao01 已提交
4521 4522 4523 4524 4525
    """
    This layer performs tensor operation for two input.
    For example, each sample:

    .. math::
4526
       y_{i} = a * W_{i} * {b^\mathrm{T}}, i=0,1,...,K-1
Z
zhangjinchao01 已提交
4527 4528

    In this formular:
4529 4530
      - :math:`a`: the first input contains M elements.
      - :math:`b`: the second input contains N elements.
Z
zhangjinchao01 已提交
4531 4532
      - :math:`y_{i}`: the i-th element of y.
      - :math:`W_{i}`: the i-th learned weight, shape if [M, N]
4533
      - :math:`b^\mathrm{T}`: the transpose of :math:`b_{2}`.
Z
zhangjinchao01 已提交
4534 4535 4536 4537 4538

    The simple usage is:

    .. code-block:: python

4539
       tensor = tensor_layer(a=layer1, b=layer2, size=1000)
Z
zhangjinchao01 已提交
4540 4541 4542

    :param name: layer name
    :type name: basestring
4543 4544 4545 4546
    :param a: Input layer a.
    :type a: LayerOutput
    :param b: input layer b.
    :type b: LayerOutput
Z
zhangjinchao01 已提交
4547
    :param size: the layer dimension.
L
luotao02 已提交
4548
    :type size: int.
Z
zhangjinchao01 已提交
4549 4550 4551
    :param act: Activation Type. Default is tanh.
    :type act: BaseActivation
    :param param_attr: The Parameter Attribute.
4552
    :type param_attr: ParameterAttribute
Z
zhangjinchao01 已提交
4553 4554 4555 4556 4557 4558
    :param bias_attr: The Bias Attribute. If no bias, then pass False or
                      something not type of ParameterAttribute. None will get a
                      default Bias.
    :type bias_attr: ParameterAttribute|None|Any
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
4559
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4560 4561
    :rtype: LayerOutput
    """
4562
    assert isinstance(a, LayerOutput) and isinstance(b, LayerOutput)
Z
zhangjinchao01 已提交
4563 4564 4565 4566 4567 4568
    Layer(
        name=name,
        size=size,
        type=LayerType.TENSOR_LAYER,
        active_type=act.name,
        bias=ParamAttr.to_bias(bias_attr),
Q
qijun 已提交
4569 4570 4571 4572
        inputs=[Input(a.name, **param_attr.attr), Input(b.name)],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.TENSOR_LAYER, parents=[a, b], activation=act, size=size)
Z
zhangjinchao01 已提交
4573 4574 4575 4576 4577 4578


@wrap_name_default()
@wrap_param_attr_default()
@wrap_bias_attr_default()
@wrap_act_default()
4579
@layer_support(DROPOUT, ERROR_CLIPPING)
Q
qijun 已提交
4580 4581
def selective_fc_layer(input,
                       size,
L
Luo Tao 已提交
4582
                       select=None,
Q
qijun 已提交
4583 4584
                       act=None,
                       name=None,
Z
zhangjinchao01 已提交
4585 4586 4587
                       pass_generation=False,
                       has_selected_colums=True,
                       mul_ratio=0.02,
Q
qijun 已提交
4588 4589 4590
                       param_attr=None,
                       bias_attr=None,
                       layer_attr=None):
Z
zhangjinchao01 已提交
4591 4592 4593 4594 4595 4596 4597 4598 4599 4600
    """
    Selectived fully connected layer. Different from fc_layer, the output
    of this layer maybe sparse. It requires an additional input to indicate
    several selected columns for output. If the selected columns is not
    specified, selective_fc_layer acts exactly like fc_layer.

    The simple usage is:

    .. code-block:: python

4601
       sel_fc = selective_fc_layer(input=input, size=128, act=TanhActivation())
Z
zhangjinchao01 已提交
4602 4603 4604 4605 4606

    :param name: The Layer Name.
    :type name: basestring
    :param input: The input layer.
    :type input: LayerOutput|list|tuple
4607 4608
    :param select: The select layer. The output of select layer should be a
                   sparse binary matrix, and treat as the mask of selective fc.
L
Luo Tao 已提交
4609
                   If is None, acts exactly like fc_layer.
4610
    :type select: LayerOutput
Z
zhangjinchao01 已提交
4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622
    :param size: The layer dimension.
    :type size: int
    :param act: Activation Type. Default is tanh.
    :type act: BaseActivation
    :param param_attr: The Parameter Attribute.
    :type param_attr: ParameterAttribute
    :param bias_attr: The Bias Attribute. If no bias, then pass False or
                      something not type of ParameterAttribute. None will get a
                      default Bias.
    :type bias_attr: ParameterAttribute|None|Any
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
4623
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4624 4625 4626 4627
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
4628
        assert not isinstance(param_attr, collections.Sequence)
Z
zhangjinchao01 已提交
4629 4630
        param_attr = [param_attr]
    else:
4631
        if isinstance(param_attr, collections.Sequence):
Z
zhangjinchao01 已提交
4632 4633 4634 4635
            assert len(input) == len(param_attr)
        else:
            param_attr = [copy.deepcopy(param_attr) for _ in range(len(input))]

4636 4637 4638 4639
    assert isinstance(input, collections.Sequence)
    assert isinstance(select, LayerOutput)
    if select.size is not None:
        assert select.size == size
Z
zhangjinchao01 已提交
4640
    Layer(
Q
qijun 已提交
4641 4642 4643
        inputs=[
            Input(ipt.name, **attr.attr) for ipt, attr in zip(input, param_attr)
        ] + [select.name],
Z
zhangjinchao01 已提交
4644 4645 4646
        name=name,
        type=LayerType.SEL_FC_LAYER,
        size=size,
4647
        bias=ParameterAttribute.to_bias(bias_attr),
Z
zhangjinchao01 已提交
4648 4649 4650 4651
        active_type=act.name,
        selective_fc_pass_generation=pass_generation,
        has_selected_colums=has_selected_colums,
        selective_fc_full_mul_ratio=mul_ratio,
Q
qijun 已提交
4652 4653 4654 4655 4656 4657 4658
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.SEL_FC_LAYER,
        list(input) + [select],
        activation=act,
        size=size)
Z
zhangjinchao01 已提交
4659 4660 4661


@wrap_name_default()
L
luotao1 已提交
4662 4663
@layer_support()
def sampling_id_layer(input, name=None, layer_attr=None):
Z
zhangjinchao01 已提交
4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677
    """
    A layer for sampling id from multinomial distribution from the input layer.
    Sampling one id for one sample.

    The simple usage is:

    .. code-block:: python

       samping_id = sampling_id_layer(input=input)

    :param input: The input layer.
    :type input: LayerOutput
    :param name: The Layer Name.
    :type name: basestring
L
luotao1 已提交
4678 4679
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
4680
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4681 4682
    :rtype: LayerOutput
    """
X
xuwei06 已提交
4683
    l = Layer(
Z
zhangjinchao01 已提交
4684 4685 4686
        name=name,
        type=LayerType.SAMPLING_ID_LAYER,
        inputs=[Input(input.name)],
Q
qijun 已提交
4687 4688 4689
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SAMPLING_ID_LAYER, input, size=l.config.size)
Z
zhangjinchao01 已提交
4690 4691 4692


@wrap_name_default()
L
luotao1 已提交
4693
@layer_support()
Q
qijun 已提交
4694 4695 4696 4697
def slope_intercept_layer(input,
                          name=None,
                          slope=1.0,
                          intercept=0.0,
L
luotao1 已提交
4698
                          layer_attr=None):
Z
zhangjinchao01 已提交
4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719
    """
    This layer for applying a slope and an intercept to the input
    element-wise. There is no activation and weight.

    ..  math::
        y = slope * x + intercept

    The simple usage is:

    .. code-block:: python

       scale = slope_intercept_layer(input=input, slope=-1.0, intercept=1.0)

    :param input: The input layer.
    :type input: LayerOutput
    :param name: The Layer Name.
    :type name: basestring
    :param slope: the scale factor.
    :type slope: float.
    :param intercept: the offset.
    :type intercept: float.
L
luotao1 已提交
4720 4721
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
4722
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4723 4724 4725 4726 4727 4728 4729 4730
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.SLOPE_INTERCEPT_LAYER,
        slope=slope,
        intercept=intercept,
        inputs=[Input(input.name)],
Q
qijun 已提交
4731 4732 4733
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SLOPE_INTERCEPT_LAYER, input, size=input.size)
Z
zhangjinchao01 已提交
4734 4735 4736


@wrap_name_default()
L
luotao1 已提交
4737
@layer_support()
Q
qijun 已提交
4738
def linear_comb_layer(weights, vectors, size=None, name=None, layer_attr=None):
Z
zhangjinchao01 已提交
4739
    """
4740 4741 4742 4743
    A layer for weighted sum of vectors takes two inputs.
      - Input: size of weights is M
               size of vectors is M*N
      - Output: a vector of size=N
Z
zhangjinchao01 已提交
4744 4745 4746

    .. math::

4747
       z(i) = \sum_{j=0}^{M-1} x(j) y(i+Nj)
4748

4749 4750 4751 4752 4753
    where :math:`0 \le i \le N-1`

    Or in the matrix notation:

    .. math::
Z
zhangjinchao01 已提交
4754

4755
       z = x^\mathrm{T} Y
Z
zhangjinchao01 已提交
4756 4757

    In this formular:
4758 4759 4760 4761 4762 4763
      - :math:`x`: weights
      - :math:`y`: vectors.
      - :math:`z`: the output.

    Note that the above computation is for one sample. Multiple samples are
    processed in one batch.
Z
zhangjinchao01 已提交
4764 4765 4766 4767 4768

    The simple usage is:

    .. code-block:: python

4769
       linear_comb = linear_comb_layer(weights=weight, vectors=vectors,
Z
zhangjinchao01 已提交
4770 4771
                                       size=elem_dim)

4772 4773 4774 4775
    :param weights: The weight layer.
    :type weights: LayerOutput
    :param vectors: The vector layer.
    :type vectors: LayerOutput
Z
zhangjinchao01 已提交
4776 4777 4778 4779
    :param size: the dimension of this layer.
    :type size: int
    :param name: The Layer Name.
    :type name: basestring
L
luotao1 已提交
4780 4781
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
4782
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4783 4784
    :rtype: LayerOutput
    """
4785 4786 4787 4788
    assert isinstance(weights, LayerOutput) and isinstance(vectors, LayerOutput)
    if vectors.size is not None and weights.size is not None:
        assert vectors.size % weights.size == 0
        if size is None:
Q
qijun 已提交
4789
            size = vectors.size / weights.size
4790 4791
        else:
            assert size == vectors.size / weights.size
Z
zhangjinchao01 已提交
4792 4793
    Layer(
        name=name,
4794
        type=LayerType.LINEAR_COMBINATION_LAYER,
Z
zhangjinchao01 已提交
4795
        size=size,
4796
        inputs=[Input(weights.name), Input(vectors.name)],
Q
qijun 已提交
4797 4798 4799
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.LINEAR_COMBINATION_LAYER, [weights, vectors], size=size)
4800

4801

4802
convex_comb_layer = linear_comb_layer
Z
zhangjinchao01 已提交
4803

4804

Z
zhangjinchao01 已提交
4805
@wrap_name_default()
L
luotao1 已提交
4806
@layer_support()
Z
zhangjinchao01 已提交
4807 4808 4809 4810 4811 4812 4813
def block_expand_layer(input,
                       block_x=0,
                       block_y=0,
                       stride_x=0,
                       stride_y=0,
                       padding_x=0,
                       padding_y=0,
4814
                       num_channels=None,
L
luotao1 已提交
4815 4816
                       name=None,
                       layer_attr=None):
Z
zhangjinchao01 已提交
4817 4818
    """
    Expand feature map to minibatch matrix.
4819
       - matrix width is: block_y * block_x * num_channels
L
luotao02 已提交
4820
       - matirx height is: outputH * outputW
Z
zhangjinchao01 已提交
4821 4822 4823 4824 4825 4826 4827 4828 4829 4830

    .. math::

       outputH = 1 + (2 * padding_y + imgSizeH - block_y + stride_y - 1) / stride_y

       outputW = 1 + (2 * padding_x + imgSizeW - block_x + stride_x - 1) / stride_x

    The expand method is the same with ExpandConvLayer, but saved the transposed
    value. After expanding, output.sequenceStartPositions will store timeline.
    The number of time steps are outputH * outputW and the dimension of each
4831
    time step is block_y * block_x * num_channels. This layer can be used after
Z
zhangjinchao01 已提交
4832 4833
    convolution neural network, and before recurrent neural network.

4834 4835 4836 4837
    The simple usage is:

    .. code-block:: python

L
Luo Tao 已提交
4838
       block_expand = block_expand_layer(input=layer,
4839
                                         num_channels=128,
4840 4841 4842 4843 4844
                                         stride_x=1,
                                         stride_y=1,
                                         block_x=1,
                                         block_x=3)

Z
zhangjinchao01 已提交
4845 4846
    :param input: The input layer.
    :type input: LayerOutput
4847 4848
    :param num_channels: The channel number of input layer.
    :type num_channels: int|None
Z
zhangjinchao01 已提交
4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862
    :param block_x: The width of sub block.
    :type block_x: int
    :param block_y: The width of sub block.
    :type block_y: int
    :param stride_x: The stride size in horizontal direction.
    :type stride_x: int
    :param stride_y: The stride size in vertical direction.
    :type stride_y: int
    :param padding_x: The padding size in horizontal direction.
    :type padding_x: int
    :param padding_y: The padding size in vertical direction.
    :type padding_y: int
    :param name: The name of this layer, which can not specify.
    :type name: None|basestring.
L
luotao1 已提交
4863 4864
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
4865
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4866 4867
    :rtype: LayerOutput
    """
4868 4869 4870
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters
Q
qijun 已提交
4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887
    l = Layer(
        name=name,
        inputs=Input(
            input.name,
            block_expand=BlockExpand(
                channels=num_channels,
                block_x=block_x,
                block_y=block_y,
                stride_x=stride_x,
                stride_y=stride_y,
                padding_x=padding_x,
                padding_y=padding_y)),
        type=LayerType.BLOCK_EXPAND,
        **ExtraLayerAttribute.to_kwargs(layer_attr))

    return LayerOutput(
        name, LayerType.BLOCK_EXPAND, parents=[input], size=l.config.size)
Z
zhangjinchao01 已提交
4888 4889


4890 4891
@wrap_name_default()
@layer_support()
4892
def maxout_layer(input, groups, num_channels=None, name=None, layer_attr=None):
4893 4894 4895 4896 4897
    """
    A layer to do max out on conv layer output.
      - Input: output of a conv layer.
      - Output: feature map size same as input. Channel is (input channel) / groups.

4898
    So groups should be larger than 1, and the num of channels should be able
4899 4900
    to devided by groups.

X
xuwei06 已提交
4901 4902 4903 4904 4905 4906 4907 4908
    .. math::
       y_{si+j} = \max_k x_{gsi + sk + j}
       g = groups
       s = input.size / num_channels
       0 \le i < num_channels / groups
       0 \le j < s
       0 \le k < groups

4909
    Please refer to Paper:
4910 4911 4912 4913
      - Maxout Networks: http://www.jmlr.org/proceedings/papers/v28/goodfellow13.pdf
      - Multi-digit Number Recognition from Street View \
        Imagery using Deep Convolutional Neural Networks: \
        https://arxiv.org/pdf/1312.6082v4.pdf
4914

4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942
    The simple usage is:

    .. code-block:: python

       maxout = maxout_layer(input,
                             num_channels=128,
                             groups=4)

    :param input: The input layer.
    :type input: LayerOutput
    :param num_channels: The channel number of input layer. If None will be set
                     automatically from previous output.
    :type num_channels: int|None
    :param groups: The group number of input layer.
    :type groups: int
    :param name: The name of this layer, which can not specify.
    :type name: None|basestring.
    :param layer_attr: Extra Layer attribute.
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input.activation, LinearActivation)
    assert groups > 1
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters
    assert num_channels % groups == 0
Q
qijun 已提交
4943 4944 4945 4946 4947 4948 4949 4950 4951
    l = Layer(
        name=name,
        inputs=Input(
            input.name, maxout=MaxOut(
                channels=num_channels, groups=groups)),
        type=LayerType.MAXOUT,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.MAXOUT, parents=[input], size=l.config.size)
4952 4953


Z
zhangjinchao01 已提交
4954
@wrap_name_default()
L
luotao1 已提交
4955
@layer_support()
Q
qijun 已提交
4956 4957 4958 4959 4960
def ctc_layer(input,
              label,
              size=None,
              name=None,
              norm_by_times=False,
L
luotao1 已提交
4961
              layer_attr=None):
Z
zhangjinchao01 已提交
4962 4963 4964 4965 4966
    """
    Connectionist Temporal Classification (CTC) is designed for temporal
    classication task. That is, for sequence labeling problems where the
    alignment between the inputs and the target labels is unknown.

4967 4968
    More details can be found by referring to `Connectionist Temporal
    Classification: Labelling Unsegmented Sequence Data with Recurrent
4969 4970
    Neural Networks <http://machinelearning.wustl.edu/mlpapers/paper_files/
    icml2006_GravesFGS06.pdf>`_
4971 4972 4973 4974 4975 4976 4977 4978

    Note:
        Considering the 'blank' label needed by CTC, you need to use
        (num_classes + 1) as the input size. num_classes is the category number.
        And the 'blank' is the last category index. So the size of 'input' layer, such as
        fc_layer with softmax activation, should be num_classes + 1. The size of ctc_layer
        should also be num_classes + 1.

C
caoying03 已提交
4979
    The example usage is:
Z
zhangjinchao01 已提交
4980 4981 4982 4983 4984 4985 4986 4987

    .. code-block:: python

      ctc = ctc_layer(input=input,
                      label=label,
                      size=9055,
                      norm_by_times=True)

4988
    :param input: The input layer.
Z
zhangjinchao01 已提交
4989 4990 4991
    :type input: LayerOutput
    :param label: The data layer of label with variable length.
    :type label: LayerOutput
4992
    :param size: category numbers + 1.
Z
zhangjinchao01 已提交
4993
    :type size: int
4994 4995
    :param name: The name of this layer
    :type name: basestring|None
Z
zhangjinchao01 已提交
4996 4997
    :param norm_by_times: Whether to normalization by times. False by default.
    :type norm_by_times: bool
L
luotao1 已提交
4998 4999
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
5000
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5001 5002 5003 5004
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert isinstance(label, LayerOutput)
5005 5006 5007 5008 5009
    if label.size is not None:
        if size is not None:
            assert size == label.size + 1
        else:
            size = label.size + 1
Z
zhangjinchao01 已提交
5010
    Layer(
5011 5012 5013 5014
        name=name,
        type=LayerType.CTC_LAYER,
        size=size,
        norm_by_times=norm_by_times,
L
luotao1 已提交
5015
        inputs=[input.name, label.name],
Q
qijun 已提交
5016
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5017 5018
    return LayerOutput(name, LayerType.CTC_LAYER, [input, label], size=size)

5019

5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030
@wrap_name_default()
@layer_support()
def warp_ctc_layer(input,
                   label,
                   size=None,
                   name=None,
                   blank=0,
                   norm_by_times=False,
                   layer_attr=None):
    """
    A layer intergrating the open-source `warp-ctc
L
Liu Yiqun 已提交
5031
    <https://github.com/baidu-research/warp-ctc>`_ library, which is used in
5032
    `Deep Speech 2: End-toEnd Speech Recognition in English and Mandarin
L
Liu Yiqun 已提交
5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049
    <https://arxiv.org/pdf/1512.02595v1.pdf>`_, to compute Connectionist Temporal
    Classification (CTC) loss. Besides, another `warp-ctc
    <https://github.com/gangliao/warp-ctc>`_ repository, which is forked from
    the official one, is maintained to enable more compiling options. During the
    building process, PaddlePaddle will clone the source codes, build and
    install it to :code:`third_party/install/warpctc` directory.

    To use warp_ctc layer, you need to specify the path of :code:`libwarpctc.so`,
    using following methods:

    1. Set it in :code:`paddle.init` (python api) or :code:`paddle_init` (c api),
    such as :code:`paddle.init(use_gpu=True,
    warpctc_dir=your_paddle_source_dir/third_party/install/warpctc/lib)`.

    2. Set environment variable LD_LIBRARY_PATH on Linux or DYLD_LIBRARY_PATH
    on Mac OS. For instance, :code:`export
    LD_LIBRARY_PATH=your_paddle_source_dir/third_party/install/warpctc/lib:$LD_LIBRARY_PATH`.
5050 5051 5052 5053

    More details of CTC can be found by referring to `Connectionist Temporal
    Classification: Labelling Unsegmented Sequence Data with Recurrent
    Neural Networks <http://machinelearning.wustl.edu/mlpapers/paper_files/
L
Liu Yiqun 已提交
5054
    icml2006_GravesFGS06.pdf>`_.
5055 5056 5057

    Note:
        - Let num_classes represent the category number. Considering the 'blank'
L
Liu Yiqun 已提交
5058 5059 5060
          label needed by CTC, you need to use (num_classes + 1) as the input size.
          Thus, the size of both warp_ctc layer and 'input' layer should be set to
          num_classes + 1.
5061 5062
        - You can set 'blank' to any value ranged in [0, num_classes], which
          should be consistent as that used in your labels.
5063
        - As a native 'softmax' activation is interated to the warp-ctc library,
L
Luo Tao 已提交
5064
          'linear' activation is expected instead in the 'input' layer.
5065

C
caoying03 已提交
5066
    The example usage is:
5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111

    .. code-block:: python

      ctc = warp_ctc_layer(input=input,
                           label=label,
                           size=1001,
                           blank=1000,
                           norm_by_times=False)

    :param input: The input layer.
    :type input: LayerOutput
    :param label: The data layer of label with variable length.
    :type label: LayerOutput
    :param size: category numbers + 1.
    :type size: int
    :param name: The name of this layer, which can not specify.
    :type name: basestring|None
    :param blank: the 'blank' label used in ctc
    :type blank: int
    :param norm_by_times: Whether to normalization by times. False by default.
    :type norm_by_times: bool
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert isinstance(label, LayerOutput)
    if label.size is not None:
        if size is not None:
            assert size == label.size + 1
        else:
            size = label.size + 1
    Layer(
        name=name,
        type=LayerType.WARP_CTC_LAYER,
        size=size,
        blank=blank,
        norm_by_times=norm_by_times,
        inputs=[input.name, label.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.WARP_CTC_LAYER, parents=[input, label], size=size)


Z
zhangjinchao01 已提交
5112
@wrap_name_default()
5113
@wrap_param_attr_default()
L
luotao1 已提交
5114
@layer_support()
Q
qijun 已提交
5115 5116 5117 5118 5119 5120
def crf_layer(input,
              label,
              size=None,
              weight=None,
              param_attr=None,
              name=None,
5121
              coeff=1.0,
L
luotao1 已提交
5122
              layer_attr=None):
Z
zhangjinchao01 已提交
5123 5124 5125 5126
    """
    A layer for calculating the cost of sequential conditional random
    field model.

C
caoying03 已提交
5127
    The example usage is:
Z
zhangjinchao01 已提交
5128 5129 5130 5131 5132 5133 5134 5135 5136 5137

    .. code-block:: python

      crf = crf_layer(input=input,
                      label=label,
                      size=label_dim)

    :param input: The first input layer is the feature.
    :type input: LayerOutput
    :param label: The second input layer is label.
5138
    :type label: LayerOutput
Z
zhangjinchao01 已提交
5139 5140 5141 5142 5143 5144 5145 5146 5147
    :param size: The category number.
    :type size: int
    :param weight: The third layer is "weight" of each sample, which is an
                  optional argument.
    :type weight: LayerOutput
    :param param_attr: Parameter attribute. None means default attribute
    :type param_attr: ParameterAttribute
    :param name: The name of this layers. It is not necessary.
    :type name: None|basestring
5148 5149
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float
L
luotao1 已提交
5150 5151
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
5152
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5153 5154 5155 5156 5157
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert isinstance(label, LayerOutput)
    assert weight is None or isinstance(weight, LayerOutput)
5158 5159 5160 5161 5162 5163
    if input.size is not None and label.size is not None:
        assert input.size == label.size
        if size is None:
            size = input.size
        else:
            assert size == input.size
Z
zhangjinchao01 已提交
5164

Q
qijun 已提交
5165
    ipts = [Input(input.name, **param_attr.attr), Input(label.name)]
Z
zhangjinchao01 已提交
5166 5167 5168 5169
    if weight is not None:
        ipts.append(Input(weight.name))

    Layer(
5170 5171 5172 5173
        name=name,
        type=LayerType.CRF_LAYER,
        size=size,
        inputs=ipts,
5174
        coeff=coeff,
Q
qijun 已提交
5175
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5176 5177 5178
    parents = [input, label]
    if weight is not None:
        parents.append(weight)
X
xuwei06 已提交
5179 5180 5181 5182
    # The size for LayerOutput means the dimension of the output.
    # It's different from the meaning of crf layer, which is the number of
    # classes.
    return LayerOutput(name, LayerType.CRF_LAYER, parents, size=1)
Z
zhangjinchao01 已提交
5183

5184

Z
zhangjinchao01 已提交
5185
@wrap_name_default()
5186
@wrap_param_attr_default()
L
luotao1 已提交
5187
@layer_support()
Q
qijun 已提交
5188 5189 5190 5191 5192
def crf_decoding_layer(input,
                       size,
                       label=None,
                       param_attr=None,
                       name=None,
L
luotao1 已提交
5193
                       layer_attr=None):
Z
zhangjinchao01 已提交
5194 5195 5196 5197 5198 5199 5200
    """
    A layer for calculating the decoding sequence of sequential conditional
    random field model. The decoding sequence is stored in output.ids.
    If a second input is provided, it is treated as the ground-truth label, and
    this layer will also calculate error. output.value[i] is 1 for incorrect
    decoding or 0 for correct decoding.

C
caoying03 已提交
5201
    The example usage is:
L
Luo Tao 已提交
5202 5203 5204 5205 5206 5207

    .. code-block:: python

      crf_decoding = crf_decoding_layer(input=input,
                                        size=label_dim)

Z
zhangjinchao01 已提交
5208 5209 5210 5211 5212 5213 5214 5215 5216 5217
    :param input: The first input layer.
    :type input: LayerOutput
    :param size: size of this layer.
    :type size: int
    :param label: None or ground-truth label.
    :type label: LayerOutput or None
    :param param_attr: Parameter attribute. None means default attribute
    :type param_attr: ParameterAttribute
    :param name: The name of this layers. It is not necessary.
    :type name: None|basestring
L
luotao1 已提交
5218 5219
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
5220
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5221 5222 5223 5224 5225 5226
    :rtype: LayerOutput
    """

    assert isinstance(input, LayerOutput)
    assert label is None or isinstance(label, LayerOutput)

5227
    ipts = [Input(input.name, **param_attr.attr)]
Z
zhangjinchao01 已提交
5228 5229 5230 5231
    if label is not None:
        ipts.append(Input(label.name))

    Layer(
5232 5233 5234 5235
        name=name,
        type=LayerType.CRF_DECODING_LAYER,
        size=size,
        inputs=ipts,
Q
qijun 已提交
5236
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5237 5238 5239
    parents = [input]
    if label is not None:
        parents.append(label)
X
xuwei06 已提交
5240 5241 5242 5243
    # The size for LayerOutput means the dimension of the output.
    # It's different from the meaning of crf layer, which is the number of
    # classes.
    return LayerOutput(name, LayerType.CRF_DECODING_LAYER, parents, size=1)
Z
zhangjinchao01 已提交
5244

Q
qijun 已提交
5245

Y
Yu Yang 已提交
5246
@wrap_act_default(act=SigmoidActivation())
5247
@wrap_bias_attr_default(has_bias=True)
5248
@wrap_param_attr_default()
5249 5250
@wrap_name_default()
@layer_support()
Q
qijun 已提交
5251 5252
def nce_layer(input,
              label,
C
caoying03 已提交
5253
              num_classes=None,
Y
Yu Yang 已提交
5254
              act=None,
5255
              param_attr=None,
Q
qijun 已提交
5256 5257 5258 5259 5260 5261
              weight=None,
              num_neg_samples=10,
              neg_distribution=None,
              name=None,
              bias_attr=None,
              layer_attr=None):
5262 5263 5264 5265 5266 5267 5268 5269 5270
    """
    Noise-contrastive estimation.
    Implements the method in the following paper:
    A fast and simple algorithm for training neural probabilistic language models.

    The example usage is:

    .. code-block:: python

C
caoying03 已提交
5271 5272
       cost = nce_layer(input=[layer1, layer2], label=layer2,
                        param_attr=[attr1, attr2], weight=layer3,
5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283
                        num_classes=3, neg_distribution=[0.1,0.3,0.6])

    :param name: layer name
    :type name: basestring
    :param input: input layers. It could be a LayerOutput of list/tuple of LayerOutput.
    :type input: LayerOutput|list|tuple|collections.Sequence
    :param label: label layer
    :type label: LayerOutput
    :param weight: weight layer, can be None(default)
    :type weight: LayerOutput
    :param num_classes: number of classes.
5284
    :type num_classes: int
Y
Yu Yang 已提交
5285 5286
    :param act: Activation, default is Sigmoid.
    :type act: BaseActivation
5287 5288
    :param param_attr: The Parameter Attribute|list.
    :type param_attr: ParameterAttribute
5289
    :param num_neg_samples: number of negative samples. Default is 10.
5290
    :type num_neg_samples: int
5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303
    :param neg_distribution: The distribution for generating the random negative labels.
                             A uniform distribution will be used if not provided.
                             If not None, its length must be equal to num_classes.
    :type neg_distribution: list|tuple|collections.Sequence|None
    :param bias_attr: Bias parameter attribute. True if no bias.
    :type bias_attr: ParameterAttribute|None|False
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
    :return: layer name.
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
5304 5305 5306 5307 5308 5309 5310 5311
        assert not isinstance(param_attr, collections.Sequence)
        param_attr = [param_attr]
    else:
        if isinstance(param_attr, collections.Sequence):
            assert len(input) == len(param_attr)
        else:
            param_attr = [copy.deepcopy(param_attr) for _ in range(len(input))]

5312
    assert isinstance(input, collections.Sequence)
5313

5314 5315
    assert isinstance(label, LayerOutput)
    assert label.layer_type == LayerType.DATA
C
caoying03 已提交
5316 5317
    if num_classes is None:
        num_classes = label.size
5318 5319 5320
    if neg_distribution is not None:
        assert isinstance(neg_distribution, collections.Sequence)
        assert len(neg_distribution) == num_classes
5321
        assert abs(sum(neg_distribution) - 1.0) < 1e-5
Y
Yu Yang 已提交
5322 5323
    if not isinstance(act, BaseActivation):
        raise TypeError()
5324

5325 5326
    ipts_for_layer = []
    parents = []
5327
    for each_input, attr in zip(input, param_attr):
5328
        assert isinstance(each_input, LayerOutput)
5329
        ipts_for_layer.append(Input(each_input.name, **attr.attr))
5330 5331 5332 5333 5334 5335 5336 5337 5338 5339
        parents.append(each_input)
    ipts_for_layer.append(label.name)
    parents.append(label)

    if weight is not None:
        assert isinstance(weight, LayerOutput)
        assert weight.layer_type == LayerType.DATA
        ipts_for_layer.append(weight.name)
        parents.append(weight)

X
xuwei06 已提交
5340
    l = Layer(
5341 5342 5343 5344
        name=name,
        type=LayerType.NCE_LAYER,
        num_classes=num_classes,
        neg_sampling_dist=neg_distribution,
Y
Yu Yang 已提交
5345
        active_type=act.name,
5346 5347 5348
        num_neg_samples=num_neg_samples,
        inputs=ipts_for_layer,
        bias=ParamAttr.to_bias(bias_attr),
Q
qijun 已提交
5349 5350
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
Y
Yu Yang 已提交
5351 5352 5353 5354 5355
        name,
        LayerType.NCE_LAYER,
        parents=parents,
        size=l.config.size,
        activation=act)
Q
qijun 已提交
5356

5357

Z
zhangjinchao01 已提交
5358 5359 5360
"""
following are cost Layers.
"""
5361 5362


Z
zhangjinchao01 已提交
5363
@wrap_name_default()
L
luotao1 已提交
5364
@layer_support()
Q
qijun 已提交
5365 5366 5367 5368 5369 5370 5371
def rank_cost(left,
              right,
              label,
              weight=None,
              name=None,
              coeff=1.0,
              layer_attr=None):
Z
zhangjinchao01 已提交
5372
    """
5373
    A cost Layer for learning to rank using gradient descent. Details can refer
5374 5375
    to `papers <http://research.microsoft.com/en-us/um/people/cburges/papers/
    ICML_ranking.pdf>`_.
Z
zhangjinchao01 已提交
5376 5377 5378 5379 5380
    This layer contains at least three inputs. The weight is an optional
    argument, which affects the cost.

    .. math::

L
luotao02 已提交
5381
       C_{i,j} & = -\\tilde{P_{ij}} * o_{i,j} + log(1 + e^{o_{i,j}})
Z
zhangjinchao01 已提交
5382

L
luotao02 已提交
5383
       o_{i,j} & =  o_i - o_j
Z
zhangjinchao01 已提交
5384

L
luotao02 已提交
5385
       \\tilde{P_{i,j}} & = \\{0, 0.5, 1\\} \ or \ \\{0, 1\\}
Z
zhangjinchao01 已提交
5386 5387 5388 5389 5390 5391 5392 5393

    In this formula:
      - :math:`C_{i,j}` is the cross entropy cost.
      - :math:`\\tilde{P_{i,j}}` is the label. 1 means positive order
        and 0 means reverse order.
      - :math:`o_i` and :math:`o_j`: the left output and right output.
        Their dimension is one.

C
caoying03 已提交
5394
    The example usage is:
Z
zhangjinchao01 已提交
5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414

    .. code-block:: python

      cost = rank_cost(left=out_left,
                       right=out_right,
                       label=label)

    :param left: The first input, the size of this layer is 1.
    :type left: LayerOutput
    :param right: The right input, the size of this layer is 1.
    :type right: LayerOutput
    :param label: Label is 1 or 0, means positive order and reverse order.
    :type label: LayerOutput
    :param weight: The weight affects the cost, namely the scale of cost.
                   It is an optional argument.
    :type weight: LayerOutput
    :param name: The name of this layers. It is not necessary.
    :type name: None|basestring
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float
L
luotao1 已提交
5415 5416
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5417
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429
    :rtype: LayerOutput
    """
    assert left.size == 1
    assert right.size == 1
    assert label.size == 1

    ipts = [left.name, right.name, label.name]
    parents = [left, right, label]
    if weight is not None:
        ipts.append(weight.name)
        parents.append(weight)

Q
qijun 已提交
5430 5431 5432 5433 5434 5435
    Layer(
        name=name,
        type=LayerType.RANK_COST,
        inputs=ipts,
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5436

X
xuwei06 已提交
5437
    return LayerOutput(name, LayerType.RANK_COST, parents=parents, size=1)
Z
zhangjinchao01 已提交
5438

5439

Z
zhangjinchao01 已提交
5440
@wrap_name_default()
L
luotao1 已提交
5441
@layer_support()
Q
qijun 已提交
5442 5443 5444 5445 5446 5447
def lambda_cost(input,
                score,
                name,
                NDCG_num=5,
                max_sort_size=-1,
                layer_attr=None):
Z
zhangjinchao01 已提交
5448 5449 5450
    """
    lambdaCost for lambdaRank LTR approach.

C
caoying03 已提交
5451
    The example usage is:
Z
zhangjinchao01 已提交
5452 5453 5454 5455 5456 5457 5458 5459

    .. code-block:: python

      cost = lambda_cost(input=input,
                         score=score,
                         NDCG_num=8,
                         max_sort_size=-1)

5460
    :param input: Samples of the same query should be loaded as sequence.
Z
zhangjinchao01 已提交
5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471
    :type input: LayerOutput
    :param score: The 2nd input. Score of each sample.
    :type input: LayerOutput
    :param NDCG_num: The size of NDCG (Normalized Discounted Cumulative Gain),
                     e.g., 5 for NDCG@5. It must be less than for equal to the
                     minimum size of lists.
    :type NDCG_num: int
    :param max_sort_size: The size of partial sorting in calculating gradient.
                          If max_sort_size = -1, then for each list, the
                          algorithm will sort the entire list to get gradient.
                          In other cases, max_sort_size must be greater than or
C
caoying03 已提交
5472 5473 5474
                          equal to NDCG_num. And if max_sort_size is greater
                          than the size of a list, the algorithm will sort the
                          entire list of get gradient.
Z
zhangjinchao01 已提交
5475 5476 5477
    :type max_sort_size: int
    :param name: The name of this layers. It is not necessary.
    :type name: None|basestring
L
luotao1 已提交
5478 5479
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5480
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5481 5482
    :rtype: LayerOutput
    """
5483 5484 5485
    assert isinstance(input, LayerOutput) and isinstance(score, LayerOutput)
    if score.size is not None:
        assert score.size == 1
Q
qijun 已提交
5486 5487 5488 5489 5490 5491 5492
    Layer(
        name=name,
        type=LayerType.LAMBDA_COST,
        inputs=[input.name, score.name],
        NDCG_num=NDCG_num,
        max_sort_size=max_sort_size,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5493

Q
qijun 已提交
5494 5495
    return LayerOutput(
        name, LayerType.LAMBDA_COST, parents=[input, score], size=1)
Z
zhangjinchao01 已提交
5496

5497

Z
zhangjinchao01 已提交
5498
@wrap_name_default()
L
luotao1 已提交
5499
@layer_support()
5500 5501 5502 5503 5504 5505
def cross_entropy(input,
                  label,
                  name=None,
                  coeff=1.0,
                  weight=None,
                  layer_attr=None):
Z
zhangjinchao01 已提交
5506 5507 5508
    """
    A loss layer for multi class entropy.

C
caoying03 已提交
5509 5510
    The example usage is:

Z
zhangjinchao01 已提交
5511 5512
    .. code-block:: python

X
xuwei06 已提交
5513
       cost = cross_entropy(input=input_layer,
L
Luo Tao 已提交
5514
                            label=label_layer)
Z
zhangjinchao01 已提交
5515 5516 5517 5518 5519 5520 5521

    :param input: The first input layer.
    :type input: LayerOutput.
    :param label: The input label.
    :type input: LayerOutput.
    :param name: The name of this layers. It is not necessary.
    :type name: None|basestring.
5522 5523
    :param coeff: The cost is multiplied with coeff.
                  The coefficient affects the gradient in the backward.
Z
zhangjinchao01 已提交
5524
    :type coeff: float.
5525 5526 5527 5528
    :param weight: The cost of each sample is multiplied with each weight.
                   The weight should be a layer with size=1. Note that gradient
                   will not be calculated for weight.
    :type weight: LayerOutout
L
luotao1 已提交
5529 5530
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5531
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5532 5533 5534
    :rtype: LayerOutput.
    """

5535
    ipts, parents = __cost_input__(input, label, weight)
Q
qijun 已提交
5536 5537 5538
    Layer(
        name=name,
        type=LayerType.CROSS_ENTROPY,
5539
        inputs=ipts,
Q
qijun 已提交
5540 5541
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
5542
    return LayerOutput(name, LayerType.CROSS_ENTROPY, parents=parents, size=1)
Z
zhangjinchao01 已提交
5543

5544

Z
zhangjinchao01 已提交
5545
@wrap_name_default()
L
luotao1 已提交
5546
@layer_support()
Q
qijun 已提交
5547 5548 5549 5550
def cross_entropy_with_selfnorm(input,
                                label,
                                name=None,
                                coeff=1.0,
L
luotao1 已提交
5551 5552
                                softmax_selfnorm_alpha=0.1,
                                layer_attr=None):
Z
zhangjinchao01 已提交
5553 5554
    """
    A loss layer for multi class entropy with selfnorm.
5555
    Input should be a vector of positive numbers, without normalization.
Z
zhangjinchao01 已提交
5556

C
caoying03 已提交
5557 5558
    The example usage is:

Z
zhangjinchao01 已提交
5559 5560
    .. code-block:: python

X
xuwei06 已提交
5561
       cost = cross_entropy_with_selfnorm(input=input_layer,
L
Luo Tao 已提交
5562
                                          label=label_layer)
Z
zhangjinchao01 已提交
5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573

    :param input: The first input layer.
    :type input: LayerOutput.
    :param label: The input label.
    :type input: LayerOutput.
    :param name: The name of this layers. It is not necessary.
    :type name: None|basestring.
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float.
    :param softmax_selfnorm_alpha: The scale factor affects the cost.
    :type softmax_selfnorm_alpha: float.
L
luotao1 已提交
5574 5575
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5576
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5577 5578
    :rtype: LayerOutput.
    """
Q
qijun 已提交
5579 5580 5581 5582 5583 5584 5585
    Layer(
        name=name,
        type=LayerType.CROSS_ENTROPY_WITH_SELFNORM,
        inputs=[input.name, label.name],
        coeff=coeff,
        softmax_selfnorm_alpha=softmax_selfnorm_alpha,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5586

Q
qijun 已提交
5587 5588 5589 5590 5591
    return LayerOutput(
        name,
        LayerType.CROSS_ENTROPY_WITH_SELFNORM,
        parents=[input, label],
        size=1)
Z
zhangjinchao01 已提交
5592

5593

X
xuwei06 已提交
5594 5595 5596 5597 5598 5599
@wrap_name_default()
@layer_support()
def sum_cost(input, name=None, layer_attr=None):
    """
    A loss layer which calculate the sum of the input as loss

C
caoying03 已提交
5600 5601
    The example usage is:

X
xuwei06 已提交
5602 5603
    .. code-block:: python

L
Luo Tao 已提交
5604
       cost = sum_cost(input=input_layer)
X
xuwei06 已提交
5605 5606 5607 5608 5609 5610 5611 5612 5613 5614

    :param input: The first input layer.
    :type input: LayerOutput.
    :param name: The name of this layers. It is not necessary.
    :type name: None|basestring.
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput.
    """
L
Luo Tao 已提交
5615
    assert isinstance(input, LayerOutput)
Q
qijun 已提交
5616 5617 5618 5619 5620
    Layer(
        name=name,
        type=LayerType.SUM_COST,
        inputs=[input.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
X
xuwei06 已提交
5621

Q
qijun 已提交
5622
    return LayerOutput(name, LayerType.SUM_COST, parents=[input], size=1)
X
xuwei06 已提交
5623 5624


Z
zhangjinchao01 已提交
5625
@wrap_name_default()
L
luotao1 已提交
5626 5627
@layer_support()
def huber_cost(input, label, name=None, coeff=1.0, layer_attr=None):
Z
zhangjinchao01 已提交
5628 5629 5630
    """
    A loss layer for huber loss.

C
caoying03 已提交
5631 5632
    The example usage is:

Z
zhangjinchao01 已提交
5633 5634
    .. code-block:: python

X
xuwei06 已提交
5635
       cost = huber_cost(input=input_layer,
L
Luo Tao 已提交
5636
                         label=label_layer)
Z
zhangjinchao01 已提交
5637 5638 5639 5640 5641 5642 5643 5644 5645

    :param input: The first input layer.
    :type input: LayerOutput.
    :param label: The input label.
    :type input: LayerOutput.
    :param name: The name of this layers. It is not necessary.
    :type name: None|basestring.
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float.
L
luotao1 已提交
5646 5647
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5648
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5649 5650
    :rtype: LayerOutput.
    """
5651 5652 5653
    assert isinstance(input, LayerOutput)
    if input.size is not None:
        assert input.size == 1
Q
qijun 已提交
5654 5655 5656 5657 5658 5659
    Layer(
        name=name,
        type=LayerType.HUBER,
        inputs=[input.name, label.name],
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
X
xuwei06 已提交
5660
    return LayerOutput(name, LayerType.HUBER, parents=[input, label], size=1)
Z
zhangjinchao01 已提交
5661

5662

Z
zhangjinchao01 已提交
5663
@wrap_name_default()
L
luotao1 已提交
5664
@layer_support()
Q
qijun 已提交
5665 5666 5667 5668
def multi_binary_label_cross_entropy(input,
                                     label,
                                     name=None,
                                     coeff=1.0,
L
luotao1 已提交
5669
                                     layer_attr=None):
Z
zhangjinchao01 已提交
5670 5671 5672
    """
    A loss layer for multi binary label cross entropy.

C
caoying03 已提交
5673 5674
    The example usage is:

Z
zhangjinchao01 已提交
5675 5676
    .. code-block:: python

X
xuwei06 已提交
5677
       cost = multi_binary_label_cross_entropy(input=input_layer,
L
Luo Tao 已提交
5678
                                               label=label_layer)
Z
zhangjinchao01 已提交
5679 5680 5681 5682 5683 5684 5685 5686 5687

    :param input: The first input layer.
    :type input: LayerOutput
    :param label: The input label.
    :type input: LayerOutput
    :param name: The name of this layers. It is not necessary.
    :type name: None|basestring
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float
L
luotao1 已提交
5688 5689
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5690
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5691 5692 5693
    :rtype: LayerOutput
    """

5694 5695
    if input.activation is None or \
            not isinstance(input.activation, SigmoidActivation):
Q
qijun 已提交
5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711
        logger.log(
            logging.WARN,
            "%s is not recommend for multi_binary_label_cross_entropy's activation, "
            "maybe the sigmoid is better" % repr(input.activation))

    Layer(
        name=name,
        type=LayerType.MULTI_BIN_LABEL_CROSS_ENTROPY,
        inputs=[input.name, label.name],
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.MULTI_BIN_LABEL_CROSS_ENTROPY,
        parents=[input, label],
        size=1)
D
dangqingqing 已提交
5712 5713 5714 5715


@wrap_name_default()
@layer_support()
5716
def smooth_l1_cost(input, label, name=None, coeff=1.0, layer_attr=None):
D
dangqingqing 已提交
5717 5718
    """
    This is a L1 loss but more smooth. It requires that the
D
dangqingqing 已提交
5719
    size of input and label are equal. The formula is as follows,
D
dangqingqing 已提交
5720 5721 5722 5723 5724 5725 5726 5727 5728

    .. math::

        L = \sum_{i} smooth_{L1}(input_i - label_i)

    in which

    .. math::

5729
        smooth_{L1}(x) = \\begin{cases} 0.5x^2& \\text{if}  \\ |x| < 1 \\\\ |x|-0.5& \\text{otherwise} \end{cases}
D
dangqingqing 已提交
5730

D
dangqingqing 已提交
5731 5732 5733
    More details can be found by referring to `Fast R-CNN
    <https://arxiv.org/pdf/1504.08083v2.pdf>`_

C
caoying03 已提交
5734 5735
    The example usage is:

D
dangqingqing 已提交
5736 5737
    .. code-block:: python

5738 5739
       cost = smooth_l1_cost(input=input_layer,
                             label=label_layer)
D
dangqingqing 已提交
5740 5741 5742 5743 5744 5745 5746

    :param input: The input layer.
    :type input: LayerOutput
    :param label: The input label.
    :type input: LayerOutput
    :param name: The name of this layers. It is not necessary.
    :type name: None|basestring
5747 5748
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float
D
dangqingqing 已提交
5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert isinstance(label, LayerOutput)
    assert input.size == label.size

    Layer(
        name=name,
        type=LayerType.SMOOTH_L1,
        inputs=[input.name, label.name],
5762
        coeff=coeff,
D
dangqingqing 已提交
5763 5764 5765
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SMOOTH_L1, parents=[input, label], size=1)
W
wwhu 已提交
5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784


@wrap_name_default()
def multiplex_layer(input, name=None, layer_attr=None):
    """
    This layer multiplex multiple layers according to the index,
    which is provided by the first input layer.
    inputs[0]: the index of the layer to output of size batchSize.
    inputs[1:N]; the candidate output data.
    For each index i from 0 to batchSize -1, the output is the i-th row of the
    (index[i] + 1)-th layer.

    For each i-th row of output:
    .. math::
        y[i][j] = x_{x_{0}[i] + 1}[i][j], j = 0,1, ... , (x_{1}.width - 1)

    where, y is output. :math:`x_{k}` is the k-th input layer and
    :math:`k = x_{0}[i] + 1`.

C
caoying03 已提交
5785 5786
    The example usage is:

W
wwhu 已提交
5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818
    .. code-block:: python

       maxid = multiplex_layer(input=layers)

    :param input: Input layers.
    :type input: list of LayerOutput
    :param name: Layer name.
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    assert isinstance(input, collections.Sequence)
    assert len(input) > 2, 'multiplex_layer should have more than 2 inputs'
    for i in range(1, len(input)):
        assert isinstance(input[i], LayerOutput)
        assert input[i].size == input[1].size, \
            "All the input layers except the first one should have the same size"

    l = Layer(
        name=name,
        type='multiplex',
        inputs=[x.name for x in input],
        size=input[1].size,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.MULTIPLEX_LAYER,
        parents=input,
        size=l.config.size)
D
dangqingqing 已提交
5819 5820


5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836
@wrap_name_default("dropout")
def dropout_layer(input, dropout_rate, name=None):
    """
    @TODO(yuyang18): Add comments.

    :param name:
    :param input:
    :param dropout_rate:
    :return:
    """
    return addto_layer(
        name=name,
        input=input,
        act=LinearActivation(),
        bias_attr=False,
        layer_attr=ExtraAttr(drop_rate=dropout_rate))
5837 5838


D
dangqingqing 已提交
5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860
@wrap_name_default()
@wrap_act_default(act=LinearActivation())
@wrap_param_attr_default()
@layer_support(DROPOUT)
def row_conv_layer(input,
                   context_len,
                   act=None,
                   name=None,
                   param_attr=None,
                   layer_attr=None):
    """

    The row convolution is called lookahead convolution. It is firstly
    introduced in paper of `Deep Speech 2: End-toEnd Speech Recognition
    in English and Mandarin <https://arxiv.org/pdf/1512.02595v1.pdf>`_ .

    The bidirectional RNN that learns representation for a sequence by
    performing a forward and a backward pass through the entire sequence.
    However, unlike unidirectional RNNs, bidirectional RNNs are challenging
    to deploy in an online and low-latency setting. The lookahead convolution
    incorporates information from future subsequences in a computationally
    efficient manner to improve unidirectional recurrent neural networks.
5861

D
dangqingqing 已提交
5862 5863 5864 5865 5866
    The connection of row convolution is different form the 1D sequence
    convolution. Assumed that, the future context-length is k, that is to say,
    it can get the output at timestep t by using the the input feature from t-th
    timestep to (t+k+1)-th timestep. Assumed that the hidden dim of input
    activations are d, the activations r_t for the new layer at time-step t are:
5867

D
dangqingqing 已提交
5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910
    .. math::

        r_{t,r} = \sum_{j=1}^{k + 1} {w_{i,j}h_{t+j-1, i}}
                  \quad \text{for} \quad  (1 \leq i \leq d)

    Note:
        The `context_len` is `k + 1`. That is to say, the lookahead step
        number plus one equals context_len.


    .. code-block:: python

       row_conv = row_conv_layer(input=input_layer, context_len=3)


    :param input: The input layer.
    :type input: LayerOutput
    :param context_len: The context length equals the lookahead step number
                        plus one.
    :type context_len: int
    :param act: Activation Type. Default is linear activation.
    :type act: BaseActivation
    :param param_attr: The Parameter Attribute. If None, the parameter will be
                       initialized smartly. It's better set it by yourself.
    :type param_attr: ParameterAttribute
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
    :return: LayerOutput object.
    :rtype: LayerOutput

    """
    assert isinstance(input, LayerOutput)
    assert context_len > 0, "the context_len must be greatet than 0."

    Layer(
        inputs=[Input(input.name, **param_attr.attr)],
        name=name,
        context_length=context_len,
        type=LayerType.ROW_CONV_LAYER,
        active_type=act.name,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.ROW_CONV_LAYER, input, activation=act, size=input.size)
D
dangqingqing 已提交
5911 5912


5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931
@layer_support()
@wrap_name_default()
@wrap_param_attr_default()
def prelu_layer(input,
                name=None,
                partial_sum=1,
                param_attr=None,
                layer_attr=None):
    """
    The Parameter Relu activation that actives outputs with a learnable weight.

    Reference:
        Delving Deep into Rectifiers: Surpassing Human-Level Performance on
        ImageNet Classification http://arxiv.org/pdf/1502.01852v1.pdf

    .. math::
       z_i &\\quad if \\quad z_i > 0 \\\\
       a_i * z_i  &\\quad \\mathrm{otherwise}

C
caoying03 已提交
5932 5933 5934 5935 5936 5937
    The example usage is:

    .. code-block:: python

       prelu = prelu_layer(input=layers, partial_sum=1)

5938 5939 5940 5941 5942
    :param name: Name of this layer.
    :type name: basestring
    :param input: The input layer.
    :type input: LayerOutput
    :param partial_sum: this parameter makes a group of inputs share a same weight.
C
caoying03 已提交
5943 5944 5945 5946 5947 5948

        - partial_sum = 1, indicates the element-wise activation: each element has a weight.
        - partial_sum = number of elements in one channel, indicates the channel-wise activation, elements in a channel share a same weight.
        - partial_sum = number of outputs, indicates all elements share a same weight.

    :type partial_sum: int
5949 5950 5951 5952 5953 5954 5955 5956
    :param param_attr: The parameter attribute. See ParameterAttribute for details.
    :type param_attr: ParameterAttribute|None
    :param layer_attr: Extra layer configurations. Default is None.
    :type layer_attr: ExtraLayerAttribute|None
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

5957
    assert isinstance(input, LayerOutput), 'prelu_layer accepts only one input.'
C
caoying03 已提交
5958
    assert isinstance(param_attr, ParameterAttribute)
5959 5960 5961

    l = Layer(
        name=name,
C
caoying03 已提交
5962
        type=LayerType.PRELU,
C
caoying03 已提交
5963
        inputs=Input(input.name, **param_attr.attr),
5964 5965 5966 5967 5968 5969 5970
        partial_sum=partial_sum,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.PRELU,
        parents=input,
        size=l.config.size)
5971 5972


5973
@wrap_name_default()
C
caoying03 已提交
5974
@layer_support(ERROR_CLIPPING, DROPOUT)
5975 5976 5977 5978 5979 5980 5981
@wrap_act_default(act=LinearActivation())
def gated_unit_layer(input,
                     size,
                     act=None,
                     name=None,
                     gate_attr=None,
                     gate_param_attr=None,
C
caoying03 已提交
5982 5983
                     gate_bias_attr=True,
                     inproj_attr=None,
5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019
                     inproj_param_attr=None,
                     inproj_bias_attr=True,
                     layer_attr=None):
    """
    The gated unit layer implements a simple gating mechanism over the input.
    The input :math:`X` is first projected into a new space :math:`X'`, and
    it is also used to produce a gate weight :math:`\sigma`. Element-wise
    prodict between :match:`X'` and :math:`\sigma` is finally returned.

    Reference:
        Language Modeling with Gated Convolutional Networks
        https://arxiv.org/abs/1612.08083

    .. math::
       y=\\text{act}(X \cdot W + b)\otimes \sigma(X \cdot V + c)

    The example usage is:

    .. code-block:: python
        gated_unit = gated_unit_layer(size=128, input=input_layer))

    :param input: input for this layer.
    :type input: LayerOutput
    :param size: output size of the gated unit.
    :type size: int
    :param act: activation type of the projected input.
    :type act: BaseActivation
    :param name: name of this layer.
    :type name: basestring
    :param gate_attr: Attributes to tune the gate output, for example, error
        clipping threshold, dropout and so on. See ExtraLayerAttribute for
        more details.
    :type gate_attr: ExtraLayerAttribute|None
    :param gate_param_attr: Attributes to tune the learnable projected matrix
        parameter of the gate.
    :type gate_param_attr: ParameterAttribute|None
C
caoying03 已提交
6020 6021 6022 6023 6024 6025
    :param gate_bias_attr: Attributes to tune the learnable bias of the gate.
    :type gate_bias_attr: ParameterAttribute|None
    :param inproj_attr: Attributes to the tune the projected input, for
        example, error clipping threshold, dropout and so on. See
        ExtraLayerAttribute for more details.
    :type inproj_attr: ExtraLayerAttribute|None
6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047
    :param inproj_param_attr: Attributes to tune the learnable parameter of
        the projection of input.
    :type inproj_param_attr: ParameterAttribute|None
    :param inproj_bias_attr: Attributes to tune the learnable bias of
        projection of the input.
    :type inproj_bias_attr: ParameterAttribute|None
    :param layer_attr: Attributes to tune the final output of the gated unit,
        for example, error clipping threshold, dropout and so on. See
        ExtraLayerAttribute for more details.
    :type layer_attr: ExtraLayerAttribute|None
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    assert isinstance(
        input, LayerOutput), 'The gated linear unit accepts only one input.'

    input_proj = fc_layer(
        input=input,
        name="%s_input_proj" % name,
        size=size,
        act=act,
C
caoying03 已提交
6048
        layer_attr=inproj_attr,
6049 6050 6051 6052 6053 6054 6055 6056 6057
        param_attr=inproj_param_attr,
        bias_attr=inproj_bias_attr)

    gate = fc_layer(
        size=size,
        name="%s_gate" % name,
        act=SigmoidActivation(),
        input=input,
        layer_attr=gate_attr,
C
caoying03 已提交
6058
        param_attr=gate_param_attr,
6059 6060 6061 6062 6063
        bias_attr=gate_bias_attr)
    return mixed_layer(
        name="%s_gated_act" % name,
        input=dotmul_operator(input_proj, gate),
        layer_attr=layer_attr)
6064 6065


6066 6067
@wrap_name_default()
@layer_support()
6068
def crop_layer(input, offset, axis=2, shape=None, name=None, layer_attr=None):
6069
    """
6070
    The crop layer crops images by offset and shape. User can set crop shape by
6071
    args 'shape' explicitly or by reference input layer.
6072

6073 6074 6075
    The example usage is:

    .. code-block:: python
W
whs 已提交
6076
    crop = crop_layer(input=[image_input, reference_input], axis=2, offset=[2, 3])
6077 6078 6079 6080

    :param input: The input layer.If two inputs were setted,
                    the second input will be regarded as reference input
    :type input: LayerOutput or Sequence
6081 6082
    :param offset: The crop offset
    :type offset: Sequence
6083 6084 6085 6086 6087 6088 6089
    :param axis: start axis to be cropped. To image input layer:
        - 0: batch size
        - 1: channels
        - 2: height
        - 3: width
    :type partial_sum: int
    :param shape: The shape to be cropped. Default is None.
6090
    :type shape: Sequence | None
6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112
    :param name: Name of this layer.
    :type name: basestring
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
    else:
        assert isinstance(input, collections.Sequence)
    l = Layer(
        inputs=[x.name for x in input],
        axis=axis,
        offset=offset,
        shape=shape,
        name=name,
        type=LayerType.CROP_LAYER,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.CROP_LAYER,
        parents=input,
        size=l.config.size)
G
guosheng 已提交
6113 6114


C
caoying03 已提交
6115 6116
@wrap_name_default()
@layer_support()
6117
def sub_nested_seq_layer(input, selected_indices, name=None):
C
caoying03 已提交
6118
    """
6119
    The sub_nested_seq_layer accepts two inputs: the first one is a nested
6120
    sequence; the second one is a set of selceted indices in the nested sequence.
C
caoying03 已提交
6121

C
caoying03 已提交
6122 6123 6124
    Then sub_nest_seq_layer trims the first nested sequence input according
    to the selected indices to form a new output. This layer is useful in
    beam training.
C
caoying03 已提交
6125 6126 6127 6128

    The example usage is:

    .. code-block:: python
C
caoying03 已提交
6129 6130

        sub_nest_seq = sub_nested_seq_layer(input=[data, selected_indices])
6131

C
caoying03 已提交
6132

6133 6134 6135
    :param input: A nested sequence.
    :type input: LayerOutput
    :param selected_indices: a set of sequence indices in the nested sequence.
C
caoying03 已提交
6136 6137 6138 6139 6140 6141
    :type input: LayerOutput
    :param name: name of this layer.
    :type name: basestring
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
C
caoying03 已提交
6142

6143 6144 6145 6146 6147 6148 6149
    assert isinstance(input, LayerOutput), (
        'The first input of '
        'sub_nested_seq_layer must be a Paddle layer.')
    assert isinstance(selected_indices, LayerOutput), (
        'The second input of '
        'sub_nested_seq_layer must be a Paddle layer.')

C
caoying03 已提交
6150
    l = Layer(
6151 6152
        inputs=input.name,
        selected_indices=selected_indices.name,
C
caoying03 已提交
6153 6154 6155 6156 6157 6158 6159
        name=name,
        type=LayerType.SUB_NESTED_SEQ)
    return LayerOutput(
        name=name,
        layer_type=LayerType.SUB_NESTED_SEQ,
        parents=input,
        size=l.config.size)
6160 6161


G
guosheng 已提交
6162
@wrap_name_default("clip")
6163
def clip_layer(input, min, max, name=None):
G
guosheng 已提交
6164 6165 6166 6167 6168 6169 6170 6171 6172
    """
    A layer for clipping the input value by the threshold.

    .. math::

        out[i] = \min\left(\max\left(in[i],p_{1}\right),p_{2}\right)

    .. code-block:: python

6173
        clip = clip_layer(input=input_layer, min=-10, max=10)
G
guosheng 已提交
6174 6175 6176 6177 6178

    :param name: The Layer Name.
    :type name: basestring
    :param input: The input layer.
    :type input: LayerOutput.
6179 6180 6181 6182
    :param min: The lower threshold for clipping.
    :type min: double
    :param max: The upper threshold for clipping.
    :type max: double
6183 6184
    :return: LayerOutput object.
    :rtype: LayerOutput
G
guosheng 已提交
6185 6186 6187 6188 6189
    """
    Layer(
        name=name,
        type=LayerType.CLIP_LAYER,
        inputs=[input.name],
6190 6191
        min=min,
        max=max)
G
guosheng 已提交
6192 6193
    return LayerOutput(
        name, LayerType.CLIP_LAYER, parents=[input], size=input.size)
6194 6195 6196 6197 6198


@wrap_name_default()
@layer_support()
def kmax_sequence_score_layer(input, name=None, beam_size=1):
6199
    """
C
caoying03 已提交
6200
    This layer accepts one input which are scores over a sequence or a nested
6201 6202 6203 6204 6205 6206 6207 6208 6209
    sequence, and returns indices of beam_size sequences with highest scores.

    .. code-block:: python

        kmax_indices = kmax_sequence_score_layer(input=input_layer, beam_size)


    :param name: The Layer Name.
    :type name: basestring
C
caoying03 已提交
6210
    :param input: The input layer. It stores scores over a sequence or a nested
6211 6212 6213 6214 6215 6216 6217
        sequence and its size must be 1.
    :type input: LayerOutput.
    :param beam_size: squence indices with top beam_size scores are returned.
    :type beam_size: double
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
6218
    assert isinstance(input, LayerOutput), ("kmax_sequence_score_layer "
6219
                                            "accepts only one input.")
6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231
    assert input.size == 1, (
        "input of kmax_sequence_score_layer is a score"
        "over a sequence or a nested sequence, so its width must be 1.")

    Layer(
        name=name,
        type=LayerType.KMAX_SEQ_SCORE,
        inputs=[input.name],
        beam_size=beam_size)

    return LayerOutput(
        name, LayerType.KMAX_SEQ_SCORE, parents=[input], size=input.size)
G
guosheng 已提交
6232 6233 6234 6235 6236 6237 6238


@wrap_name_default("scale_shift")
@wrap_param_attr_default()
@wrap_bias_attr_default()
def scale_shift_layer(input, name=None, param_attr=None, bias_attr=None):
    """
X
xuwei06 已提交
6239 6240
    A layer applies a linear transformation to each element in each row of
    the input matrix. For each element, the layer first re-scale it and then
6241 6242
    adds a bias to it.

X
xuwei06 已提交
6243
    This layer is very like the SlopeInterceptLayer, except the scale and
6244 6245
    bias are trainable.

G
guosheng 已提交
6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271
    .. math::

        y = w * x + b

    .. code-block:: python

        scale_shift = scale_shift_layer(input=input_layer, bias_attr=False)

    :param name: The Layer Name.
    :type name: basestring
    :param input: The input layer.
    :type input: LayerOutput.
    :param param_attr: The parameter attribute of scaling.
    :type param_attr: ParameterAttribute
    :param bias_attr: The parameter attribute of shifting.
    :type bias_attr: ParameterAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.SCALE_SHIFT_LAYER,
        inputs=Input(input.name, **param_attr.attr),
        bias=ParamAttr.to_bias(bias_attr))
    return LayerOutput(
        name, LayerType.SCALE_SHIFT_LAYER, parents=[input], size=input.size)