action_infer.py 25.6 KB
Newer Older
J
JYChen 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import yaml
import glob

import cv2
import numpy as np
import math
import paddle
import sys
from collections import Sequence

C
chenxujun 已提交
26
# add deploy path of PaddleDetection to sys.path
J
JYChen 已提交
27 28 29 30
parent_path = os.path.abspath(os.path.join(__file__, *(['..'] * 2)))
sys.path.insert(0, parent_path)

from paddle.inference import Config, create_predictor
Z
zhiboniu 已提交
31 32 33
from python.utils import argsparser, Timer, get_current_memory_mb
from python.benchmark_utils import PaddleInferBenchmark
from python.infer import Detector, print_arguments
J
JYChen 已提交
34
from attr_infer import AttrDetector
J
JYChen 已提交
35 36


Z
zhiboniu 已提交
37
class SkeletonActionRecognizer(Detector):
J
JYChen 已提交
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
    """
    Args:
        model_dir (str): root path of model.pdiparams, model.pdmodel and infer_cfg.yml
        device (str): Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU
        run_mode (str): mode of running(paddle/trt_fp32/trt_fp16)
        batch_size (int): size of pre batch in inference
        trt_min_shape (int): min shape for dynamic shape in trt
        trt_max_shape (int): max shape for dynamic shape in trt
        trt_opt_shape (int): opt shape for dynamic shape in trt
        trt_calib_mode (bool): If the model is produced by TRT offline quantitative
            calibration, trt_calib_mode need to set True
        cpu_threads (int): cpu threads
        enable_mkldnn (bool): whether to open MKLDNN
        threshold (float): The threshold of score for visualization
        window_size(int): Temporal size of skeleton feature.
        random_pad (bool): Whether do random padding when frame length < window_size.
    """

    def __init__(self,
                 model_dir,
                 device='CPU',
                 run_mode='paddle',
                 batch_size=1,
                 trt_min_shape=1,
                 trt_max_shape=1280,
                 trt_opt_shape=640,
                 trt_calib_mode=False,
                 cpu_threads=1,
                 enable_mkldnn=False,
                 output_dir='output',
                 threshold=0.5,
                 window_size=100,
                 random_pad=False):
Z
zhiboniu 已提交
71 72
        assert batch_size == 1, "SkeletonActionRecognizer only support batch_size=1 now."
        super(SkeletonActionRecognizer, self).__init__(
J
JYChen 已提交
73 74 75 76 77 78 79 80 81 82 83
            model_dir=model_dir,
            device=device,
            run_mode=run_mode,
            batch_size=batch_size,
            trt_min_shape=trt_min_shape,
            trt_max_shape=trt_max_shape,
            trt_opt_shape=trt_opt_shape,
            trt_calib_mode=trt_calib_mode,
            cpu_threads=cpu_threads,
            enable_mkldnn=enable_mkldnn,
            output_dir=output_dir,
J
JYChen 已提交
84 85
            threshold=threshold,
            delete_shuffle_pass=True)
J
JYChen 已提交
86

J
JYChen 已提交
87 88 89 90 91 92 93 94 95 96 97 98 99 100
    @classmethod
    def init_with_cfg(cls, args, cfg):
        return cls(model_dir=cfg['model_dir'],
                   batch_size=cfg['batch_size'],
                   window_size=cfg['max_frames'],
                   device=args.device,
                   run_mode=args.run_mode,
                   trt_min_shape=args.trt_min_shape,
                   trt_max_shape=args.trt_max_shape,
                   trt_opt_shape=args.trt_opt_shape,
                   trt_calib_mode=args.trt_calib_mode,
                   cpu_threads=args.cpu_threads,
                   enable_mkldnn=args.enable_mkldnn)

J
JYChen 已提交
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
    def predict(self, repeats=1):
        '''
        Args:
            repeats (int): repeat number for prediction
        Returns:
            results (dict): 
        '''
        # model prediction
        output_names = self.predictor.get_output_names()
        for i in range(repeats):
            self.predictor.run()
            output_tensor = self.predictor.get_output_handle(output_names[0])
            np_output = output_tensor.copy_to_cpu()
        result = dict(output=np_output)
        return result

    def predict_skeleton(self, skeleton_list, run_benchmark=False, repeats=1):
        results = []
        for i, skeleton in enumerate(skeleton_list):
            if run_benchmark:
                # preprocess
                inputs = self.preprocess(skeleton)  # warmup
                self.det_times.preprocess_time_s.start()
                inputs = self.preprocess(skeleton)
                self.det_times.preprocess_time_s.end()

                # model prediction
                result = self.predict(repeats=repeats)  # warmup
                self.det_times.inference_time_s.start()
                result = self.predict(repeats=repeats)
                self.det_times.inference_time_s.end(repeats=repeats)

                # postprocess
                result_warmup = self.postprocess(inputs, result)  # warmup
                self.det_times.postprocess_time_s.start()
                result = self.postprocess(inputs, result)
                self.det_times.postprocess_time_s.end()
                self.det_times.img_num += len(skeleton)

                cm, gm, gu = get_current_memory_mb()
                self.cpu_mem += cm
                self.gpu_mem += gm
                self.gpu_util += gu
            else:
                # preprocess
                self.det_times.preprocess_time_s.start()
                inputs = self.preprocess(skeleton)
                self.det_times.preprocess_time_s.end()

                # model prediction
                self.det_times.inference_time_s.start()
                result = self.predict()
                self.det_times.inference_time_s.end()

                # postprocess
                self.det_times.postprocess_time_s.start()
                result = self.postprocess(inputs, result)
                self.det_times.postprocess_time_s.end()
                self.det_times.img_num += len(skeleton)

            results.append(result)
        return results

    def predict_skeleton_with_mot(self, skeleton_with_mot, run_benchmark=False):
        """
            skeleton_with_mot (dict): includes individual skeleton sequences, which shape is [C, T, K, 1]
                                      and its corresponding track id.
        """

        skeleton_list = skeleton_with_mot["skeleton"]
        mot_id = skeleton_with_mot["mot_id"]
        act_res = self.predict_skeleton(skeleton_list, run_benchmark, repeats=1)
        results = list(zip(mot_id, act_res))
        return results

    def preprocess(self, data):
        preprocess_ops = []
        for op_info in self.pred_config.preprocess_infos:
            new_op_info = op_info.copy()
            op_type = new_op_info.pop('type')
            preprocess_ops.append(eval(op_type)(**new_op_info))

        input_lst = []
        data = action_preprocess(data, preprocess_ops)
        input_lst.append(data)
        input_names = self.predictor.get_input_names()
        inputs = {}
        inputs['data_batch_0'] = np.stack(input_lst, axis=0).astype('float32')

        for i in range(len(input_names)):
            input_tensor = self.predictor.get_input_handle(input_names[i])
            input_tensor.copy_from_cpu(inputs[input_names[i]])

        return inputs

    def postprocess(self, inputs, result):
        # postprocess output of predictor
        output_logit = result['output'][0]
        classes = np.argpartition(output_logit, -1)[-1:]
        classes = classes[np.argsort(-output_logit[classes])]
        scores = output_logit[classes]
        result = {'class': classes, 'score': scores}
        return result


def action_preprocess(input, preprocess_ops):
    """
    input (str | numpy.array): if input is str, it should be a legal file path with numpy array saved.
                               Otherwise it should be numpy.array as direct input.
    return (numpy.array) 
    """
    if isinstance(input, str):
        assert os.path.isfile(input) is not None, "{0} not exists".format(input)
        data = np.load(input)
    else:
        data = input
    for operator in preprocess_ops:
        data = operator(data)
    return data


class AutoPadding(object):
    """
    Sample or Padding frame skeleton feature.
    Args:
        window_size (int): Temporal size of skeleton feature.
        random_pad (bool): Whether do random padding when frame length < window size. Default: False.
    """

    def __init__(self, window_size=100, random_pad=False):
        self.window_size = window_size
        self.random_pad = random_pad

    def get_frame_num(self, data):
        C, T, V, M = data.shape
        for i in range(T - 1, -1, -1):
            tmp = np.sum(data[:, i, :, :])
            if tmp > 0:
                T = i + 1
                break
        return T

    def __call__(self, results):
        data = results

        C, T, V, M = data.shape
        T = self.get_frame_num(data)
        if T == self.window_size:
            data_pad = data[:, :self.window_size, :, :]
        elif T < self.window_size:
            begin = random.randint(
                0, self.window_size - T) if self.random_pad else 0
            data_pad = np.zeros((C, self.window_size, V, M))
            data_pad[:, begin:begin + T, :, :] = data[:, :T, :, :]
        else:
            if self.random_pad:
                index = np.random.choice(
                    T, self.window_size, replace=False).astype('int64')
            else:
                index = np.linspace(0, T, self.window_size).astype("int64")
            data_pad = data[:, index, :, :]

        return data_pad


def get_test_skeletons(input_file):
    assert input_file is not None, "--action_file can not be None"
    input_data = np.load(input_file)
    if input_data.ndim == 4:
        return [input_data]
    elif input_data.ndim == 5:
        output = list(
            map(lambda x: np.squeeze(x, 0),
                np.split(input_data, input_data.shape[0], 0)))
        return output
    else:
        raise ValueError(
            "Now only support input with shape: (N, C, T, K, M) or (C, T, K, M)")


J
JYChen 已提交
281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
class DetActionRecognizer(object):
    """
    Args:
        model_dir (str): root path of model.pdiparams, model.pdmodel and infer_cfg.yml
        device (str): Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU
        run_mode (str): mode of running(paddle/trt_fp32/trt_fp16)
        batch_size (int): size of pre batch in inference
        trt_min_shape (int): min shape for dynamic shape in trt
        trt_max_shape (int): max shape for dynamic shape in trt
        trt_opt_shape (int): opt shape for dynamic shape in trt
        trt_calib_mode (bool): If the model is produced by TRT offline quantitative
            calibration, trt_calib_mode need to set True
        cpu_threads (int): cpu threads
        enable_mkldnn (bool): whether to open MKLDNN
        threshold (float): The threshold of score for action feature object detection.
296 297 298 299 300
        display_frames (int): The duration for corresponding detected action.
        skip_frame_num (int): The number of frames for interval prediction. A skipped frame will 
            reuse the result of its last frame. If it is set to 0, no frame will be skipped. Default
            is 0.

J
JYChen 已提交
301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
    """

    def __init__(self,
                 model_dir,
                 device='CPU',
                 run_mode='paddle',
                 batch_size=1,
                 trt_min_shape=1,
                 trt_max_shape=1280,
                 trt_opt_shape=640,
                 trt_calib_mode=False,
                 cpu_threads=1,
                 enable_mkldnn=False,
                 output_dir='output',
                 threshold=0.5,
316 317
                 display_frames=20,
                 skip_frame_num=0):
J
JYChen 已提交
318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
        super(DetActionRecognizer, self).__init__()
        self.detector = Detector(
            model_dir=model_dir,
            device=device,
            run_mode=run_mode,
            batch_size=batch_size,
            trt_min_shape=trt_min_shape,
            trt_max_shape=trt_max_shape,
            trt_opt_shape=trt_opt_shape,
            trt_calib_mode=trt_calib_mode,
            cpu_threads=cpu_threads,
            enable_mkldnn=enable_mkldnn,
            output_dir=output_dir,
            threshold=threshold)
        self.threshold = threshold
        self.frame_life = display_frames
        self.result_history = {}
335 336 337
        self.skip_frame_num = skip_frame_num
        self.skip_frame_cnt = 0
        self.id_in_last_frame = []
J
JYChen 已提交
338

J
JYChen 已提交
339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354
    @classmethod
    def init_with_cfg(cls, args, cfg):
        return cls(model_dir=cfg['model_dir'],
                   batch_size=cfg['batch_size'],
                   threshold=cfg['threshold'],
                   display_frames=cfg['display_frames'],
                   skip_frame_num=cfg['skip_frame_num'],
                   device=args.device,
                   run_mode=args.run_mode,
                   trt_min_shape=args.trt_min_shape,
                   trt_max_shape=args.trt_max_shape,
                   trt_opt_shape=args.trt_opt_shape,
                   trt_calib_mode=args.trt_calib_mode,
                   cpu_threads=args.cpu_threads,
                   enable_mkldnn=args.enable_mkldnn)

J
JYChen 已提交
355
    def predict(self, images, mot_result):
356 357 358 359 360 361 362 363 364 365
        if self.skip_frame_cnt == 0 or (not self.check_id_is_same(mot_result)):
            det_result = self.detector.predict_image(images, visual=False)
            result = self.postprocess(det_result, mot_result)
        else:
            result = self.reuse_result(mot_result)

        self.skip_frame_cnt += 1
        if self.skip_frame_cnt >= self.skip_frame_num:
            self.skip_frame_cnt = 0

J
JYChen 已提交
366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
        return result

    def postprocess(self, det_result, mot_result):
        np_boxes_num = det_result['boxes_num']
        if np_boxes_num[0] <= 0:
            return [[], []]

        mot_bboxes = mot_result.get('boxes')

        cur_box_idx = 0
        mot_id = []
        act_res = []
        for idx in range(len(mot_bboxes)):
            tracker_id = mot_bboxes[idx, 0]

            # Current now,  class 0 is positive, class 1 is negative.
            action_ret = {'class': 1.0, 'score': -1.0}
            box_num = np_boxes_num[idx]
            boxes = det_result['boxes'][cur_box_idx:cur_box_idx + box_num]
            cur_box_idx += box_num
            isvalid = (boxes[:, 1] > self.threshold) & (boxes[:, 0] == 0)
            valid_boxes = boxes[isvalid, :]

            if valid_boxes.shape[0] >= 1:
                action_ret['class'] = valid_boxes[0, 0]
                action_ret['score'] = valid_boxes[0, 1]
392 393
                self.result_history[
                    tracker_id] = [0, self.frame_life, valid_boxes[0, 1]]
J
JYChen 已提交
394
            else:
395 396
                history_det, life_remain, history_score = self.result_history.get(
                    tracker_id, [1, self.frame_life, -1.0])
J
JYChen 已提交
397 398 399 400 401 402 403
                action_ret['class'] = history_det
                action_ret['score'] = -1.0
                life_remain -= 1
                if life_remain <= 0 and tracker_id in self.result_history:
                    del (self.result_history[tracker_id])
                elif tracker_id in self.result_history:
                    self.result_history[tracker_id][1] = life_remain
404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438
                else:
                    self.result_history[tracker_id] = [
                        history_det, life_remain, history_score
                    ]

            mot_id.append(tracker_id)
            act_res.append(action_ret)
        result = list(zip(mot_id, act_res))
        self.id_in_last_frame = mot_id

        return result

    def check_id_is_same(self, mot_result):
        mot_bboxes = mot_result.get('boxes')
        for idx in range(len(mot_bboxes)):
            tracker_id = mot_bboxes[idx, 0]
            if tracker_id not in self.id_in_last_frame:
                return False
        return True

    def reuse_result(self, mot_result):
        # This function reusing previous results of the same ID directly.
        mot_bboxes = mot_result.get('boxes')

        mot_id = []
        act_res = []

        for idx in range(len(mot_bboxes)):
            tracker_id = mot_bboxes[idx, 0]
            history_cls, life_remain, history_score = self.result_history.get(
                tracker_id, [1, 0, -1.0])

            life_remain -= 1
            if tracker_id in self.result_history:
                self.result_history[tracker_id][1] = life_remain
J
JYChen 已提交
439

440
            action_ret = {'class': history_cls, 'score': history_score}
J
JYChen 已提交
441 442
            mot_id.append(tracker_id)
            act_res.append(action_ret)
443

J
JYChen 已提交
444
        result = list(zip(mot_id, act_res))
445
        self.id_in_last_frame = mot_id
J
JYChen 已提交
446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465

        return result


class ClsActionRecognizer(AttrDetector):
    """
    Args:
        model_dir (str): root path of model.pdiparams, model.pdmodel and infer_cfg.yml
        device (str): Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU
        run_mode (str): mode of running(paddle/trt_fp32/trt_fp16)
        batch_size (int): size of pre batch in inference
        trt_min_shape (int): min shape for dynamic shape in trt
        trt_max_shape (int): max shape for dynamic shape in trt
        trt_opt_shape (int): opt shape for dynamic shape in trt
        trt_calib_mode (bool): If the model is produced by TRT offline quantitative
            calibration, trt_calib_mode need to set True
        cpu_threads (int): cpu threads
        enable_mkldnn (bool): whether to open MKLDNN
        threshold (float): The threshold of score for action feature object detection.
        display_frames (int): The duration for corresponding detected action. 
466 467 468
        skip_frame_num (int): The number of frames for interval prediction. A skipped frame will 
            reuse the result of its last frame. If it is set to 0, no frame will be skipped. Default
            is 0.
J
JYChen 已提交
469 470 471 472 473 474 475 476 477 478 479 480 481 482 483
    """

    def __init__(self,
                 model_dir,
                 device='CPU',
                 run_mode='paddle',
                 batch_size=1,
                 trt_min_shape=1,
                 trt_max_shape=1280,
                 trt_opt_shape=640,
                 trt_calib_mode=False,
                 cpu_threads=1,
                 enable_mkldnn=False,
                 output_dir='output',
                 threshold=0.5,
484 485
                 display_frames=80,
                 skip_frame_num=0):
J
JYChen 已提交
486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501
        super(ClsActionRecognizer, self).__init__(
            model_dir=model_dir,
            device=device,
            run_mode=run_mode,
            batch_size=batch_size,
            trt_min_shape=trt_min_shape,
            trt_max_shape=trt_max_shape,
            trt_opt_shape=trt_opt_shape,
            trt_calib_mode=trt_calib_mode,
            cpu_threads=cpu_threads,
            enable_mkldnn=enable_mkldnn,
            output_dir=output_dir,
            threshold=threshold)
        self.threshold = threshold
        self.frame_life = display_frames
        self.result_history = {}
502 503 504
        self.skip_frame_num = skip_frame_num
        self.skip_frame_cnt = 0
        self.id_in_last_frame = []
J
JYChen 已提交
505

J
JYChen 已提交
506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521
    @classmethod
    def init_with_cfg(cls, args, cfg):
        return cls(model_dir=cfg['model_dir'],
                   batch_size=cfg['batch_size'],
                   threshold=cfg['threshold'],
                   display_frames=cfg['display_frames'],
                   skip_frame_num=cfg['skip_frame_num'],
                   device=args.device,
                   run_mode=args.run_mode,
                   trt_min_shape=args.trt_min_shape,
                   trt_max_shape=args.trt_max_shape,
                   trt_opt_shape=args.trt_opt_shape,
                   trt_calib_mode=args.trt_calib_mode,
                   cpu_threads=args.cpu_threads,
                   enable_mkldnn=args.enable_mkldnn)

J
JYChen 已提交
522
    def predict_with_mot(self, images, mot_result):
523 524 525 526 527 528 529 530 531 532 533
        if self.skip_frame_cnt == 0 or (not self.check_id_is_same(mot_result)):
            images = self.crop_half_body(images)
            cls_result = self.predict_image(images, visual=False)["output"]
            result = self.match_action_with_id(cls_result, mot_result)
        else:
            result = self.reuse_result(mot_result)

        self.skip_frame_cnt += 1
        if self.skip_frame_cnt >= self.skip_frame_num:
            self.skip_frame_cnt = 0

J
JYChen 已提交
534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574
        return result

    def crop_half_body(self, images):
        crop_images = []
        for image in images:
            h = image.shape[0]
            crop_images.append(image[:h // 2 + 1, :, :])
        return crop_images

    def postprocess(self, inputs, result):
        # postprocess output of predictor
        im_results = result['output']
        batch_res = []
        for res in im_results:
            action_res = res.tolist()
            for cid, score in enumerate(action_res):
                action_res[cid] = score
            batch_res.append(action_res)
        result = {'output': batch_res}
        return result

    def match_action_with_id(self, cls_result, mot_result):
        mot_bboxes = mot_result.get('boxes')

        mot_id = []
        act_res = []

        for idx in range(len(mot_bboxes)):
            tracker_id = mot_bboxes[idx, 0]

            cls_id_res = 1
            cls_score_res = -1.0
            for cls_id in range(len(cls_result[idx])):
                score = cls_result[idx][cls_id]
                if score > cls_score_res:
                    cls_id_res = cls_id
                    cls_score_res = score

            # Current now,  class 0 is positive, class 1 is negative.
            if cls_id_res == 1 or (cls_id_res == 0 and
                                   cls_score_res < self.threshold):
575 576
                history_cls, life_remain, history_score = self.result_history.get(
                    tracker_id, [1, self.frame_life, -1.0])
J
JYChen 已提交
577 578 579 580 581 582 583
                cls_id_res = history_cls
                cls_score_res = 1 - cls_score_res
                life_remain -= 1
                if life_remain <= 0 and tracker_id in self.result_history:
                    del (self.result_history[tracker_id])
                elif tracker_id in self.result_history:
                    self.result_history[tracker_id][1] = life_remain
584 585 586
                else:
                    self.result_history[
                        tracker_id] = [cls_id_res, life_remain, cls_score_res]
J
JYChen 已提交
587
            else:
588 589
                self.result_history[
                    tracker_id] = [cls_id_res, self.frame_life, cls_score_res]
J
JYChen 已提交
590 591 592 593 594

            action_ret = {'class': cls_id_res, 'score': cls_score_res}
            mot_id.append(tracker_id)
            act_res.append(action_ret)
        result = list(zip(mot_id, act_res))
595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628
        self.id_in_last_frame = mot_id

        return result

    def check_id_is_same(self, mot_result):
        mot_bboxes = mot_result.get('boxes')
        for idx in range(len(mot_bboxes)):
            tracker_id = mot_bboxes[idx, 0]
            if tracker_id not in self.id_in_last_frame:
                return False
        return True

    def reuse_result(self, mot_result):
        # This function reusing previous results of the same ID directly.
        mot_bboxes = mot_result.get('boxes')

        mot_id = []
        act_res = []

        for idx in range(len(mot_bboxes)):
            tracker_id = mot_bboxes[idx, 0]
            history_cls, life_remain, history_score = self.result_history.get(
                tracker_id, [1, 0, -1.0])

            life_remain -= 1
            if tracker_id in self.result_history:
                self.result_history[tracker_id][1] = life_remain

            action_ret = {'class': history_cls, 'score': history_score}
            mot_id.append(tracker_id)
            act_res.append(action_ret)

        result = list(zip(mot_id, act_res))
        self.id_in_last_frame = mot_id
J
JYChen 已提交
629 630 631 632

        return result


J
JYChen 已提交
633
def main():
Z
zhiboniu 已提交
634
    detector = SkeletonActionRecognizer(
J
JYChen 已提交
635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674
        FLAGS.model_dir,
        device=FLAGS.device,
        run_mode=FLAGS.run_mode,
        batch_size=FLAGS.batch_size,
        trt_min_shape=FLAGS.trt_min_shape,
        trt_max_shape=FLAGS.trt_max_shape,
        trt_opt_shape=FLAGS.trt_opt_shape,
        trt_calib_mode=FLAGS.trt_calib_mode,
        cpu_threads=FLAGS.cpu_threads,
        enable_mkldnn=FLAGS.enable_mkldnn,
        threshold=FLAGS.threshold,
        output_dir=FLAGS.output_dir,
        window_size=FLAGS.window_size,
        random_pad=FLAGS.random_pad)
    # predict from numpy array
    input_list = get_test_skeletons(FLAGS.action_file)
    detector.predict_skeleton(input_list, FLAGS.run_benchmark, repeats=10)
    if not FLAGS.run_benchmark:
        detector.det_times.info(average=True)
    else:
        mems = {
            'cpu_rss_mb': detector.cpu_mem / len(input_list),
            'gpu_rss_mb': detector.gpu_mem / len(input_list),
            'gpu_util': detector.gpu_util * 100 / len(input_list)
        }

        perf_info = detector.det_times.report(average=True)
        model_dir = FLAGS.model_dir
        mode = FLAGS.run_mode
        model_info = {
            'model_name': model_dir.strip('/').split('/')[-1],
            'precision': mode.split('_')[-1]
        }
        data_info = {
            'batch_size': FLAGS.batch_size,
            'shape': "dynamic_shape",
            'data_num': perf_info['img_num']
        }
        det_log = PaddleInferBenchmark(detector.config, model_info, data_info,
                                       perf_info, mems)
Z
zhiboniu 已提交
675
        det_log('SkeletonAction')
J
JYChen 已提交
676 677 678 679 680 681 682 683 684 685 686 687 688


if __name__ == '__main__':
    paddle.enable_static()
    parser = argsparser()
    FLAGS = parser.parse_args()
    print_arguments(FLAGS)
    FLAGS.device = FLAGS.device.upper()
    assert FLAGS.device in ['CPU', 'GPU', 'XPU'
                            ], "device should be CPU, GPU or XPU"
    assert not FLAGS.use_gpu, "use_gpu has been deprecated, please use --device"

    main()