action_infer.py 23.7 KB
Newer Older
J
JYChen 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import yaml
import glob

import cv2
import numpy as np
import math
import paddle
import sys
from collections import Sequence

# add deploy path of PadleDetection to sys.path
parent_path = os.path.abspath(os.path.join(__file__, *(['..'] * 2)))
sys.path.insert(0, parent_path)

from paddle.inference import Config, create_predictor
Z
zhiboniu 已提交
31 32 33
from python.utils import argsparser, Timer, get_current_memory_mb
from python.benchmark_utils import PaddleInferBenchmark
from python.infer import Detector, print_arguments
J
JYChen 已提交
34
from attr_infer import AttrDetector
J
JYChen 已提交
35 36


Z
zhiboniu 已提交
37
class SkeletonActionRecognizer(Detector):
J
JYChen 已提交
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
    """
    Args:
        model_dir (str): root path of model.pdiparams, model.pdmodel and infer_cfg.yml
        device (str): Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU
        run_mode (str): mode of running(paddle/trt_fp32/trt_fp16)
        batch_size (int): size of pre batch in inference
        trt_min_shape (int): min shape for dynamic shape in trt
        trt_max_shape (int): max shape for dynamic shape in trt
        trt_opt_shape (int): opt shape for dynamic shape in trt
        trt_calib_mode (bool): If the model is produced by TRT offline quantitative
            calibration, trt_calib_mode need to set True
        cpu_threads (int): cpu threads
        enable_mkldnn (bool): whether to open MKLDNN
        threshold (float): The threshold of score for visualization
        window_size(int): Temporal size of skeleton feature.
        random_pad (bool): Whether do random padding when frame length < window_size.
    """

    def __init__(self,
                 model_dir,
                 device='CPU',
                 run_mode='paddle',
                 batch_size=1,
                 trt_min_shape=1,
                 trt_max_shape=1280,
                 trt_opt_shape=640,
                 trt_calib_mode=False,
                 cpu_threads=1,
                 enable_mkldnn=False,
                 output_dir='output',
                 threshold=0.5,
                 window_size=100,
                 random_pad=False):
Z
zhiboniu 已提交
71 72
        assert batch_size == 1, "SkeletonActionRecognizer only support batch_size=1 now."
        super(SkeletonActionRecognizer, self).__init__(
J
JYChen 已提交
73 74 75 76 77 78 79 80 81 82 83
            model_dir=model_dir,
            device=device,
            run_mode=run_mode,
            batch_size=batch_size,
            trt_min_shape=trt_min_shape,
            trt_max_shape=trt_max_shape,
            trt_opt_shape=trt_opt_shape,
            trt_calib_mode=trt_calib_mode,
            cpu_threads=cpu_threads,
            enable_mkldnn=enable_mkldnn,
            output_dir=output_dir,
J
JYChen 已提交
84 85
            threshold=threshold,
            delete_shuffle_pass=True)
J
JYChen 已提交
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266

    def predict(self, repeats=1):
        '''
        Args:
            repeats (int): repeat number for prediction
        Returns:
            results (dict): 
        '''
        # model prediction
        output_names = self.predictor.get_output_names()
        for i in range(repeats):
            self.predictor.run()
            output_tensor = self.predictor.get_output_handle(output_names[0])
            np_output = output_tensor.copy_to_cpu()
        result = dict(output=np_output)
        return result

    def predict_skeleton(self, skeleton_list, run_benchmark=False, repeats=1):
        results = []
        for i, skeleton in enumerate(skeleton_list):
            if run_benchmark:
                # preprocess
                inputs = self.preprocess(skeleton)  # warmup
                self.det_times.preprocess_time_s.start()
                inputs = self.preprocess(skeleton)
                self.det_times.preprocess_time_s.end()

                # model prediction
                result = self.predict(repeats=repeats)  # warmup
                self.det_times.inference_time_s.start()
                result = self.predict(repeats=repeats)
                self.det_times.inference_time_s.end(repeats=repeats)

                # postprocess
                result_warmup = self.postprocess(inputs, result)  # warmup
                self.det_times.postprocess_time_s.start()
                result = self.postprocess(inputs, result)
                self.det_times.postprocess_time_s.end()
                self.det_times.img_num += len(skeleton)

                cm, gm, gu = get_current_memory_mb()
                self.cpu_mem += cm
                self.gpu_mem += gm
                self.gpu_util += gu
            else:
                # preprocess
                self.det_times.preprocess_time_s.start()
                inputs = self.preprocess(skeleton)
                self.det_times.preprocess_time_s.end()

                # model prediction
                self.det_times.inference_time_s.start()
                result = self.predict()
                self.det_times.inference_time_s.end()

                # postprocess
                self.det_times.postprocess_time_s.start()
                result = self.postprocess(inputs, result)
                self.det_times.postprocess_time_s.end()
                self.det_times.img_num += len(skeleton)

            results.append(result)
        return results

    def predict_skeleton_with_mot(self, skeleton_with_mot, run_benchmark=False):
        """
            skeleton_with_mot (dict): includes individual skeleton sequences, which shape is [C, T, K, 1]
                                      and its corresponding track id.
        """

        skeleton_list = skeleton_with_mot["skeleton"]
        mot_id = skeleton_with_mot["mot_id"]
        act_res = self.predict_skeleton(skeleton_list, run_benchmark, repeats=1)
        results = list(zip(mot_id, act_res))
        return results

    def preprocess(self, data):
        preprocess_ops = []
        for op_info in self.pred_config.preprocess_infos:
            new_op_info = op_info.copy()
            op_type = new_op_info.pop('type')
            preprocess_ops.append(eval(op_type)(**new_op_info))

        input_lst = []
        data = action_preprocess(data, preprocess_ops)
        input_lst.append(data)
        input_names = self.predictor.get_input_names()
        inputs = {}
        inputs['data_batch_0'] = np.stack(input_lst, axis=0).astype('float32')

        for i in range(len(input_names)):
            input_tensor = self.predictor.get_input_handle(input_names[i])
            input_tensor.copy_from_cpu(inputs[input_names[i]])

        return inputs

    def postprocess(self, inputs, result):
        # postprocess output of predictor
        output_logit = result['output'][0]
        classes = np.argpartition(output_logit, -1)[-1:]
        classes = classes[np.argsort(-output_logit[classes])]
        scores = output_logit[classes]
        result = {'class': classes, 'score': scores}
        return result


def action_preprocess(input, preprocess_ops):
    """
    input (str | numpy.array): if input is str, it should be a legal file path with numpy array saved.
                               Otherwise it should be numpy.array as direct input.
    return (numpy.array) 
    """
    if isinstance(input, str):
        assert os.path.isfile(input) is not None, "{0} not exists".format(input)
        data = np.load(input)
    else:
        data = input
    for operator in preprocess_ops:
        data = operator(data)
    return data


class AutoPadding(object):
    """
    Sample or Padding frame skeleton feature.
    Args:
        window_size (int): Temporal size of skeleton feature.
        random_pad (bool): Whether do random padding when frame length < window size. Default: False.
    """

    def __init__(self, window_size=100, random_pad=False):
        self.window_size = window_size
        self.random_pad = random_pad

    def get_frame_num(self, data):
        C, T, V, M = data.shape
        for i in range(T - 1, -1, -1):
            tmp = np.sum(data[:, i, :, :])
            if tmp > 0:
                T = i + 1
                break
        return T

    def __call__(self, results):
        data = results

        C, T, V, M = data.shape
        T = self.get_frame_num(data)
        if T == self.window_size:
            data_pad = data[:, :self.window_size, :, :]
        elif T < self.window_size:
            begin = random.randint(
                0, self.window_size - T) if self.random_pad else 0
            data_pad = np.zeros((C, self.window_size, V, M))
            data_pad[:, begin:begin + T, :, :] = data[:, :T, :, :]
        else:
            if self.random_pad:
                index = np.random.choice(
                    T, self.window_size, replace=False).astype('int64')
            else:
                index = np.linspace(0, T, self.window_size).astype("int64")
            data_pad = data[:, index, :, :]

        return data_pad


def get_test_skeletons(input_file):
    assert input_file is not None, "--action_file can not be None"
    input_data = np.load(input_file)
    if input_data.ndim == 4:
        return [input_data]
    elif input_data.ndim == 5:
        output = list(
            map(lambda x: np.squeeze(x, 0),
                np.split(input_data, input_data.shape[0], 0)))
        return output
    else:
        raise ValueError(
            "Now only support input with shape: (N, C, T, K, M) or (C, T, K, M)")


J
JYChen 已提交
267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
class DetActionRecognizer(object):
    """
    Args:
        model_dir (str): root path of model.pdiparams, model.pdmodel and infer_cfg.yml
        device (str): Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU
        run_mode (str): mode of running(paddle/trt_fp32/trt_fp16)
        batch_size (int): size of pre batch in inference
        trt_min_shape (int): min shape for dynamic shape in trt
        trt_max_shape (int): max shape for dynamic shape in trt
        trt_opt_shape (int): opt shape for dynamic shape in trt
        trt_calib_mode (bool): If the model is produced by TRT offline quantitative
            calibration, trt_calib_mode need to set True
        cpu_threads (int): cpu threads
        enable_mkldnn (bool): whether to open MKLDNN
        threshold (float): The threshold of score for action feature object detection.
282 283 284 285 286
        display_frames (int): The duration for corresponding detected action.
        skip_frame_num (int): The number of frames for interval prediction. A skipped frame will 
            reuse the result of its last frame. If it is set to 0, no frame will be skipped. Default
            is 0.

J
JYChen 已提交
287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
    """

    def __init__(self,
                 model_dir,
                 device='CPU',
                 run_mode='paddle',
                 batch_size=1,
                 trt_min_shape=1,
                 trt_max_shape=1280,
                 trt_opt_shape=640,
                 trt_calib_mode=False,
                 cpu_threads=1,
                 enable_mkldnn=False,
                 output_dir='output',
                 threshold=0.5,
302 303
                 display_frames=20,
                 skip_frame_num=0):
J
JYChen 已提交
304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
        super(DetActionRecognizer, self).__init__()
        self.detector = Detector(
            model_dir=model_dir,
            device=device,
            run_mode=run_mode,
            batch_size=batch_size,
            trt_min_shape=trt_min_shape,
            trt_max_shape=trt_max_shape,
            trt_opt_shape=trt_opt_shape,
            trt_calib_mode=trt_calib_mode,
            cpu_threads=cpu_threads,
            enable_mkldnn=enable_mkldnn,
            output_dir=output_dir,
            threshold=threshold)
        self.threshold = threshold
        self.frame_life = display_frames
        self.result_history = {}
321 322 323
        self.skip_frame_num = skip_frame_num
        self.skip_frame_cnt = 0
        self.id_in_last_frame = []
J
JYChen 已提交
324 325

    def predict(self, images, mot_result):
326 327 328 329 330 331 332 333 334 335
        if self.skip_frame_cnt == 0 or (not self.check_id_is_same(mot_result)):
            det_result = self.detector.predict_image(images, visual=False)
            result = self.postprocess(det_result, mot_result)
        else:
            result = self.reuse_result(mot_result)

        self.skip_frame_cnt += 1
        if self.skip_frame_cnt >= self.skip_frame_num:
            self.skip_frame_cnt = 0

J
JYChen 已提交
336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
        return result

    def postprocess(self, det_result, mot_result):
        np_boxes_num = det_result['boxes_num']
        if np_boxes_num[0] <= 0:
            return [[], []]

        mot_bboxes = mot_result.get('boxes')

        cur_box_idx = 0
        mot_id = []
        act_res = []
        for idx in range(len(mot_bboxes)):
            tracker_id = mot_bboxes[idx, 0]

            # Current now,  class 0 is positive, class 1 is negative.
            action_ret = {'class': 1.0, 'score': -1.0}
            box_num = np_boxes_num[idx]
            boxes = det_result['boxes'][cur_box_idx:cur_box_idx + box_num]
            cur_box_idx += box_num
            isvalid = (boxes[:, 1] > self.threshold) & (boxes[:, 0] == 0)
            valid_boxes = boxes[isvalid, :]

            if valid_boxes.shape[0] >= 1:
                action_ret['class'] = valid_boxes[0, 0]
                action_ret['score'] = valid_boxes[0, 1]
362 363
                self.result_history[
                    tracker_id] = [0, self.frame_life, valid_boxes[0, 1]]
J
JYChen 已提交
364
            else:
365 366
                history_det, life_remain, history_score = self.result_history.get(
                    tracker_id, [1, self.frame_life, -1.0])
J
JYChen 已提交
367 368 369 370 371 372 373
                action_ret['class'] = history_det
                action_ret['score'] = -1.0
                life_remain -= 1
                if life_remain <= 0 and tracker_id in self.result_history:
                    del (self.result_history[tracker_id])
                elif tracker_id in self.result_history:
                    self.result_history[tracker_id][1] = life_remain
374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408
                else:
                    self.result_history[tracker_id] = [
                        history_det, life_remain, history_score
                    ]

            mot_id.append(tracker_id)
            act_res.append(action_ret)
        result = list(zip(mot_id, act_res))
        self.id_in_last_frame = mot_id

        return result

    def check_id_is_same(self, mot_result):
        mot_bboxes = mot_result.get('boxes')
        for idx in range(len(mot_bboxes)):
            tracker_id = mot_bboxes[idx, 0]
            if tracker_id not in self.id_in_last_frame:
                return False
        return True

    def reuse_result(self, mot_result):
        # This function reusing previous results of the same ID directly.
        mot_bboxes = mot_result.get('boxes')

        mot_id = []
        act_res = []

        for idx in range(len(mot_bboxes)):
            tracker_id = mot_bboxes[idx, 0]
            history_cls, life_remain, history_score = self.result_history.get(
                tracker_id, [1, 0, -1.0])

            life_remain -= 1
            if tracker_id in self.result_history:
                self.result_history[tracker_id][1] = life_remain
J
JYChen 已提交
409

410
            action_ret = {'class': history_cls, 'score': history_score}
J
JYChen 已提交
411 412
            mot_id.append(tracker_id)
            act_res.append(action_ret)
413

J
JYChen 已提交
414
        result = list(zip(mot_id, act_res))
415
        self.id_in_last_frame = mot_id
J
JYChen 已提交
416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435

        return result


class ClsActionRecognizer(AttrDetector):
    """
    Args:
        model_dir (str): root path of model.pdiparams, model.pdmodel and infer_cfg.yml
        device (str): Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU
        run_mode (str): mode of running(paddle/trt_fp32/trt_fp16)
        batch_size (int): size of pre batch in inference
        trt_min_shape (int): min shape for dynamic shape in trt
        trt_max_shape (int): max shape for dynamic shape in trt
        trt_opt_shape (int): opt shape for dynamic shape in trt
        trt_calib_mode (bool): If the model is produced by TRT offline quantitative
            calibration, trt_calib_mode need to set True
        cpu_threads (int): cpu threads
        enable_mkldnn (bool): whether to open MKLDNN
        threshold (float): The threshold of score for action feature object detection.
        display_frames (int): The duration for corresponding detected action. 
436 437 438
        skip_frame_num (int): The number of frames for interval prediction. A skipped frame will 
            reuse the result of its last frame. If it is set to 0, no frame will be skipped. Default
            is 0.
J
JYChen 已提交
439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
    """

    def __init__(self,
                 model_dir,
                 device='CPU',
                 run_mode='paddle',
                 batch_size=1,
                 trt_min_shape=1,
                 trt_max_shape=1280,
                 trt_opt_shape=640,
                 trt_calib_mode=False,
                 cpu_threads=1,
                 enable_mkldnn=False,
                 output_dir='output',
                 threshold=0.5,
454 455
                 display_frames=80,
                 skip_frame_num=0):
J
JYChen 已提交
456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471
        super(ClsActionRecognizer, self).__init__(
            model_dir=model_dir,
            device=device,
            run_mode=run_mode,
            batch_size=batch_size,
            trt_min_shape=trt_min_shape,
            trt_max_shape=trt_max_shape,
            trt_opt_shape=trt_opt_shape,
            trt_calib_mode=trt_calib_mode,
            cpu_threads=cpu_threads,
            enable_mkldnn=enable_mkldnn,
            output_dir=output_dir,
            threshold=threshold)
        self.threshold = threshold
        self.frame_life = display_frames
        self.result_history = {}
472 473 474
        self.skip_frame_num = skip_frame_num
        self.skip_frame_cnt = 0
        self.id_in_last_frame = []
J
JYChen 已提交
475 476

    def predict_with_mot(self, images, mot_result):
477 478 479 480 481 482 483 484 485 486 487
        if self.skip_frame_cnt == 0 or (not self.check_id_is_same(mot_result)):
            images = self.crop_half_body(images)
            cls_result = self.predict_image(images, visual=False)["output"]
            result = self.match_action_with_id(cls_result, mot_result)
        else:
            result = self.reuse_result(mot_result)

        self.skip_frame_cnt += 1
        if self.skip_frame_cnt >= self.skip_frame_num:
            self.skip_frame_cnt = 0

J
JYChen 已提交
488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528
        return result

    def crop_half_body(self, images):
        crop_images = []
        for image in images:
            h = image.shape[0]
            crop_images.append(image[:h // 2 + 1, :, :])
        return crop_images

    def postprocess(self, inputs, result):
        # postprocess output of predictor
        im_results = result['output']
        batch_res = []
        for res in im_results:
            action_res = res.tolist()
            for cid, score in enumerate(action_res):
                action_res[cid] = score
            batch_res.append(action_res)
        result = {'output': batch_res}
        return result

    def match_action_with_id(self, cls_result, mot_result):
        mot_bboxes = mot_result.get('boxes')

        mot_id = []
        act_res = []

        for idx in range(len(mot_bboxes)):
            tracker_id = mot_bboxes[idx, 0]

            cls_id_res = 1
            cls_score_res = -1.0
            for cls_id in range(len(cls_result[idx])):
                score = cls_result[idx][cls_id]
                if score > cls_score_res:
                    cls_id_res = cls_id
                    cls_score_res = score

            # Current now,  class 0 is positive, class 1 is negative.
            if cls_id_res == 1 or (cls_id_res == 0 and
                                   cls_score_res < self.threshold):
529 530
                history_cls, life_remain, history_score = self.result_history.get(
                    tracker_id, [1, self.frame_life, -1.0])
J
JYChen 已提交
531 532 533 534 535 536 537
                cls_id_res = history_cls
                cls_score_res = 1 - cls_score_res
                life_remain -= 1
                if life_remain <= 0 and tracker_id in self.result_history:
                    del (self.result_history[tracker_id])
                elif tracker_id in self.result_history:
                    self.result_history[tracker_id][1] = life_remain
538 539 540
                else:
                    self.result_history[
                        tracker_id] = [cls_id_res, life_remain, cls_score_res]
J
JYChen 已提交
541
            else:
542 543
                self.result_history[
                    tracker_id] = [cls_id_res, self.frame_life, cls_score_res]
J
JYChen 已提交
544 545 546 547 548

            action_ret = {'class': cls_id_res, 'score': cls_score_res}
            mot_id.append(tracker_id)
            act_res.append(action_ret)
        result = list(zip(mot_id, act_res))
549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582
        self.id_in_last_frame = mot_id

        return result

    def check_id_is_same(self, mot_result):
        mot_bboxes = mot_result.get('boxes')
        for idx in range(len(mot_bboxes)):
            tracker_id = mot_bboxes[idx, 0]
            if tracker_id not in self.id_in_last_frame:
                return False
        return True

    def reuse_result(self, mot_result):
        # This function reusing previous results of the same ID directly.
        mot_bboxes = mot_result.get('boxes')

        mot_id = []
        act_res = []

        for idx in range(len(mot_bboxes)):
            tracker_id = mot_bboxes[idx, 0]
            history_cls, life_remain, history_score = self.result_history.get(
                tracker_id, [1, 0, -1.0])

            life_remain -= 1
            if tracker_id in self.result_history:
                self.result_history[tracker_id][1] = life_remain

            action_ret = {'class': history_cls, 'score': history_score}
            mot_id.append(tracker_id)
            act_res.append(action_ret)

        result = list(zip(mot_id, act_res))
        self.id_in_last_frame = mot_id
J
JYChen 已提交
583 584 585 586

        return result


J
JYChen 已提交
587
def main():
Z
zhiboniu 已提交
588
    detector = SkeletonActionRecognizer(
J
JYChen 已提交
589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628
        FLAGS.model_dir,
        device=FLAGS.device,
        run_mode=FLAGS.run_mode,
        batch_size=FLAGS.batch_size,
        trt_min_shape=FLAGS.trt_min_shape,
        trt_max_shape=FLAGS.trt_max_shape,
        trt_opt_shape=FLAGS.trt_opt_shape,
        trt_calib_mode=FLAGS.trt_calib_mode,
        cpu_threads=FLAGS.cpu_threads,
        enable_mkldnn=FLAGS.enable_mkldnn,
        threshold=FLAGS.threshold,
        output_dir=FLAGS.output_dir,
        window_size=FLAGS.window_size,
        random_pad=FLAGS.random_pad)
    # predict from numpy array
    input_list = get_test_skeletons(FLAGS.action_file)
    detector.predict_skeleton(input_list, FLAGS.run_benchmark, repeats=10)
    if not FLAGS.run_benchmark:
        detector.det_times.info(average=True)
    else:
        mems = {
            'cpu_rss_mb': detector.cpu_mem / len(input_list),
            'gpu_rss_mb': detector.gpu_mem / len(input_list),
            'gpu_util': detector.gpu_util * 100 / len(input_list)
        }

        perf_info = detector.det_times.report(average=True)
        model_dir = FLAGS.model_dir
        mode = FLAGS.run_mode
        model_info = {
            'model_name': model_dir.strip('/').split('/')[-1],
            'precision': mode.split('_')[-1]
        }
        data_info = {
            'batch_size': FLAGS.batch_size,
            'shape': "dynamic_shape",
            'data_num': perf_info['img_num']
        }
        det_log = PaddleInferBenchmark(detector.config, model_info, data_info,
                                       perf_info, mems)
Z
zhiboniu 已提交
629
        det_log('SkeletonAction')
J
JYChen 已提交
630 631 632 633 634 635 636 637 638 639 640 641 642


if __name__ == '__main__':
    paddle.enable_static()
    parser = argsparser()
    FLAGS = parser.parse_args()
    print_arguments(FLAGS)
    FLAGS.device = FLAGS.device.upper()
    assert FLAGS.device in ['CPU', 'GPU', 'XPU'
                            ], "device should be CPU, GPU or XPU"
    assert not FLAGS.use_gpu, "use_gpu has been deprecated, please use --device"

    main()