MODEL_ZOO.md 32.6 KB
Newer Older
Q
qingqing01 已提交
1 2
English | [简体中文](MODEL_ZOO_cn.md)

J
jerrywgz 已提交
3 4 5 6
# Model Zoo and Benchmark
## Environment

- Python 2.7.1
7
- PaddlePaddle >=1.5
J
jerrywgz 已提交
8
- CUDA 9.0
9
- cuDNN >=7.4
J
jerrywgz 已提交
10 11 12 13
- NCCL 2.1.2

## Common settings

14
- All models below were trained on `coco_2017_train`, and tested on `coco_2017_val`.
J
jerrywgz 已提交
15 16 17
- Batch Normalization layers in backbones are replaced by Affine Channel layers.
- Unless otherwise noted, all ResNet backbones adopt the [ResNet-B](https://arxiv.org/pdf/1812.01187) variant..
- For RCNN and RetinaNet models, only horizontal flipping data augmentation was used in the training phase and no augmentations were used in the testing phase.
18 19
- **Inf time (fps)**: the inference time is measured with fps (image/s) on a single GPU (Tesla V100) with cuDNN 7.5 by running 'tools/eval.py' on all validation set, which including data loadding, network forward and post processing. The batch size is 1.

J
jerrywgz 已提交
20 21 22 23 24 25 26 27 28 29 30

## Training Schedules

- We adopt exactly the same training schedules as [Detectron](https://github.com/facebookresearch/Detectron/blob/master/MODEL_ZOO.md#training-schedules).
- 1x indicates the schedule starts at a LR of 0.02 and is decreased by a factor of 10 after 60k and 80k iterations and eventually terminates at 90k iterations for minibatch size 16. For batch size 8, LR is decreased to 0.01, total training iterations are doubled, and the decay milestones are scaled by 2.
- 2x schedule is twice as long as 1x, with the LR milestones scaled accordingly.

## ImageNet Pretrained Models

The backbone models pretrained on ImageNet are available. All backbone models are pretrained on standard ImageNet-1k dataset and can be downloaded [here](https://github.com/PaddlePaddle/models/tree/develop/PaddleCV/image_classification#supported-models-and-performances).

31
- **Notes:**  The ResNet50 model was trained with cosine LR decay schedule and can be downloaded [here](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_cos_pretrained.tar).
J
jerrywgz 已提交
32 33 34 35 36

## Baselines

### Faster & Mask R-CNN

37 38 39 40 41 42 43 44 45 46 47 48
| Backbone                | Type           | Image/gpu | Lr schd | Inf time (fps) | Box AP | Mask AP |                           Download                           | Configs |
| :---------------------- | :------------- | :-------: | :-----: | :------------: | :----: | :-----: | :----------------------------------------------------------: | :----: |
| ResNet50                | Faster         |     1     |   1x    |     12.747     |  35.2  |    -    | [model](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r50_1x.tar) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/faster_rcnn_r50_1x.yml) |
| ResNet50                | Faster         |     1     |   2x    |     12.686     |  37.1  |    -    | [model](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r50_2x.tar) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/faster_rcnn_r50_2x.yml) |
| ResNet50                | Mask           |     1     |   1x    |     11.615     |  36.5  |  32.2   | [model](https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_r50_1x.tar) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/mask_rcnn_r50_1x.yml) |
| ResNet50                | Mask           |     1     |   2x    |     11.494     |  38.2  |  33.4   | [model](https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_r50_2x.tar) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/mask_rcnn_r50_2x.yml) |
| ResNet50-vd             | Faster         |     1     |   1x    |     12.575     |  36.4  |    -    | [model](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r50_vd_1x.tar) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/faster_rcnn_r50_vd_1x.yml) |
| ResNet50-FPN            | Faster         |     2     |   1x    |     22.273     |  37.2  |    -    | [model](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r50_fpn_1x.tar) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/faster_rcnn_r50_fpn_1x.yml) |
| ResNet50-FPN            | Faster         |     2     |   2x    |     22.297     |  37.7  |    -    | [model](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r50_fpn_2x.tar) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/faster_rcnn_r50_fpn_2x.yml) |
| ResNet50-FPN            | Mask           |     1     |   1x    |     15.184     |  37.9  |  34.2   | [model](https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_r50_fpn_1x.tar) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/mask_rcnn_r50_fpn_1x.yml) |
| ResNet50-FPN            | Mask           |     1     |   2x    |     15.881     |  38.7  |  34.7   | [model](https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_r50_fpn_2x.tar) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/mask_rcnn_r50_fpn_2x.yml) |
| ResNet50-FPN            | Cascade Faster |     2     |   1x    |     17.507     |  40.9  |    -    | [model](https://paddlemodels.bj.bcebos.com/object_detection/cascade_rcnn_r50_fpn_1x.tar) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/cascade_rcnn_r50_fpn_1x.yml) |
W
wangguanzhong 已提交
49
| ResNet50-FPN            | Cascade Mask   |     1     |   1x    |       12.43        |  41.3  |  35.5   | [model](https://paddlemodels.bj.bcebos.com/object_detection/cascade_mask_rcnn_r50_fpn_1x.tar) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/cascade_mask_rcnn_r50_fpn_1x.yml) |
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
| ResNet50-vd-FPN         | Faster         |     2     |   2x    |     21.847     |  38.9  |    -    | [model](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r50_vd_fpn_2x.tar) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/faster_rcnn_r50_vd_fpn_2x.yml) |
| ResNet50-vd-FPN         | Mask           |     1     |   2x    |     15.825     |  39.8  |  35.4   | [model](https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_r50_vd_fpn_2x.tar) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/mask_rcnn_r50_vd_fpn_2x.yml) |
| CBResNet50-vd-FPN         | Faster         |     2     |   1x    |     -     |  39.7  |    -    | [model](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_cbr50_vd_dual_fpn_1x.tar) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/faster_rcnn_cbr50_vd_dual_fpn_1x.yml) |
| ResNet101               | Faster         |     1     |   1x    |     9.316      |  38.3  |    -    | [model](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r101_1x.tar) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/faster_rcnn_r101_1x.yml) |
| ResNet101-FPN           | Faster         |     1     |   1x    |     17.297     |  38.7  |    -    | [model](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r101_fpn_1x.tar) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/faster_rcnn_r101_fpn_1x.yml) |
| ResNet101-FPN           | Faster         |     1     |   2x    |     17.246     |  39.1  |    -    | [model](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r101_fpn_2x.tar) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/faster_rcnn_r101_fpn_2x.yml) |
| ResNet101-FPN           | Mask           |     1     |   1x    |     12.983     |  39.5  |  35.2   | [model](https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_r101_fpn_1x.tar) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/mask_rcnn_r101_fpn_1x.yml) |
| ResNet101-vd-FPN        | Faster         |     1     |   1x    |     17.011     |  40.5  |    -    | [model](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r101_vd_fpn_1x.tar) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/faster_rcnn_r101_vd_fpn_1x.yml) |
| ResNet101-vd-FPN        | Faster         |     1     |   2x    |     16.934     |  40.8  |    -    | [model](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r101_vd_fpn_2x.tar) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/faster_rcnn_r101_vd_fpn_2x.yml) |
| ResNet101-vd-FPN        | Mask           |     1     |   1x    |     13.105     |  41.4  |  36.8   | [model](https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_r101_vd_fpn_1x.tar) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/mask_rcnn_r101_vd_fpn_1x.yml) |
| CBResNet101-vd-FPN         | Faster         |     2     |   1x    |     -     |  42.7  |    -    | [model](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_cbr101_vd_dual_fpn_1x.tar) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/faster_rcnn_cbr101_vd_dual_fpn_1x.yml) |
| ResNeXt101-vd-64x4d-FPN | Faster         |     1     |   1x    |     8.815      |  42.2  |    -    | [model](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_x101_vd_64x4d_fpn_1x.tar) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/faster_rcnn_x101_vd_64x4d_fpn_1x.yml) |
| ResNeXt101-vd-64x4d-FPN | Faster         |     1     |   2x    |     8.809      |  41.7  |    -    | [model](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_x101_vd_64x4d_fpn_2x.tar) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/faster_rcnn_x101_vd_64x4d_fpn_2x.yml) |
| ResNeXt101-vd-64x4d-FPN | Mask           |     1     |   1x    |     7.689      |  42.9  |  37.9   | [model](https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_x101_vd_64x4d_fpn_1x.tar) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/mask_rcnn_x101_vd_64x4d_fpn_1x.yml) |
| ResNeXt101-vd-64x4d-FPN | Mask           |     1     |   2x    |     7.859      |  42.6  |  37.6   | [model](https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_x101_vd_64x4d_fpn_2x.tar) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/mask_rcnn_x101_vd_64x4d_fpn_2x.yml) |
| SENet154-vd-FPN         | Faster         |     1     |  1.44x  |     3.408      |  42.9  |    -    | [model](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_se154_vd_fpn_s1x.tar) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/faster_rcnn_se154_vd_fpn_s1x.yml) |
| SENet154-vd-FPN         | Mask           |     1     |  1.44x  |     3.233      |  44.0  |  38.7   | [model](https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_se154_vd_fpn_s1x.tar) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/mask_rcnn_se154_vd_fpn_s1x.yml) |
| ResNet101-vd-FPN            | CascadeClsAware Faster   |     2     |   1x    |     -     |  44.7(softnms)  |    -    | [model](https://paddlemodels.bj.bcebos.com/object_detection/cascade_rcnn_cls_aware_r101_vd_fpn_1x_softnms.tar) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/cascade_rcnn_cls_aware_r101_vd_fpn_1x_softnms.yml) |
| ResNet101-vd-FPN            | CascadeClsAware Faster   |     2     |   1x    |     -     |  46.5(multi-scale test)  |    -    | [model](https://paddlemodels.bj.bcebos.com/object_detection/cascade_rcnn_cls_aware_r101_vd_fpn_1x_softnms.tar) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/cascade_rcnn_cls_aware_r101_vd_fpn_1x_softnms.yml) |
J
jerrywgz 已提交
69

70 71
### Deformable ConvNets v2

72 73 74 75 76 77 78 79 80 81 82 83 84 85
| Backbone                | Type           | Conv  | Image/gpu | Lr schd | Inf time (fps) | Box AP | Mask AP |                           Download                           | Configs |
| :---------------------- | :------------- | :---: | :-------: | :-----: | :------------: | :----: | :-----: | :----------------------------------------------------------: | :----: |
| ResNet50-FPN            | Faster         | c3-c5 |     2     |   1x    |     19.978     |  41.0  |    -    | [model](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_dcn_r50_fpn_1x.tar) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/dcn/faster_rcnn_dcn_r50_fpn_1x.yml) |
| ResNet50-vd-FPN         | Faster         | c3-c5 |     2     |   2x    |     19.222     |  42.4  |    -    | [model](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_dcn_r50_vd_fpn_2x.tar) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/dcn/faster_rcnn_dcn_r50_vd_fpn_2x.yml) |
| ResNet101-vd-FPN        | Faster         | c3-c5 |     2     |   1x    |     14.477     |  44.1  |    -    | [model](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_dcn_r101_vd_fpn_1x.tar) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/dcn/faster_rcnn_dcn_r101_vd_fpn_1x.yml) |
| ResNeXt101-vd-64x4d-FPN | Faster         | c3-c5 |     1     |   1x    |     7.209      |  45.2  |    -    | [model](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_dcn_x101_vd_64x4d_fpn_1x.tar) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/dcn/faster_rcnn_dcn_x101_vd_64x4d_fpn_1x.yml) |
| ResNet50-FPN            | Mask           | c3-c5 |     1     |   1x    |     14.53      |  41.9  |  37.3   | [model](https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_dcn_r50_fpn_1x.tar) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/dcn/mask_rcnn_dcn_r50_fpn_1x.yml) |
| ResNet50-vd-FPN         | Mask           | c3-c5 |     1     |   2x    |     14.832     |  42.9  |  38.0   | [model](https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_dcn_r50_vd_fpn_2x.tar) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/dcn/mask_rcnn_dcn_r50_vd_fpn_2x.yml) |
| ResNet101-vd-FPN        | Mask           | c3-c5 |     1     |   1x    |     11.546     |  44.6  |  39.2   | [model](https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_dcn_r101_vd_fpn_1x.tar) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/dcn/mask_rcnn_dcn_r101_vd_fpn_1x.yml) |
| ResNeXt101-vd-64x4d-FPN | Mask           | c3-c5 |     1     |   1x    |      6.45      |  46.2  |  40.4   | [model](https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_dcn_x101_vd_64x4d_fpn_1x.tar) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/dcn/mask_rcnn_dcn_x101_vd_64x4d_fpn_1x.yml) |
| ResNet50-FPN            | Cascade Faster | c3-c5 |     2     |   1x    |       -        |  44.2  |    -    | [model](https://paddlemodels.bj.bcebos.com/object_detection/cascade_rcnn_dcn_r50_fpn_1x.tar) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/dcn/cascade_rcnn_dcn_r50_fpn_1x.yml) |
| ResNet101-vd-FPN        | Cascade Faster | c3-c5 |     2     |   1x    |       -        |  46.4  |    -    | [model](https://paddlemodels.bj.bcebos.com/object_detection/cascade_rcnn_dcn_r101_vd_fpn_1x.tar) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/dcn/cascade_rcnn_dcn_r101_vd_fpn_1x.yml) |
| ResNeXt101-vd-FPN       | Cascade Faster | c3-c5 |     2     |   1x    |       -        |  47.3  |    -    | [model](https://paddlemodels.bj.bcebos.com/object_detection/cascade_rcnn_dcn_x101_vd_64x4d_fpn_1x.tar) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/dcn/cascade_rcnn_dcn_x101_vd_64x4d_fpn_1x.yml) |
| SENet154-vd-FPN         | Cascade Mask   | c3-c5 |    1      |  1.44x  |       -        |  51.9  |  43.9   | [model](https://paddlemodels.bj.bcebos.com/object_detection/cascade_mask_rcnn_dcnv2_se154_vd_fpn_gn_s1x.tar) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/dcn/cascade_mask_rcnn_dcnv2_se154_vd_fpn_gn_s1x.yml) |
W
wangguanzhong 已提交
86 87
| ResNet200-vd-FPN-Nonlocal    | CascadeClsAware Faster  | c3-c5 |     1     |   2.5x    |     3.103     |  51.7%(softnms)  |    -    | [model](https://paddlemodels.bj.bcebos.com/object_detection/cascade_rcnn_cls_aware_r200_vd_fpn_dcnv2_nonlocal_softnms.tar) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/dcn/cascade_rcnn_cls_aware_r200_vd_fpn_dcnv2_nonlocal_softnms.yml) |
| CBResNet200-vd-FPN-Nonlocal | Cascade Faster  | c3-c5 |     1     |   2.5x    |     1.68     |  53.3%(softnms)  |    -    | [model](https://paddlemodels.bj.bcebos.com/object_detection/cascade_rcnn_cbr200_vd_fpn_dcnv2_nonlocal_softnms.tar) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/dcn/cascade_rcnn_cbr200_vd_fpn_dcnv2_nonlocal_softnms.yml) |
88 89


G
Guanghua Yu 已提交
90 91
**Notes:**

92 93
- Deformable ConvNets v2(dcn_v2) reference from [Deformable ConvNets v2](https://arxiv.org/abs/1811.11168).
- `c3-c5` means adding `dcn` in resnet stage 3 to 5.
94
- Detailed configuration file in [configs/dcn](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/dcn)
95

96 97

### HRNet
G
Guanghua Yu 已提交
98
* See more details in [HRNet model zoo](https://github.com/PaddlePaddle/PaddleDetection/blob/master/configs/hrnet/).
99 100 101


### Res2Net
G
Guanghua Yu 已提交
102
* See more details in [Res2Net model zoo](https://github.com/PaddlePaddle/PaddleDetection/blob/master/configs/res2net/).
littletomatodonkey's avatar
littletomatodonkey 已提交
103 104

### IOU loss
G
Guanghua Yu 已提交
105
* GIOU loss and DIOU loss are included now. See more details in [IOU loss model zoo](https://github.com/PaddlePaddle/PaddleDetection/blob/master/configs/iou_loss/).
106

littletomatodonkey's avatar
littletomatodonkey 已提交
107
### GCNet
G
Guanghua Yu 已提交
108
* See more details in [GCNet model zoo](https://github.com/PaddlePaddle/PaddleDetection/blob/master/configs/gcnet/).
littletomatodonkey's avatar
littletomatodonkey 已提交
109

110 111 112 113 114
### Libra R-CNN
* See more details in [Libra R-CNN model zoo](https://github.com/PaddlePaddle/PaddleDetection/blob/master/configs/libra_rcnn/).

### Auto Augmentation
* See more details in [Auto Augmentation model zoo](https://github.com/PaddlePaddle/PaddleDetection/blob/master/configs/autoaugment/).
115

W
wangguanzhong 已提交
116
### Group Normalization
G
Guanghua Yu 已提交
117

118 119 120 121
| Backbone             | Type           | Image/gpu | Lr schd | Box AP | Mask AP |                           Download                           | Configs |
| :------------------- | :------------- | :-----: | :-----: | :----: | :-----: | :----------------------------------------------------------: |:----: |
| ResNet50-FPN         | Faster         |    2    |   2x    |  39.7  |    -    | [model](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r50_fpn_gn_2x.tar) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/gn/faster_rcnn_r50_fpn_gn_2x.yml) |
| ResNet50-FPN         | Mask           |    1    |   2x    |  40.1  |   35.8  | [model](https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_r50_fpn_gn_2x.tar) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/gn/mask_rcnn_r50_fpn_gn_2x.yml) |
W
wangguanzhong 已提交
122

G
Guanghua Yu 已提交
123 124
**Notes:**

W
wangguanzhong 已提交
125
- Group Normalization reference from [Group Normalization](https://arxiv.org/abs/1803.08494).
126
- Detailed configuration file in [configs/gn](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/gn)
W
wangguanzhong 已提交
127

128
### YOLO v3
J
jerrywgz 已提交
129

130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
| Backbone     | Pretrain dataset | Size | deformable Conv | Image/gpu | Lr schd | Inf time (fps) | Box AP |  Download | Configs |
| :----------- | :--------: | :-----: | :-----: |:------------: |:----: | :-------: | :----: | :-------: | :----: |
| DarkNet53 (paper) | ImageNet | 608  |  False    |    8    |   270e  |      -        |  33.0  | - | - |
| DarkNet53 (paper) | ImageNet | 416  |  False    |    8    |   270e  |      -        |  31.0  | - | - |
| DarkNet53 (paper) | ImageNet | 320  |  False    |    8    |   270e  |      -        |  28.2  | - | - |
| DarkNet53         | ImageNet | 608  |  False    |    8    |   270e  |    45.571     |  38.9  | [model](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_darknet.tar) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/yolov3_darknet.yml) |
| DarkNet53         | ImageNet | 416  |  False    |    8    |   270e  |      -        |  37.5  | [model](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_darknet.tar) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/yolov3_darknet.yml) |
| DarkNet53         | ImageNet | 320  |  False    |    8    |   270e  |      -        |  34.8  | [model](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_darknet.tar) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/yolov3_darknet.yml) |
| MobileNet-V1      | ImageNet | 608  |  False    |    8    |   270e  |    78.302     |  29.3  | [model](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1.tar) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/yolov3_mobilenet_v1.yml) |
| MobileNet-V1      | ImageNet | 416  |  False    |    8    |   270e  |      -        |  29.3  | [model](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1.tar) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/yolov3_mobilenet_v1.yml) |
| MobileNet-V1      | ImageNet | 320  |  False    |    8    |   270e  |      -        |  27.1  | [model](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1.tar) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/yolov3_mobilenet_v1.yml) |
| MobileNet-V3      | ImageNet | 608  |  False    |    8    |   270e  |      -        |  31.6  | [model](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v3.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/yolov3_mobilenet_v3.yml) |
| MobileNet-V3      | ImageNet | 416  |  False    |    8    |   270e  |      -        |  29.9  | [model](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v3.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/yolov3_mobilenet_v3.yml) |
| MobileNet-V3      | ImageNet | 320  |  False    |    8    |   270e  |      -        |  27.1  | [model](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v3.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/yolov3_mobilenet_v3.yml) |
| ResNet34          | ImageNet | 608  |  False    |    8    |   270e  |    63.356     |  36.2  | [model](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_r34.tar) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/yolov3_r34.yml) |
| ResNet34          | ImageNet | 416  |  False    |    8    |   270e  |      -        |  34.3  | [model](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_r34.tar) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/yolov3_r34.yml) |
| ResNet34          | ImageNet | 320  |  False    |    8    |   270e  |      -        |  31.4  | [model](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_r34.tar) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/yolov3_r34.yml) |
| ResNet50_vd       | ImageNet | 608  |  True     |    8    |   270e  |      -        |  39.1  | [model](https://paddlemodels.bj.bcebos.com/object_detection/dcn/yolov3_r50vd_dcn.tar) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/dcn/yolov3_r50vd_dcn.yml) |
| ResNet50_vd       | Object365 | 608  |  True    |    8    |   270e  |      -        |  41.4  | [model](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_r50vd_dcn_obj365_pretrained_coco.tar) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/dcn/yolov3_r50vd_dcn_obj365_pretrained_coco.yml) |
149 150

### YOLO v3 on Pascal VOC
151

152 153 154 155 156 157 158 159 160 161 162
| Backbone     | Size | Image/gpu | Lr schd | Inf time (fps) | Box AP |                           Download                           | Configs |
| :----------- | :--: | :-------: | :-----: | :------------: | :----: | :----------------------------------------------------------: |  :----: |
| DarkNet53    | 608  |     8     |  270e   |     54.977     |  83.5  | [model](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_darknet_voc.tar) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/yolov3_darknet_voc.yml) |
| DarkNet53    | 416  |     8     |  270e   |       -        |  83.6  | [model](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_darknet_voc.tar) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/yolov3_darknet_voc.yml) |
| DarkNet53    | 320  |     8     |  270e   |       -        |  82.2  | [model](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_darknet_voc.tar) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/yolov3_darknet_voc.yml) |
| MobileNet-V1 | 608  |     8     |  270e   |    104.291     |  76.2  | [model](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1_voc.tar) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/yolov3_mobilenet_v1_voc.yml) |
| MobileNet-V1 | 416  |     8     |  270e   |       -        |  76.7  | [model](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1_voc.tar) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/yolov3_mobilenet_v1_voc.yml) |
| MobileNet-V1 | 320  |     8     |  270e   |       -        |  75.3  | [model](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1_voc.tar) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/yolov3_mobilenet_v1_voc.yml) |
| ResNet34     | 608  |     8     |  270e   |     82.247     |  82.6  | [model](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_r34_voc.tar) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/yolov3_r34_voc.yml) |
| ResNet34     | 416  |     8     |  270e   |       -        |  81.9  | [model](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_r34_voc.tar) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/yolov3_r34_voc.yml) |
| ResNet34     | 320  |     8     |  270e   |       -        |  80.1  | [model](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_r34_voc.tar) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/yolov3_r34_voc.yml) |
163

G
Guanghua Yu 已提交
164 165
**Notes:**

166 167 168 169
- YOLOv3-DarkNet53 performance in paper [YOLOv3](https://arxiv.org/abs/1804.02767) is also provided above, our implements
improved performance mainly by using L1 loss in bounding box width and height regression, image mixup and label smooth.
- YOLO v3 is trained in 8 GPU with total batch size as 64 and trained 270 epoches. YOLO v3 training data augmentations: mixup,
randomly color distortion, randomly cropping, randomly expansion, randomly interpolation method, randomly flippling. YOLO v3 used randomly
170
reshaped minibatch in training, inferences can be performed on different image sizes with the same model weights, and we provided evaluation
W
wangguanzhong 已提交
171
results of image size 608/416/320 above. Deformable conv is added on stage 5 of backbone.
L
lxastro 已提交
172
- YOLO v3 enhanced model improves the precision to 43.6 involved with deformable conv, dropblock, IoU loss and IoU aware. See more details in [YOLOv3_ENHANCEMENT](./featured_model/YOLOv3_ENHANCEMENT.md)
J
jerrywgz 已提交
173 174 175

### RetinaNet

W
wangguanzhong 已提交
176 177 178 179 180
| Backbone          | Image/gpu | Lr schd | Inf time (fps) | Box AP | Download  | Configs |
| :---------------: | :-----: | :-----: | :----: | :----: | :-------: | :----: |
| ResNet50-FPN      |    2    |   1x    | - | 36.0  | [model](https://paddlemodels.bj.bcebos.com/object_detection/retinanet_r50_fpn_1x.tar)  | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/retinanet_r50_fpn_1x.yml) |
| ResNet101-FPN     |    2    |   1x    | - | 37.3  | [model](https://paddlemodels.bj.bcebos.com/object_detection/retinanet_r101_fpn_1x.tar) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/retinanet_r101_fpn_1x.yml) |
| ResNeXt101-vd-FPN |    1    |   1x    | - | 40.5  | [model](https://paddlemodels.bj.bcebos.com/object_detection/retinanet_x101_vd_64x4d_fpn_1x.tar) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/retinanet_x101_vd_64x4d_fpn_1x.yml) |
J
jerrywgz 已提交
181 182

**Notes:** In RetinaNet, the base LR is changed to 0.01 for minibatch size 16.
J
jerrywgz 已提交
183

184 185 186 187 188 189 190 191
### EfficientDet

| Scale             | Image/gpu | Lr schd   | Box AP | Download                                                                              |
| :---------------: | :-----:   | :-----:   | :----: | :-------:                                                                             |
| EfficientDet-D0   | 16        | 300 epochs | 33.8   | [model](https://paddlemodels.bj.bcebos.com/object_detection/efficientdet_d0.pdparams) |

**Notes:** base LR is 0.16 for minibatch size 128 (8x16).

192 193
### SSDLite

194 195
| Backbone | Size | Image/gpu | Lr schd | Inf time (fps) | Box AP |                           Download                           | Configs |
| :------: | :--: | :-------: | :-----: | :------------: | :----: | :----------------------------------------------------------: | :----: |
196 197 198
| MobileNet_v1 | 300 | 64 | Cosine decay(40w) | - | 23.6 | [model](https://paddlemodels.bj.bcebos.com/object_detection/ssdlite_mobilenet_v1.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/ssd/ssdlite_mobilenet_v1.yml) |
| MobileNet_v3 small | 320 | 64 | Cosine decay(40w) | - | 16.2 | [model](https://paddlemodels.bj.bcebos.com/object_detection/mobile_models/ssdlite_mobilenet_v3_small.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/ssd/ssdlite_mobilenet_v3_small.yml) |
| MobileNet_v3 large | 320 | 64 | Cosine decay(40w) | - | 23.3 | [model](https://paddlemodels.bj.bcebos.com/object_detection/mobile_models/ssdlite_mobilenet_v3_large.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/ssd/ssdlite_mobilenet_v3_large.yml) |
199
| MobileNet_v3 small w/ FPN | 320 | 64 | Cosine decay(40w) | - | 18.9 | [model](https://paddlemodels.bj.bcebos.com/object_detection/mobile_models/ssdlite_mobilenet_v3_small_fpn.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/ssd/ssdlite_mobilenet_v3_small_fpn.yml) |
200
| MobileNet_v3 large w/ FPN | 320 | 64 | Cosine decay(40w) | - | 24.3 | [model](https://paddlemodels.bj.bcebos.com/object_detection/mobile_models/ssdlite_mobilenet_v3_large_fpn.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/ssd/ssdlite_mobilenet_v3_large_fpn.yml) |
201

G
Guanghua Yu 已提交
202
**Notes:** `SSDLite` is trained in 8 GPU with total batch size as 512 and uses cosine decay strategy to train.
203

204 205
### SSD

206 207 208 209
| Backbone | Size | Image/gpu | Lr schd | Inf time (fps) | Box AP |                           Download                           | Configs |
| :------: | :--: | :-------: | :-----: | :------------: | :----: | :----------------------------------------------------------: | :----: |
|  VGG16   | 300  |     8     |   40w   |     81.613     |  25.1  | [model](https://paddlemodels.bj.bcebos.com/object_detection/ssd_vgg16_300.tar) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/ssd/ssd_vgg16_300.yml) |
|  VGG16   | 512  |     8     |   40w   |     46.007     |  29.1  | [model](https://paddlemodels.bj.bcebos.com/object_detection/ssd_vgg16_512.tar) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/ssd/ssd_vgg16_512.yml) |
210 211 212

**Notes:** VGG-SSD is trained in 4 GPU with total batch size as 32 and trained 400000 iters.

Q
qingqing01 已提交
213
### SSD on Pascal VOC
J
jerrywgz 已提交
214

215 216 217 218 219
| Backbone     | Size | Image/gpu | Lr schd | Inf time (fps) | Box AP |                           Download                           | Configs |
| :----------- | :--: | :-------: | :-----: | :------------: | :----: | :----------------------------------------------------------: | :----: |
| MobileNet v1 | 300  |    32     |  120e   |    159.543     |  73.2  | [model](https://paddlemodels.bj.bcebos.com/object_detection/ssd_mobilenet_v1_voc.tar) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/ssd/ssd_mobilenet_v1_voc.yml) |
| VGG16        | 300  |     8     |  240e   |    117.279     |  77.5  | [model](https://paddlemodels.bj.bcebos.com/object_detection/ssd_vgg16_300_voc.tar) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/ssd/ssd_vgg16_300_voc.yml) |
| VGG16        | 512  |     8     |  240e   |     65.975     |  80.2  | [model](https://paddlemodels.bj.bcebos.com/object_detection/ssd_vgg16_512_voc.tar) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/ssd/ssd_vgg16_512_voc.yml) |
K
Kaipeng Deng 已提交
220

221
**NOTE**: MobileNet-SSD is trained in 2 GPU with totoal batch size as 64 and trained 120 epoches. VGG-SSD is trained in 4 GPU with total batch size as 32 and trained 240 epoches. SSD training data augmentations: randomly color distortion,
J
jerrywgz 已提交
222
randomly cropping, randomly expansion, randomly flipping.
223 224


G
Guanghua Yu 已提交
225
### Face Detection
226

G
Guanghua Yu 已提交
227
Please refer [face detection models](https://github.com/PaddlePaddle/PaddleDetection/blob/master/configs/face_detection) for details.
228 229


G
Guanghua Yu 已提交
230
### Object Detection in Open Images Dataset V5
231

G
Guanghua Yu 已提交
232
Please refer [Open Images Dataset V5 Baseline model](featured_model/OIDV5_BASELINE_MODEL.md) for details.
W
wangguanzhong 已提交
233 234 235 236

### Anchor Free Models

Please refer [Anchor Free Models](featured_model/ANCHOR_FREE_DETECTION.md) for details.