pipeline.py 29.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import yaml
import glob
18
from collections import defaultdict
19 20 21 22 23 24

import cv2
import numpy as np
import math
import paddle
import sys
Z
zhiboniu 已提交
25
import copy
26
from collections import Sequence
Z
zhiboniu 已提交
27 28 29
from reid import ReID
from datacollector import DataCollector, Result
from mtmct import mtmct_process
30 31 32 33 34 35 36

# add deploy path of PadleDetection to sys.path
parent_path = os.path.abspath(os.path.join(__file__, *(['..'] * 2)))
sys.path.insert(0, parent_path)

from python.infer import Detector, DetectorPicoDet
from python.attr_infer import AttrDetector
J
JYChen 已提交
37 38 39
from python.keypoint_infer import KeyPointDetector
from python.keypoint_postprocess import translate_to_ori_images
from python.action_infer import ActionRecognizer
Z
zhiboniu 已提交
40
from python.action_utils import KeyPointBuff, ActionVisualHelper
J
JYChen 已提交
41

42
from pipe_utils import argsparser, print_arguments, merge_cfg, PipeTimer
J
JYChen 已提交
43
from pipe_utils import get_test_images, crop_image_with_det, crop_image_with_mot, parse_mot_res, parse_mot_keypoint
44
from python.preprocess import decode_image
J
JYChen 已提交
45
from python.visualize import visualize_box_mask, visualize_attr, visualize_pose, visualize_action
46 47

from pptracking.python.mot_sde_infer import SDE_Detector
48 49
from pptracking.python.mot.visualize import plot_tracking_dict
from pptracking.python.mot.utils import flow_statistic
50 51 52 53 54 55 56 57 58 59 60 61 62


class Pipeline(object):
    """
    Pipeline

    Args:
        cfg (dict): config of models in pipeline
        image_file (string|None): the path of image file, default as None
        image_dir (string|None): the path of image directory, if not None, 
            then all the images in directory will be predicted, default as None
        video_file (string|None): the path of video file, default as None
        camera_id (int): the device id of camera to predict, default as -1
W
wangguanzhong 已提交
63 64
        enable_attr (bool): whether use attribute recognition, default as false
        enable_action (bool): whether use action recognition, default as false
65 66 67 68 69 70 71 72 73 74 75 76
        device (string): the device to predict, options are: CPU/GPU/XPU, 
            default as CPU
        run_mode (string): the mode of prediction, options are: 
            paddle/trt_fp32/trt_fp16, default as paddle
        trt_min_shape (int): min shape for dynamic shape in trt, default as 1
        trt_max_shape (int): max shape for dynamic shape in trt, default as 1280
        trt_opt_shape (int): opt shape for dynamic shape in trt, default as 640
        trt_calib_mode (bool): If the model is produced by TRT offline quantitative
            calibration, trt_calib_mode need to set True. default as False
        cpu_threads (int): cpu threads, default as 1
        enable_mkldnn (bool): whether to open MKLDNN, default as False
        output_dir (string): The path of output, default as 'output'
77 78 79 80 81
        draw_center_traj (bool): Whether drawing the trajectory of center, default as False
        secs_interval (int): The seconds interval to count after tracking, default as 10
        do_entrance_counting(bool): Whether counting the numbers of identifiers entering 
            or getting out from the entrance, default as False,only support single class
            counting in MOT.
82 83 84 85 86 87 88
    """

    def __init__(self,
                 cfg,
                 image_file=None,
                 image_dir=None,
                 video_file=None,
Z
zhiboniu 已提交
89
                 video_dir=None,
90
                 camera_id=-1,
W
wangguanzhong 已提交
91 92
                 enable_attr=False,
                 enable_action=True,
93 94 95 96 97 98 99 100
                 device='CPU',
                 run_mode='paddle',
                 trt_min_shape=1,
                 trt_max_shape=1280,
                 trt_opt_shape=640,
                 trt_calib_mode=False,
                 cpu_threads=1,
                 enable_mkldnn=False,
101 102 103 104
                 output_dir='output',
                 draw_center_traj=False,
                 secs_interval=10,
                 do_entrance_counting=False):
105 106
        self.multi_camera = False
        self.is_video = False
Z
zhiboniu 已提交
107 108
        self.output_dir = output_dir
        self.vis_result = cfg['visual']
109
        self.input = self._parse_input(image_file, image_dir, video_file,
Z
zhiboniu 已提交
110
                                       video_dir, camera_id)
111
        if self.multi_camera:
112 113 114
            self.predictor = []
            for name in self.input:
                predictor_item = PipePredictor(
115 116 117
                    cfg,
                    is_video=True,
                    multi_camera=True,
W
wangguanzhong 已提交
118 119
                    enable_attr=enable_attr,
                    enable_action=enable_action,
120 121 122 123 124 125 126
                    device=device,
                    run_mode=run_mode,
                    trt_min_shape=trt_min_shape,
                    trt_max_shape=trt_max_shape,
                    trt_opt_shape=trt_opt_shape,
                    cpu_threads=cpu_threads,
                    enable_mkldnn=enable_mkldnn,
127 128 129 130
                    output_dir=output_dir)
                predictor_item.set_file_name(name)
                self.predictor.append(predictor_item)

131 132 133 134
        else:
            self.predictor = PipePredictor(
                cfg,
                self.is_video,
W
wangguanzhong 已提交
135 136
                enable_attr=enable_attr,
                enable_action=enable_action,
137 138 139 140 141 142 143 144
                device=device,
                run_mode=run_mode,
                trt_min_shape=trt_min_shape,
                trt_max_shape=trt_max_shape,
                trt_opt_shape=trt_opt_shape,
                trt_calib_mode=trt_calib_mode,
                cpu_threads=cpu_threads,
                enable_mkldnn=enable_mkldnn,
145 146 147 148
                output_dir=output_dir,
                draw_center_traj=draw_center_traj,
                secs_interval=secs_interval,
                do_entrance_counting=do_entrance_counting)
149 150
            if self.is_video:
                self.predictor.set_file_name(video_file)
151

152 153 154 155 156
        self.output_dir = output_dir
        self.draw_center_traj = draw_center_traj
        self.secs_interval = secs_interval
        self.do_entrance_counting = do_entrance_counting

Z
zhiboniu 已提交
157 158
    def _parse_input(self, image_file, image_dir, video_file, video_dir,
                     camera_id):
159 160 161 162 163 164 165 166 167

        # parse input as is_video and multi_camera

        if image_file is not None or image_dir is not None:
            input = get_test_images(image_dir, image_file)
            self.is_video = False
            self.multi_camera = False

        elif video_file is not None:
168
            assert os.path.exists(video_file), "video_file not exists."
Z
zhiboniu 已提交
169 170 171 172 173 174 175
            self.multi_camera = False
            input = video_file
            self.is_video = True

        elif video_dir is not None:
            videof = [os.path.join(video_dir, x) for x in os.listdir(video_dir)]
            if len(videof) > 1:
176
                self.multi_camera = True
Z
zhiboniu 已提交
177 178
                videof.sort()
                input = videof
179
            else:
Z
zhiboniu 已提交
180
                input = videof[0]
181 182 183
            self.is_video = True

        elif camera_id != -1:
Z
zhiboniu 已提交
184 185
            self.multi_camera = False
            input = camera_id
186 187 188 189 190 191 192 193 194 195 196 197 198 199
            self.is_video = True

        else:
            raise ValueError(
                "Illegal Input, please set one of ['video_file','camera_id','image_file', 'image_dir']"
            )

        return input

    def run(self):
        if self.multi_camera:
            multi_res = []
            for predictor, input in zip(self.predictor, self.input):
                predictor.run(input)
Z
zhiboniu 已提交
200 201 202 203 204 205 206
                collector_data = predictor.get_result()
                multi_res.append(collector_data)
            mtmct_process(
                multi_res,
                self.input,
                mtmct_vis=self.vis_result,
                output_dir=self.output_dir)
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232

        else:
            self.predictor.run(self.input)


class PipePredictor(object):
    """
    Predictor in single camera
    
    The pipeline for image input: 

        1. Detection
        2. Detection -> Attribute

    The pipeline for video input: 

        1. Tracking
        2. Tracking -> Attribute
        3. Tracking -> KeyPoint -> Action Recognition

    Args:
        cfg (dict): config of models in pipeline
        is_video (bool): whether the input is video, default as False
        multi_camera (bool): whether to use multi camera in pipeline, 
            default as False
        camera_id (int): the device id of camera to predict, default as -1
W
wangguanzhong 已提交
233 234
        enable_attr (bool): whether use attribute recognition, default as false
        enable_action (bool): whether use action recognition, default as false
235 236 237 238 239 240 241 242 243 244 245 246
        device (string): the device to predict, options are: CPU/GPU/XPU, 
            default as CPU
        run_mode (string): the mode of prediction, options are: 
            paddle/trt_fp32/trt_fp16, default as paddle
        trt_min_shape (int): min shape for dynamic shape in trt, default as 1
        trt_max_shape (int): max shape for dynamic shape in trt, default as 1280
        trt_opt_shape (int): opt shape for dynamic shape in trt, default as 640
        trt_calib_mode (bool): If the model is produced by TRT offline quantitative
            calibration, trt_calib_mode need to set True. default as False
        cpu_threads (int): cpu threads, default as 1
        enable_mkldnn (bool): whether to open MKLDNN, default as False
        output_dir (string): The path of output, default as 'output'
247 248 249 250 251
        draw_center_traj (bool): Whether drawing the trajectory of center, default as False
        secs_interval (int): The seconds interval to count after tracking, default as 10
        do_entrance_counting(bool): Whether counting the numbers of identifiers entering 
            or getting out from the entrance, default as False,only support single class
            counting in MOT.
252 253 254 255 256 257
    """

    def __init__(self,
                 cfg,
                 is_video=True,
                 multi_camera=False,
W
wangguanzhong 已提交
258 259
                 enable_attr=False,
                 enable_action=False,
260 261 262 263 264 265 266 267
                 device='CPU',
                 run_mode='paddle',
                 trt_min_shape=1,
                 trt_max_shape=1280,
                 trt_opt_shape=640,
                 trt_calib_mode=False,
                 cpu_threads=1,
                 enable_mkldnn=False,
268 269 270 271
                 output_dir='output',
                 draw_center_traj=False,
                 secs_interval=10,
                 do_entrance_counting=False):
272

W
wangguanzhong 已提交
273 274 275 276 277 278 279 280 281 282 283
        if enable_attr and not cfg.get('ATTR', False):
            ValueError(
                'enable_attr is set to True, please set ATTR in config file')
        if enable_action and (not cfg.get('ACTION', False) or
                              not cfg.get('KPT', False)):
            ValueError(
                'enable_action is set to True, please set KPT and ACTION in config file'
            )

        self.with_attr = cfg.get('ATTR', False) and enable_attr
        self.with_action = cfg.get('ACTION', False) and enable_action
Z
zhiboniu 已提交
284
        self.with_mtmct = cfg.get('REID', False) and multi_camera
W
wangguanzhong 已提交
285 286 287 288
        if self.with_attr:
            print('Attribute Recognition enabled')
        if self.with_action:
            print('Action Recognition enabled')
Z
zhiboniu 已提交
289 290 291 292 293 294 295
        if multi_camera:
            if not self.with_mtmct:
                print(
                    'Warning!!! MTMCT enabled, but cannot find REID config in [infer_cfg.yml], please check!'
                )
            else:
                print("MTMCT enabled")
W
wangguanzhong 已提交
296

297 298 299 300
        self.is_video = is_video
        self.multi_camera = multi_camera
        self.cfg = cfg
        self.output_dir = output_dir
301 302 303
        self.draw_center_traj = draw_center_traj
        self.secs_interval = secs_interval
        self.do_entrance_counting = do_entrance_counting
304

J
JYChen 已提交
305
        self.warmup_frame = self.cfg['warmup_frame']
306 307
        self.pipeline_res = Result()
        self.pipe_timer = PipeTimer()
308
        self.file_name = None
Z
zhiboniu 已提交
309
        self.collector = DataCollector()
310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333

        if not is_video:
            det_cfg = self.cfg['DET']
            model_dir = det_cfg['model_dir']
            batch_size = det_cfg['batch_size']
            self.det_predictor = Detector(
                model_dir, device, run_mode, batch_size, trt_min_shape,
                trt_max_shape, trt_opt_shape, trt_calib_mode, cpu_threads,
                enable_mkldnn)
            if self.with_attr:
                attr_cfg = self.cfg['ATTR']
                model_dir = attr_cfg['model_dir']
                batch_size = attr_cfg['batch_size']
                self.attr_predictor = AttrDetector(
                    model_dir, device, run_mode, batch_size, trt_min_shape,
                    trt_max_shape, trt_opt_shape, trt_calib_mode, cpu_threads,
                    enable_mkldnn)

        else:
            mot_cfg = self.cfg['MOT']
            model_dir = mot_cfg['model_dir']
            tracker_config = mot_cfg['tracker_config']
            batch_size = mot_cfg['batch_size']
            self.mot_predictor = SDE_Detector(
334 335 336 337 338 339 340 341 342 343 344 345 346 347
                model_dir,
                tracker_config,
                device,
                run_mode,
                batch_size,
                trt_min_shape,
                trt_max_shape,
                trt_opt_shape,
                trt_calib_mode,
                cpu_threads,
                enable_mkldnn,
                draw_center_traj=draw_center_traj,
                secs_interval=secs_interval,
                do_entrance_counting=do_entrance_counting)
348 349 350 351 352 353 354 355 356
            if self.with_attr:
                attr_cfg = self.cfg['ATTR']
                model_dir = attr_cfg['model_dir']
                batch_size = attr_cfg['batch_size']
                self.attr_predictor = AttrDetector(
                    model_dir, device, run_mode, batch_size, trt_min_shape,
                    trt_max_shape, trt_opt_shape, trt_calib_mode, cpu_threads,
                    enable_mkldnn)
            if self.with_action:
J
JYChen 已提交
357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378
                kpt_cfg = self.cfg['KPT']
                kpt_model_dir = kpt_cfg['model_dir']
                kpt_batch_size = kpt_cfg['batch_size']
                action_cfg = self.cfg['ACTION']
                action_model_dir = action_cfg['model_dir']
                action_batch_size = action_cfg['batch_size']
                action_frames = action_cfg['max_frames']
                display_frames = action_cfg['display_frames']
                self.coord_size = action_cfg['coord_size']

                self.kpt_predictor = KeyPointDetector(
                    kpt_model_dir,
                    device,
                    run_mode,
                    kpt_batch_size,
                    trt_min_shape,
                    trt_max_shape,
                    trt_opt_shape,
                    trt_calib_mode,
                    cpu_threads,
                    enable_mkldnn,
                    use_dark=False)
Z
zhiboniu 已提交
379
                self.kpt_buff = KeyPointBuff(action_frames)
J
JYChen 已提交
380 381 382 383 384 385 386 387 388 389 390 391 392 393

                self.action_predictor = ActionRecognizer(
                    action_model_dir,
                    device,
                    run_mode,
                    action_batch_size,
                    trt_min_shape,
                    trt_max_shape,
                    trt_opt_shape,
                    trt_calib_mode,
                    cpu_threads,
                    enable_mkldnn,
                    window_size=action_frames)

Z
zhiboniu 已提交
394 395 396 397 398 399 400 401 402 403
                self.action_visual_helper = ActionVisualHelper(display_frames)

        if self.with_mtmct:
            reid_cfg = self.cfg['REID']
            model_dir = reid_cfg['model_dir']
            batch_size = reid_cfg['batch_size']
            self.reid_predictor = ReID(model_dir, device, run_mode, batch_size,
                                       trt_min_shape, trt_max_shape,
                                       trt_opt_shape, trt_calib_mode,
                                       cpu_threads, enable_mkldnn)
404

405
    def set_file_name(self, path):
W
wangguanzhong 已提交
406 407 408 409 410
        if path is not None:
            self.file_name = os.path.split(path)[-1]
        else:
            # use camera id
            self.file_name = None
411

412
    def get_result(self):
Z
zhiboniu 已提交
413
        return self.collector.get_res()
414 415 416 417 418 419

    def run(self, input):
        if self.is_video:
            self.predict_video(input)
        else:
            self.predict_image(input)
420
        self.pipe_timer.info()
421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438

    def predict_image(self, input):
        # det
        # det -> attr
        batch_loop_cnt = math.ceil(
            float(len(input)) / self.det_predictor.batch_size)
        for i in range(batch_loop_cnt):
            start_index = i * self.det_predictor.batch_size
            end_index = min((i + 1) * self.det_predictor.batch_size, len(input))
            batch_file = input[start_index:end_index]
            batch_input = [decode_image(f, {})[0] for f in batch_file]

            if i > self.warmup_frame:
                self.pipe_timer.total_time.start()
                self.pipe_timer.module_time['det'].start()
            # det output format: class, score, xmin, ymin, xmax, ymax
            det_res = self.det_predictor.predict_image(
                batch_input, visual=False)
439 440
            det_res = self.det_predictor.filter_box(det_res,
                                                    self.cfg['crop_thresh'])
441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469
            if i > self.warmup_frame:
                self.pipe_timer.module_time['det'].end()
            self.pipeline_res.update(det_res, 'det')

            if self.with_attr:
                crop_inputs = crop_image_with_det(batch_input, det_res)
                attr_res_list = []

                if i > self.warmup_frame:
                    self.pipe_timer.module_time['attr'].start()

                for crop_input in crop_inputs:
                    attr_res = self.attr_predictor.predict_image(
                        crop_input, visual=False)
                    attr_res_list.extend(attr_res['output'])

                if i > self.warmup_frame:
                    self.pipe_timer.module_time['attr'].end()

                attr_res = {'output': attr_res_list}
                self.pipeline_res.update(attr_res, 'attr')

            self.pipe_timer.img_num += len(batch_input)
            if i > self.warmup_frame:
                self.pipe_timer.total_time.end()

            if self.cfg['visual']:
                self.visualize_image(batch_file, batch_input, self.pipeline_res)

Z
zhiboniu 已提交
470
    def predict_video(self, video_file):
471 472 473
        # mot
        # mot -> attr
        # mot -> pose -> action
Z
zhiboniu 已提交
474
        capture = cv2.VideoCapture(video_file)
475
        video_out_name = 'output.mp4' if self.file_name is None else self.file_name
476 477 478 479 480 481

        # Get Video info : resolution, fps, frame count
        width = int(capture.get(cv2.CAP_PROP_FRAME_WIDTH))
        height = int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT))
        fps = int(capture.get(cv2.CAP_PROP_FPS))
        frame_count = int(capture.get(cv2.CAP_PROP_FRAME_COUNT))
482
        print("video fps: %d, frame_count: %d" % (fps, frame_count))
483 484 485 486 487 488 489

        if not os.path.exists(self.output_dir):
            os.makedirs(self.output_dir)
        out_path = os.path.join(self.output_dir, video_out_name)
        fourcc = cv2.VideoWriter_fourcc(* 'mp4v')
        writer = cv2.VideoWriter(out_path, fourcc, fps, (width, height))
        frame_id = 0
490 491 492 493 494 495 496 497 498 499 500 501 502

        entrance, records, center_traj = None, None, None
        if self.draw_center_traj:
            center_traj = [{}]
        id_set = set()
        interval_id_set = set()
        in_id_list = list()
        out_id_list = list()
        prev_center = dict()
        records = list()
        entrance = [0, height / 2., width, height / 2.]
        video_fps = fps

503 504 505 506 507 508 509 510 511 512
        while (1):
            if frame_id % 10 == 0:
                print('frame id: ', frame_id)
            ret, frame = capture.read()
            if not ret:
                break

            if frame_id > self.warmup_frame:
                self.pipe_timer.total_time.start()
                self.pipe_timer.module_time['mot'].start()
Z
zhiboniu 已提交
513 514
            res = self.mot_predictor.predict_image(
                [copy.deepcopy(frame)], visual=False)
515 516 517 518 519 520 521

            if frame_id > self.warmup_frame:
                self.pipe_timer.module_time['mot'].end()

            # mot output format: id, class, score, xmin, ymin, xmax, ymax
            mot_res = parse_mot_res(res)

522 523 524 525 526 527 528 529 530 531
            # flow_statistic only support single class MOT
            boxes, scores, ids = res[0]  # batch size = 1 in MOT
            mot_result = (frame_id + 1, boxes[0], scores[0],
                          ids[0])  # single class
            statistic = flow_statistic(
                mot_result, self.secs_interval, self.do_entrance_counting,
                video_fps, entrance, id_set, interval_id_set, in_id_list,
                out_id_list, prev_center, records)
            records = statistic['records']

532 533 534
            # nothing detected
            if len(mot_res['boxes']) == 0:
                frame_id += 1
535 536 537
                if frame_id > self.warmup_frame:
                    self.pipe_timer.img_num += 1
                    self.pipe_timer.total_time.end()
538 539 540 541 542
                if self.cfg['visual']:
                    _, _, fps = self.pipe_timer.get_total_time()
                    im = self.visualize_video(frame, mot_res, frame_id,
                                              fps)  # visualize
                    writer.write(im)
W
wangguanzhong 已提交
543 544 545 546 547
                    if self.file_name is None:  # use camera_id
                        cv2.imshow('PPHuman', im)
                        if cv2.waitKey(1) & 0xFF == ord('q'):
                            break

548 549
                continue

550 551
            self.pipeline_res.update(mot_res, 'mot')
            if self.with_attr or self.with_action:
J
JYChen 已提交
552 553
                crop_input, new_bboxes, ori_bboxes = crop_image_with_mot(
                    frame, mot_res)
554 555 556 557 558 559 560 561 562 563 564

            if self.with_attr:
                if frame_id > self.warmup_frame:
                    self.pipe_timer.module_time['attr'].start()
                attr_res = self.attr_predictor.predict_image(
                    crop_input, visual=False)
                if frame_id > self.warmup_frame:
                    self.pipe_timer.module_time['attr'].end()
                self.pipeline_res.update(attr_res, 'attr')

            if self.with_action:
J
JYChen 已提交
565 566
                if frame_id > self.warmup_frame:
                    self.pipe_timer.module_time['kpt'].start()
J
JYChen 已提交
567 568 569 570 571 572 573 574 575
                kpt_pred = self.kpt_predictor.predict_image(
                    crop_input, visual=False)
                keypoint_vector, score_vector = translate_to_ori_images(
                    kpt_pred, np.array(new_bboxes))
                kpt_res = {}
                kpt_res['keypoint'] = [
                    keypoint_vector.tolist(), score_vector.tolist()
                ] if len(keypoint_vector) > 0 else [[], []]
                kpt_res['bbox'] = ori_bboxes
J
JYChen 已提交
576 577 578
                if frame_id > self.warmup_frame:
                    self.pipe_timer.module_time['kpt'].end()

J
JYChen 已提交
579 580
                self.pipeline_res.update(kpt_res, 'kpt')

Z
zhiboniu 已提交
581 582
                self.kpt_buff.update(kpt_res, mot_res)  # collect kpt output
                state = self.kpt_buff.get_state(
J
JYChen 已提交
583 584 585
                )  # whether frame num is enough or lost tracker

                action_res = {}
586
                if state:
J
JYChen 已提交
587 588
                    if frame_id > self.warmup_frame:
                        self.pipe_timer.module_time['action'].start()
Z
zhiboniu 已提交
589
                    collected_keypoint = self.kpt_buff.get_collected_keypoint(
J
JYChen 已提交
590 591 592 593 594
                    )  # reoragnize kpt output with ID
                    action_input = parse_mot_keypoint(collected_keypoint,
                                                      self.coord_size)
                    action_res = self.action_predictor.predict_skeleton_with_mot(
                        action_input)
J
JYChen 已提交
595 596
                    if frame_id > self.warmup_frame:
                        self.pipe_timer.module_time['action'].end()
J
JYChen 已提交
597 598 599
                    self.pipeline_res.update(action_res, 'action')

                if self.cfg['visual']:
Z
zhiboniu 已提交
600 601
                    self.action_visual_helper.update(action_res)

Z
zhiboniu 已提交
602
            if self.with_mtmct and frame_id % 10 == 0:
Z
zhiboniu 已提交
603 604 605 606 607 608 609 610 611 612 613 614 615 616 617
                crop_input, img_qualities, rects = self.reid_predictor.crop_image_with_mot(
                    frame, mot_res)
                if frame_id > self.warmup_frame:
                    self.pipe_timer.module_time['reid'].start()
                reid_res = self.reid_predictor.predict_batch(crop_input)

                if frame_id > self.warmup_frame:
                    self.pipe_timer.module_time['reid'].end()

                reid_res_dict = {
                    'features': reid_res,
                    "qualities": img_qualities,
                    "rects": rects
                }
                self.pipeline_res.update(reid_res_dict, 'reid')
Z
zhiboniu 已提交
618 619
            else:
                self.pipeline_res.clear('reid')
Z
zhiboniu 已提交
620 621

            self.collector.append(frame_id, self.pipeline_res)
622 623 624 625 626 627 628

            if frame_id > self.warmup_frame:
                self.pipe_timer.img_num += 1
                self.pipe_timer.total_time.end()
            frame_id += 1

            if self.cfg['visual']:
629 630
                _, _, fps = self.pipe_timer.get_total_time()
                im = self.visualize_video(frame, self.pipeline_res, frame_id,
631 632
                                          fps, entrance, records,
                                          center_traj)  # visualize
633
                writer.write(im)
W
wangguanzhong 已提交
634 635 636 637
                if self.file_name is None:  # use camera_id
                    cv2.imshow('PPHuman', im)
                    if cv2.waitKey(1) & 0xFF == ord('q'):
                        break
638 639 640 641

        writer.release()
        print('save result to {}'.format(out_path))

642 643 644 645 646 647 648 649
    def visualize_video(self,
                        image,
                        result,
                        frame_id,
                        fps,
                        entrance=None,
                        records=None,
                        center_traj=None):
Z
zhiboniu 已提交
650
        mot_res = copy.deepcopy(result.get('mot'))
651 652
        if mot_res is not None:
            ids = mot_res['boxes'][:, 0]
W
wangguanzhong 已提交
653
            scores = mot_res['boxes'][:, 2]
654 655 656 657 658 659
            boxes = mot_res['boxes'][:, 3:]
            boxes[:, 2] = boxes[:, 2] - boxes[:, 0]
            boxes[:, 3] = boxes[:, 3] - boxes[:, 1]
        else:
            boxes = np.zeros([0, 4])
            ids = np.zeros([0])
W
wangguanzhong 已提交
660
            scores = np.zeros([0])
661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682

        # single class, still need to be defaultdict type for ploting
        num_classes = 1
        online_tlwhs = defaultdict(list)
        online_scores = defaultdict(list)
        online_ids = defaultdict(list)
        online_tlwhs[0] = boxes
        online_scores[0] = scores
        online_ids[0] = ids

        image = plot_tracking_dict(
            image,
            num_classes,
            online_tlwhs,
            online_ids,
            online_scores,
            frame_id=frame_id,
            fps=fps,
            do_entrance_counting=self.do_entrance_counting,
            entrance=entrance,
            records=records,
            center_traj=center_traj)
683 684 685 686 687 688 689 690

        attr_res = result.get('attr')
        if attr_res is not None:
            boxes = mot_res['boxes'][:, 1:]
            attr_res = attr_res['output']
            image = visualize_attr(image, attr_res, boxes)
            image = np.array(image)

J
JYChen 已提交
691 692 693 694 695 696 697 698 699 700 701
        kpt_res = result.get('kpt')
        if kpt_res is not None:
            image = visualize_pose(
                image,
                kpt_res,
                visual_thresh=self.cfg['kpt_thresh'],
                returnimg=True)

        action_res = result.get('action')
        if action_res is not None:
            image = visualize_action(image, mot_res['boxes'],
Z
zhiboniu 已提交
702
                                     self.action_visual_helper, "Falling")
J
JYChen 已提交
703

704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720
        return image

    def visualize_image(self, im_files, images, result):
        start_idx, boxes_num_i = 0, 0
        det_res = result.get('det')
        attr_res = result.get('attr')
        for i, (im_file, im) in enumerate(zip(im_files, images)):
            if det_res is not None:
                det_res_i = {}
                boxes_num_i = det_res['boxes_num'][i]
                det_res_i['boxes'] = det_res['boxes'][start_idx:start_idx +
                                                      boxes_num_i, :]
                im = visualize_box_mask(
                    im,
                    det_res_i,
                    labels=['person'],
                    threshold=self.cfg['crop_thresh'])
721 722
                im = np.ascontiguousarray(np.copy(im))
                im = cv2.cvtColor(im, cv2.COLOR_RGB2BGR)
723 724 725 726 727 728 729 730
            if attr_res is not None:
                attr_res_i = attr_res['output'][start_idx:start_idx +
                                                boxes_num_i]
                im = visualize_attr(im, attr_res_i, det_res_i['boxes'])
            img_name = os.path.split(im_file)[-1]
            if not os.path.exists(self.output_dir):
                os.makedirs(self.output_dir)
            out_path = os.path.join(self.output_dir, img_name)
731
            cv2.imwrite(out_path, im)
732 733 734 735 736 737 738 739 740
            print("save result to: " + out_path)
            start_idx += boxes_num_i


def main():
    cfg = merge_cfg(FLAGS)
    print_arguments(cfg)
    pipeline = Pipeline(
        cfg, FLAGS.image_file, FLAGS.image_dir, FLAGS.video_file,
Z
zhiboniu 已提交
741 742 743
        FLAGS.video_dir, FLAGS.camera_id, FLAGS.enable_attr,
        FLAGS.enable_action, FLAGS.device, FLAGS.run_mode, FLAGS.trt_min_shape,
        FLAGS.trt_max_shape, FLAGS.trt_opt_shape, FLAGS.trt_calib_mode,
744 745
        FLAGS.cpu_threads, FLAGS.enable_mkldnn, FLAGS.output_dir,
        FLAGS.draw_center_traj, FLAGS.secs_interval, FLAGS.do_entrance_counting)
746 747 748 749 750 751 752 753 754 755 756 757 758

    pipeline.run()


if __name__ == '__main__':
    paddle.enable_static()
    parser = argsparser()
    FLAGS = parser.parse_args()
    FLAGS.device = FLAGS.device.upper()
    assert FLAGS.device in ['CPU', 'GPU', 'XPU'
                            ], "device should be CPU, GPU or XPU"

    main()