pipeline.py 29.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import yaml
import glob
18
from collections import defaultdict
19 20 21 22 23 24

import cv2
import numpy as np
import math
import paddle
import sys
Z
zhiboniu 已提交
25
import copy
26
from collections import Sequence
Z
zhiboniu 已提交
27 28 29
from reid import ReID
from datacollector import DataCollector, Result
from mtmct import mtmct_process
30 31 32 33 34 35 36

# add deploy path of PadleDetection to sys.path
parent_path = os.path.abspath(os.path.join(__file__, *(['..'] * 2)))
sys.path.insert(0, parent_path)

from python.infer import Detector, DetectorPicoDet
from python.attr_infer import AttrDetector
J
JYChen 已提交
37 38 39
from python.keypoint_infer import KeyPointDetector
from python.keypoint_postprocess import translate_to_ori_images
from python.action_infer import ActionRecognizer
Z
zhiboniu 已提交
40
from python.action_utils import KeyPointBuff, ActionVisualHelper
J
JYChen 已提交
41

42
from pipe_utils import argsparser, print_arguments, merge_cfg, PipeTimer
J
JYChen 已提交
43
from pipe_utils import get_test_images, crop_image_with_det, crop_image_with_mot, parse_mot_res, parse_mot_keypoint
44
from python.preprocess import decode_image
J
JYChen 已提交
45
from python.visualize import visualize_box_mask, visualize_attr, visualize_pose, visualize_action
46 47

from pptracking.python.mot_sde_infer import SDE_Detector
48 49
from pptracking.python.mot.visualize import plot_tracking_dict
from pptracking.python.mot.utils import flow_statistic
50 51 52 53 54 55 56 57 58 59 60 61 62


class Pipeline(object):
    """
    Pipeline

    Args:
        cfg (dict): config of models in pipeline
        image_file (string|None): the path of image file, default as None
        image_dir (string|None): the path of image directory, if not None, 
            then all the images in directory will be predicted, default as None
        video_file (string|None): the path of video file, default as None
        camera_id (int): the device id of camera to predict, default as -1
W
wangguanzhong 已提交
63 64
        enable_attr (bool): whether use attribute recognition, default as false
        enable_action (bool): whether use action recognition, default as false
65 66 67 68 69 70 71 72 73 74 75 76
        device (string): the device to predict, options are: CPU/GPU/XPU, 
            default as CPU
        run_mode (string): the mode of prediction, options are: 
            paddle/trt_fp32/trt_fp16, default as paddle
        trt_min_shape (int): min shape for dynamic shape in trt, default as 1
        trt_max_shape (int): max shape for dynamic shape in trt, default as 1280
        trt_opt_shape (int): opt shape for dynamic shape in trt, default as 640
        trt_calib_mode (bool): If the model is produced by TRT offline quantitative
            calibration, trt_calib_mode need to set True. default as False
        cpu_threads (int): cpu threads, default as 1
        enable_mkldnn (bool): whether to open MKLDNN, default as False
        output_dir (string): The path of output, default as 'output'
77 78 79 80 81
        draw_center_traj (bool): Whether drawing the trajectory of center, default as False
        secs_interval (int): The seconds interval to count after tracking, default as 10
        do_entrance_counting(bool): Whether counting the numbers of identifiers entering 
            or getting out from the entrance, default as False,only support single class
            counting in MOT.
82 83 84 85 86 87 88
    """

    def __init__(self,
                 cfg,
                 image_file=None,
                 image_dir=None,
                 video_file=None,
Z
zhiboniu 已提交
89
                 video_dir=None,
90
                 camera_id=-1,
W
wangguanzhong 已提交
91 92
                 enable_attr=False,
                 enable_action=True,
93 94 95 96 97 98 99 100
                 device='CPU',
                 run_mode='paddle',
                 trt_min_shape=1,
                 trt_max_shape=1280,
                 trt_opt_shape=640,
                 trt_calib_mode=False,
                 cpu_threads=1,
                 enable_mkldnn=False,
101 102 103 104
                 output_dir='output',
                 draw_center_traj=False,
                 secs_interval=10,
                 do_entrance_counting=False):
105 106
        self.multi_camera = False
        self.is_video = False
Z
zhiboniu 已提交
107 108
        self.output_dir = output_dir
        self.vis_result = cfg['visual']
109
        self.input = self._parse_input(image_file, image_dir, video_file,
Z
zhiboniu 已提交
110
                                       video_dir, camera_id)
111 112 113 114 115 116
        if self.multi_camera:
            self.predictor = [
                PipePredictor(
                    cfg,
                    is_video=True,
                    multi_camera=True,
W
wangguanzhong 已提交
117 118
                    enable_attr=enable_attr,
                    enable_action=enable_action,
119 120 121 122 123 124 125 126 127 128 129 130 131
                    device=device,
                    run_mode=run_mode,
                    trt_min_shape=trt_min_shape,
                    trt_max_shape=trt_max_shape,
                    trt_opt_shape=trt_opt_shape,
                    cpu_threads=cpu_threads,
                    enable_mkldnn=enable_mkldnn,
                    output_dir=output_dir) for i in self.input
            ]
        else:
            self.predictor = PipePredictor(
                cfg,
                self.is_video,
W
wangguanzhong 已提交
132 133
                enable_attr=enable_attr,
                enable_action=enable_action,
134 135 136 137 138 139 140 141
                device=device,
                run_mode=run_mode,
                trt_min_shape=trt_min_shape,
                trt_max_shape=trt_max_shape,
                trt_opt_shape=trt_opt_shape,
                trt_calib_mode=trt_calib_mode,
                cpu_threads=cpu_threads,
                enable_mkldnn=enable_mkldnn,
142 143 144 145
                output_dir=output_dir,
                draw_center_traj=draw_center_traj,
                secs_interval=secs_interval,
                do_entrance_counting=do_entrance_counting)
146 147
            if self.is_video:
                self.predictor.set_file_name(video_file)
148

149 150 151 152 153
        self.output_dir = output_dir
        self.draw_center_traj = draw_center_traj
        self.secs_interval = secs_interval
        self.do_entrance_counting = do_entrance_counting

Z
zhiboniu 已提交
154 155
    def _parse_input(self, image_file, image_dir, video_file, video_dir,
                     camera_id):
156 157 158 159 160 161 162 163 164

        # parse input as is_video and multi_camera

        if image_file is not None or image_dir is not None:
            input = get_test_images(image_dir, image_file)
            self.is_video = False
            self.multi_camera = False

        elif video_file is not None:
165
            assert os.path.exists(video_file), "video_file not exists."
Z
zhiboniu 已提交
166 167 168 169 170 171 172
            self.multi_camera = False
            input = video_file
            self.is_video = True

        elif video_dir is not None:
            videof = [os.path.join(video_dir, x) for x in os.listdir(video_dir)]
            if len(videof) > 1:
173
                self.multi_camera = True
Z
zhiboniu 已提交
174 175
                videof.sort()
                input = videof
176
            else:
Z
zhiboniu 已提交
177
                input = videof[0]
178 179 180
            self.is_video = True

        elif camera_id != -1:
Z
zhiboniu 已提交
181 182
            self.multi_camera = False
            input = camera_id
183 184 185 186 187 188 189 190 191 192 193 194 195 196
            self.is_video = True

        else:
            raise ValueError(
                "Illegal Input, please set one of ['video_file','camera_id','image_file', 'image_dir']"
            )

        return input

    def run(self):
        if self.multi_camera:
            multi_res = []
            for predictor, input in zip(self.predictor, self.input):
                predictor.run(input)
Z
zhiboniu 已提交
197 198 199 200 201 202 203
                collector_data = predictor.get_result()
                multi_res.append(collector_data)
            mtmct_process(
                multi_res,
                self.input,
                mtmct_vis=self.vis_result,
                output_dir=self.output_dir)
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229

        else:
            self.predictor.run(self.input)


class PipePredictor(object):
    """
    Predictor in single camera
    
    The pipeline for image input: 

        1. Detection
        2. Detection -> Attribute

    The pipeline for video input: 

        1. Tracking
        2. Tracking -> Attribute
        3. Tracking -> KeyPoint -> Action Recognition

    Args:
        cfg (dict): config of models in pipeline
        is_video (bool): whether the input is video, default as False
        multi_camera (bool): whether to use multi camera in pipeline, 
            default as False
        camera_id (int): the device id of camera to predict, default as -1
W
wangguanzhong 已提交
230 231
        enable_attr (bool): whether use attribute recognition, default as false
        enable_action (bool): whether use action recognition, default as false
232 233 234 235 236 237 238 239 240 241 242 243
        device (string): the device to predict, options are: CPU/GPU/XPU, 
            default as CPU
        run_mode (string): the mode of prediction, options are: 
            paddle/trt_fp32/trt_fp16, default as paddle
        trt_min_shape (int): min shape for dynamic shape in trt, default as 1
        trt_max_shape (int): max shape for dynamic shape in trt, default as 1280
        trt_opt_shape (int): opt shape for dynamic shape in trt, default as 640
        trt_calib_mode (bool): If the model is produced by TRT offline quantitative
            calibration, trt_calib_mode need to set True. default as False
        cpu_threads (int): cpu threads, default as 1
        enable_mkldnn (bool): whether to open MKLDNN, default as False
        output_dir (string): The path of output, default as 'output'
244 245 246 247 248
        draw_center_traj (bool): Whether drawing the trajectory of center, default as False
        secs_interval (int): The seconds interval to count after tracking, default as 10
        do_entrance_counting(bool): Whether counting the numbers of identifiers entering 
            or getting out from the entrance, default as False,only support single class
            counting in MOT.
249 250 251 252 253 254
    """

    def __init__(self,
                 cfg,
                 is_video=True,
                 multi_camera=False,
W
wangguanzhong 已提交
255 256
                 enable_attr=False,
                 enable_action=False,
257 258 259 260 261 262 263 264
                 device='CPU',
                 run_mode='paddle',
                 trt_min_shape=1,
                 trt_max_shape=1280,
                 trt_opt_shape=640,
                 trt_calib_mode=False,
                 cpu_threads=1,
                 enable_mkldnn=False,
265 266 267 268
                 output_dir='output',
                 draw_center_traj=False,
                 secs_interval=10,
                 do_entrance_counting=False):
269

W
wangguanzhong 已提交
270 271 272 273 274 275 276 277 278 279 280
        if enable_attr and not cfg.get('ATTR', False):
            ValueError(
                'enable_attr is set to True, please set ATTR in config file')
        if enable_action and (not cfg.get('ACTION', False) or
                              not cfg.get('KPT', False)):
            ValueError(
                'enable_action is set to True, please set KPT and ACTION in config file'
            )

        self.with_attr = cfg.get('ATTR', False) and enable_attr
        self.with_action = cfg.get('ACTION', False) and enable_action
Z
zhiboniu 已提交
281
        self.with_mtmct = cfg.get('REID', False) and multi_camera
W
wangguanzhong 已提交
282 283 284 285
        if self.with_attr:
            print('Attribute Recognition enabled')
        if self.with_action:
            print('Action Recognition enabled')
Z
zhiboniu 已提交
286 287 288 289 290 291 292
        if multi_camera:
            if not self.with_mtmct:
                print(
                    'Warning!!! MTMCT enabled, but cannot find REID config in [infer_cfg.yml], please check!'
                )
            else:
                print("MTMCT enabled")
W
wangguanzhong 已提交
293

294 295 296 297
        self.is_video = is_video
        self.multi_camera = multi_camera
        self.cfg = cfg
        self.output_dir = output_dir
298 299 300
        self.draw_center_traj = draw_center_traj
        self.secs_interval = secs_interval
        self.do_entrance_counting = do_entrance_counting
301

J
JYChen 已提交
302
        self.warmup_frame = self.cfg['warmup_frame']
303 304
        self.pipeline_res = Result()
        self.pipe_timer = PipeTimer()
305
        self.file_name = None
Z
zhiboniu 已提交
306
        self.collector = DataCollector()
307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330

        if not is_video:
            det_cfg = self.cfg['DET']
            model_dir = det_cfg['model_dir']
            batch_size = det_cfg['batch_size']
            self.det_predictor = Detector(
                model_dir, device, run_mode, batch_size, trt_min_shape,
                trt_max_shape, trt_opt_shape, trt_calib_mode, cpu_threads,
                enable_mkldnn)
            if self.with_attr:
                attr_cfg = self.cfg['ATTR']
                model_dir = attr_cfg['model_dir']
                batch_size = attr_cfg['batch_size']
                self.attr_predictor = AttrDetector(
                    model_dir, device, run_mode, batch_size, trt_min_shape,
                    trt_max_shape, trt_opt_shape, trt_calib_mode, cpu_threads,
                    enable_mkldnn)

        else:
            mot_cfg = self.cfg['MOT']
            model_dir = mot_cfg['model_dir']
            tracker_config = mot_cfg['tracker_config']
            batch_size = mot_cfg['batch_size']
            self.mot_predictor = SDE_Detector(
331 332 333 334 335 336 337 338 339 340 341 342 343 344
                model_dir,
                tracker_config,
                device,
                run_mode,
                batch_size,
                trt_min_shape,
                trt_max_shape,
                trt_opt_shape,
                trt_calib_mode,
                cpu_threads,
                enable_mkldnn,
                draw_center_traj=draw_center_traj,
                secs_interval=secs_interval,
                do_entrance_counting=do_entrance_counting)
345 346 347 348 349 350 351 352 353
            if self.with_attr:
                attr_cfg = self.cfg['ATTR']
                model_dir = attr_cfg['model_dir']
                batch_size = attr_cfg['batch_size']
                self.attr_predictor = AttrDetector(
                    model_dir, device, run_mode, batch_size, trt_min_shape,
                    trt_max_shape, trt_opt_shape, trt_calib_mode, cpu_threads,
                    enable_mkldnn)
            if self.with_action:
J
JYChen 已提交
354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375
                kpt_cfg = self.cfg['KPT']
                kpt_model_dir = kpt_cfg['model_dir']
                kpt_batch_size = kpt_cfg['batch_size']
                action_cfg = self.cfg['ACTION']
                action_model_dir = action_cfg['model_dir']
                action_batch_size = action_cfg['batch_size']
                action_frames = action_cfg['max_frames']
                display_frames = action_cfg['display_frames']
                self.coord_size = action_cfg['coord_size']

                self.kpt_predictor = KeyPointDetector(
                    kpt_model_dir,
                    device,
                    run_mode,
                    kpt_batch_size,
                    trt_min_shape,
                    trt_max_shape,
                    trt_opt_shape,
                    trt_calib_mode,
                    cpu_threads,
                    enable_mkldnn,
                    use_dark=False)
Z
zhiboniu 已提交
376
                self.kpt_buff = KeyPointBuff(action_frames)
J
JYChen 已提交
377 378 379 380 381 382 383 384 385 386 387 388 389 390

                self.action_predictor = ActionRecognizer(
                    action_model_dir,
                    device,
                    run_mode,
                    action_batch_size,
                    trt_min_shape,
                    trt_max_shape,
                    trt_opt_shape,
                    trt_calib_mode,
                    cpu_threads,
                    enable_mkldnn,
                    window_size=action_frames)

Z
zhiboniu 已提交
391 392 393 394 395 396 397 398 399 400
                self.action_visual_helper = ActionVisualHelper(display_frames)

        if self.with_mtmct:
            reid_cfg = self.cfg['REID']
            model_dir = reid_cfg['model_dir']
            batch_size = reid_cfg['batch_size']
            self.reid_predictor = ReID(model_dir, device, run_mode, batch_size,
                                       trt_min_shape, trt_max_shape,
                                       trt_opt_shape, trt_calib_mode,
                                       cpu_threads, enable_mkldnn)
401

402 403 404
    def set_file_name(self, path):
        self.file_name = os.path.split(path)[-1]

405
    def get_result(self):
Z
zhiboniu 已提交
406
        return self.collector.get_res()
407 408 409 410 411 412

    def run(self, input):
        if self.is_video:
            self.predict_video(input)
        else:
            self.predict_image(input)
413
        self.pipe_timer.info()
414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431

    def predict_image(self, input):
        # det
        # det -> attr
        batch_loop_cnt = math.ceil(
            float(len(input)) / self.det_predictor.batch_size)
        for i in range(batch_loop_cnt):
            start_index = i * self.det_predictor.batch_size
            end_index = min((i + 1) * self.det_predictor.batch_size, len(input))
            batch_file = input[start_index:end_index]
            batch_input = [decode_image(f, {})[0] for f in batch_file]

            if i > self.warmup_frame:
                self.pipe_timer.total_time.start()
                self.pipe_timer.module_time['det'].start()
            # det output format: class, score, xmin, ymin, xmax, ymax
            det_res = self.det_predictor.predict_image(
                batch_input, visual=False)
432 433
            det_res = self.det_predictor.filter_box(det_res,
                                                    self.cfg['crop_thresh'])
434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462
            if i > self.warmup_frame:
                self.pipe_timer.module_time['det'].end()
            self.pipeline_res.update(det_res, 'det')

            if self.with_attr:
                crop_inputs = crop_image_with_det(batch_input, det_res)
                attr_res_list = []

                if i > self.warmup_frame:
                    self.pipe_timer.module_time['attr'].start()

                for crop_input in crop_inputs:
                    attr_res = self.attr_predictor.predict_image(
                        crop_input, visual=False)
                    attr_res_list.extend(attr_res['output'])

                if i > self.warmup_frame:
                    self.pipe_timer.module_time['attr'].end()

                attr_res = {'output': attr_res_list}
                self.pipeline_res.update(attr_res, 'attr')

            self.pipe_timer.img_num += len(batch_input)
            if i > self.warmup_frame:
                self.pipe_timer.total_time.end()

            if self.cfg['visual']:
                self.visualize_image(batch_file, batch_input, self.pipeline_res)

Z
zhiboniu 已提交
463
    def predict_video(self, video_file):
464 465 466
        # mot
        # mot -> attr
        # mot -> pose -> action
Z
zhiboniu 已提交
467
        capture = cv2.VideoCapture(video_file)
468
        video_out_name = 'output.mp4' if self.file_name is None else self.file_name
469 470 471 472 473 474

        # Get Video info : resolution, fps, frame count
        width = int(capture.get(cv2.CAP_PROP_FRAME_WIDTH))
        height = int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT))
        fps = int(capture.get(cv2.CAP_PROP_FPS))
        frame_count = int(capture.get(cv2.CAP_PROP_FRAME_COUNT))
475
        print("video fps: %d, frame_count: %d" % (fps, frame_count))
476 477 478 479 480 481 482

        if not os.path.exists(self.output_dir):
            os.makedirs(self.output_dir)
        out_path = os.path.join(self.output_dir, video_out_name)
        fourcc = cv2.VideoWriter_fourcc(* 'mp4v')
        writer = cv2.VideoWriter(out_path, fourcc, fps, (width, height))
        frame_id = 0
483 484 485 486 487 488 489 490 491 492 493 494 495

        entrance, records, center_traj = None, None, None
        if self.draw_center_traj:
            center_traj = [{}]
        id_set = set()
        interval_id_set = set()
        in_id_list = list()
        out_id_list = list()
        prev_center = dict()
        records = list()
        entrance = [0, height / 2., width, height / 2.]
        video_fps = fps

496 497 498 499 500 501 502 503 504 505
        while (1):
            if frame_id % 10 == 0:
                print('frame id: ', frame_id)
            ret, frame = capture.read()
            if not ret:
                break

            if frame_id > self.warmup_frame:
                self.pipe_timer.total_time.start()
                self.pipe_timer.module_time['mot'].start()
Z
zhiboniu 已提交
506 507
            res = self.mot_predictor.predict_image(
                [copy.deepcopy(frame)], visual=False)
508 509 510 511 512 513 514

            if frame_id > self.warmup_frame:
                self.pipe_timer.module_time['mot'].end()

            # mot output format: id, class, score, xmin, ymin, xmax, ymax
            mot_res = parse_mot_res(res)

515 516 517 518 519 520 521 522 523 524
            # flow_statistic only support single class MOT
            boxes, scores, ids = res[0]  # batch size = 1 in MOT
            mot_result = (frame_id + 1, boxes[0], scores[0],
                          ids[0])  # single class
            statistic = flow_statistic(
                mot_result, self.secs_interval, self.do_entrance_counting,
                video_fps, entrance, id_set, interval_id_set, in_id_list,
                out_id_list, prev_center, records)
            records = statistic['records']

525 526 527
            # nothing detected
            if len(mot_res['boxes']) == 0:
                frame_id += 1
528 529 530
                if frame_id > self.warmup_frame:
                    self.pipe_timer.img_num += 1
                    self.pipe_timer.total_time.end()
531 532 533 534 535 536 537
                if self.cfg['visual']:
                    _, _, fps = self.pipe_timer.get_total_time()
                    im = self.visualize_video(frame, mot_res, frame_id,
                                              fps)  # visualize
                    writer.write(im)
                continue

538 539
            self.pipeline_res.update(mot_res, 'mot')
            if self.with_attr or self.with_action:
J
JYChen 已提交
540 541
                crop_input, new_bboxes, ori_bboxes = crop_image_with_mot(
                    frame, mot_res)
542 543 544 545 546 547 548 549 550 551 552

            if self.with_attr:
                if frame_id > self.warmup_frame:
                    self.pipe_timer.module_time['attr'].start()
                attr_res = self.attr_predictor.predict_image(
                    crop_input, visual=False)
                if frame_id > self.warmup_frame:
                    self.pipe_timer.module_time['attr'].end()
                self.pipeline_res.update(attr_res, 'attr')

            if self.with_action:
J
JYChen 已提交
553 554
                if frame_id > self.warmup_frame:
                    self.pipe_timer.module_time['kpt'].start()
J
JYChen 已提交
555 556 557 558 559 560 561 562 563
                kpt_pred = self.kpt_predictor.predict_image(
                    crop_input, visual=False)
                keypoint_vector, score_vector = translate_to_ori_images(
                    kpt_pred, np.array(new_bboxes))
                kpt_res = {}
                kpt_res['keypoint'] = [
                    keypoint_vector.tolist(), score_vector.tolist()
                ] if len(keypoint_vector) > 0 else [[], []]
                kpt_res['bbox'] = ori_bboxes
J
JYChen 已提交
564 565 566
                if frame_id > self.warmup_frame:
                    self.pipe_timer.module_time['kpt'].end()

J
JYChen 已提交
567 568
                self.pipeline_res.update(kpt_res, 'kpt')

Z
zhiboniu 已提交
569 570
                self.kpt_buff.update(kpt_res, mot_res)  # collect kpt output
                state = self.kpt_buff.get_state(
J
JYChen 已提交
571 572 573
                )  # whether frame num is enough or lost tracker

                action_res = {}
574
                if state:
J
JYChen 已提交
575 576
                    if frame_id > self.warmup_frame:
                        self.pipe_timer.module_time['action'].start()
Z
zhiboniu 已提交
577
                    collected_keypoint = self.kpt_buff.get_collected_keypoint(
J
JYChen 已提交
578 579 580 581 582
                    )  # reoragnize kpt output with ID
                    action_input = parse_mot_keypoint(collected_keypoint,
                                                      self.coord_size)
                    action_res = self.action_predictor.predict_skeleton_with_mot(
                        action_input)
J
JYChen 已提交
583 584
                    if frame_id > self.warmup_frame:
                        self.pipe_timer.module_time['action'].end()
J
JYChen 已提交
585 586 587
                    self.pipeline_res.update(action_res, 'action')

                if self.cfg['visual']:
Z
zhiboniu 已提交
588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607
                    self.action_visual_helper.update(action_res)

            if self.with_mtmct:
                crop_input, img_qualities, rects = self.reid_predictor.crop_image_with_mot(
                    frame, mot_res)
                if frame_id > self.warmup_frame:
                    self.pipe_timer.module_time['reid'].start()
                reid_res = self.reid_predictor.predict_batch(crop_input)

                if frame_id > self.warmup_frame:
                    self.pipe_timer.module_time['reid'].end()

                reid_res_dict = {
                    'features': reid_res,
                    "qualities": img_qualities,
                    "rects": rects
                }
                self.pipeline_res.update(reid_res_dict, 'reid')

            self.collector.append(frame_id, self.pipeline_res)
608 609 610 611 612 613 614

            if frame_id > self.warmup_frame:
                self.pipe_timer.img_num += 1
                self.pipe_timer.total_time.end()
            frame_id += 1

            if self.cfg['visual']:
615 616
                _, _, fps = self.pipe_timer.get_total_time()
                im = self.visualize_video(frame, self.pipeline_res, frame_id,
617 618
                                          fps, entrance, records,
                                          center_traj)  # visualize
619 620 621 622 623
                writer.write(im)

        writer.release()
        print('save result to {}'.format(out_path))

624 625 626 627 628 629 630 631
    def visualize_video(self,
                        image,
                        result,
                        frame_id,
                        fps,
                        entrance=None,
                        records=None,
                        center_traj=None):
Z
zhiboniu 已提交
632
        mot_res = copy.deepcopy(result.get('mot'))
633 634
        if mot_res is not None:
            ids = mot_res['boxes'][:, 0]
W
wangguanzhong 已提交
635
            scores = mot_res['boxes'][:, 2]
636 637 638 639 640 641
            boxes = mot_res['boxes'][:, 3:]
            boxes[:, 2] = boxes[:, 2] - boxes[:, 0]
            boxes[:, 3] = boxes[:, 3] - boxes[:, 1]
        else:
            boxes = np.zeros([0, 4])
            ids = np.zeros([0])
W
wangguanzhong 已提交
642
            scores = np.zeros([0])
643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664

        # single class, still need to be defaultdict type for ploting
        num_classes = 1
        online_tlwhs = defaultdict(list)
        online_scores = defaultdict(list)
        online_ids = defaultdict(list)
        online_tlwhs[0] = boxes
        online_scores[0] = scores
        online_ids[0] = ids

        image = plot_tracking_dict(
            image,
            num_classes,
            online_tlwhs,
            online_ids,
            online_scores,
            frame_id=frame_id,
            fps=fps,
            do_entrance_counting=self.do_entrance_counting,
            entrance=entrance,
            records=records,
            center_traj=center_traj)
665 666 667 668 669 670 671 672

        attr_res = result.get('attr')
        if attr_res is not None:
            boxes = mot_res['boxes'][:, 1:]
            attr_res = attr_res['output']
            image = visualize_attr(image, attr_res, boxes)
            image = np.array(image)

J
JYChen 已提交
673 674 675 676 677 678 679 680 681 682 683
        kpt_res = result.get('kpt')
        if kpt_res is not None:
            image = visualize_pose(
                image,
                kpt_res,
                visual_thresh=self.cfg['kpt_thresh'],
                returnimg=True)

        action_res = result.get('action')
        if action_res is not None:
            image = visualize_action(image, mot_res['boxes'],
Z
zhiboniu 已提交
684
                                     self.action_visual_helper, "Falling")
J
JYChen 已提交
685

686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702
        return image

    def visualize_image(self, im_files, images, result):
        start_idx, boxes_num_i = 0, 0
        det_res = result.get('det')
        attr_res = result.get('attr')
        for i, (im_file, im) in enumerate(zip(im_files, images)):
            if det_res is not None:
                det_res_i = {}
                boxes_num_i = det_res['boxes_num'][i]
                det_res_i['boxes'] = det_res['boxes'][start_idx:start_idx +
                                                      boxes_num_i, :]
                im = visualize_box_mask(
                    im,
                    det_res_i,
                    labels=['person'],
                    threshold=self.cfg['crop_thresh'])
703 704
                im = np.ascontiguousarray(np.copy(im))
                im = cv2.cvtColor(im, cv2.COLOR_RGB2BGR)
705 706 707 708 709 710 711 712
            if attr_res is not None:
                attr_res_i = attr_res['output'][start_idx:start_idx +
                                                boxes_num_i]
                im = visualize_attr(im, attr_res_i, det_res_i['boxes'])
            img_name = os.path.split(im_file)[-1]
            if not os.path.exists(self.output_dir):
                os.makedirs(self.output_dir)
            out_path = os.path.join(self.output_dir, img_name)
713
            cv2.imwrite(out_path, im)
714 715 716 717 718 719 720 721 722
            print("save result to: " + out_path)
            start_idx += boxes_num_i


def main():
    cfg = merge_cfg(FLAGS)
    print_arguments(cfg)
    pipeline = Pipeline(
        cfg, FLAGS.image_file, FLAGS.image_dir, FLAGS.video_file,
Z
zhiboniu 已提交
723 724 725
        FLAGS.video_dir, FLAGS.camera_id, FLAGS.enable_attr,
        FLAGS.enable_action, FLAGS.device, FLAGS.run_mode, FLAGS.trt_min_shape,
        FLAGS.trt_max_shape, FLAGS.trt_opt_shape, FLAGS.trt_calib_mode,
726 727
        FLAGS.cpu_threads, FLAGS.enable_mkldnn, FLAGS.output_dir,
        FLAGS.draw_center_traj, FLAGS.secs_interval, FLAGS.do_entrance_counting)
728 729 730 731 732 733 734 735 736 737 738 739 740

    pipeline.run()


if __name__ == '__main__':
    paddle.enable_static()
    parser = argsparser()
    FLAGS = parser.parse_args()
    FLAGS.device = FLAGS.device.upper()
    assert FLAGS.device in ['CPU', 'GPU', 'XPU'
                            ], "device should be CPU, GPU or XPU"

    main()