mobilenet_v3.py 19.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16 17 18 19 20
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

from collections import OrderedDict

G
Guanghua Yu 已提交
21 22 23 24
import paddle.fluid as fluid
from paddle.fluid.param_attr import ParamAttr
from paddle.fluid.regularizer import L2Decay

25 26 27 28
import math
import numpy as np
from collections import OrderedDict

G
Guanghua Yu 已提交
29
from ppdet.core.workspace import register
30
from numbers import Integral
G
Guanghua Yu 已提交
31

32
__all__ = ['MobileNetV3', 'MobileNetV3RCNN']
G
Guanghua Yu 已提交
33 34 35


@register
36
class MobileNetV3(object):
37 38 39 40 41 42 43 44
    """
    MobileNet v3, see https://arxiv.org/abs/1905.02244
    Args:
	scale (float): scaling factor for convolution groups proportion of mobilenet_v3.
        model_name (str): There are two modes, small and large.
        norm_type (str): normalization type, 'bn' and 'sync_bn' are supported.
        norm_decay (float): weight decay for normalization layer weights.
        conv_decay (float): weight decay for convolution layer weights.
45
        feature_maps (list): index of stages whose feature maps are returned.
46
        extra_block_filters (list): number of filter for each extra block.
47
        lr_mult_list (list): learning rate ratio of different blocks, lower learning rate ratio
48
                             is need for pretrained model got using distillation(default as
49
                             [1.0, 1.0, 1.0, 1.0, 1.0]).
50 51 52
        freeze_norm (bool): freeze normalization layers.
        multiplier (float): The multiplier by which to reduce the convolution expansion and
                            number of channels.
53 54 55
    """
    __shared__ = ['norm_type']

56 57 58 59 60 61 62 63 64 65
    def __init__(
            self,
            scale=1.0,
            model_name='small',
            feature_maps=[5, 6, 7, 8, 9, 10],
            conv_decay=0.0,
            norm_type='bn',
            norm_decay=0.0,
            extra_block_filters=[[256, 512], [128, 256], [128, 256], [64, 128]],
            lr_mult_list=[1.0, 1.0, 1.0, 1.0, 1.0],
66 67
            freeze_norm=False,
            multiplier=1.0):
68 69 70
        if isinstance(feature_maps, Integral):
            feature_maps = [feature_maps]

W
wangguanzhong 已提交
71 72 73
        if norm_type == 'sync_bn' and freeze_norm:
            raise ValueError(
                "The norm_type should not be sync_bn when freeze_norm is True")
G
Guanghua Yu 已提交
74 75
        self.scale = scale
        self.model_name = model_name
76
        self.feature_maps = feature_maps
G
Guanghua Yu 已提交
77 78
        self.extra_block_filters = extra_block_filters
        self.conv_decay = conv_decay
K
Kaipeng Deng 已提交
79
        self.norm_decay = norm_decay
G
Guanghua Yu 已提交
80 81
        self.inplanes = 16
        self.end_points = []
82
        self.block_stride = 0
83 84 85 86 87 88

        self.lr_mult_list = lr_mult_list
        self.freeze_norm = freeze_norm
        self.norm_type = norm_type
        self.curr_stage = 0

G
Guanghua Yu 已提交
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
        if model_name == "large":
            self.cfg = [
                # kernel_size, expand, channel, se_block, act_mode, stride
                [3, 16, 16, False, 'relu', 1],
                [3, 64, 24, False, 'relu', 2],
                [3, 72, 24, False, 'relu', 1],
                [5, 72, 40, True, 'relu', 2],
                [5, 120, 40, True, 'relu', 1],
                [5, 120, 40, True, 'relu', 1],
                [3, 240, 80, False, 'hard_swish', 2],
                [3, 200, 80, False, 'hard_swish', 1],
                [3, 184, 80, False, 'hard_swish', 1],
                [3, 184, 80, False, 'hard_swish', 1],
                [3, 480, 112, True, 'hard_swish', 1],
                [3, 672, 112, True, 'hard_swish', 1],
                [5, 672, 160, True, 'hard_swish', 2],
                [5, 960, 160, True, 'hard_swish', 1],
                [5, 960, 160, True, 'hard_swish', 1],
            ]
108 109
            self.cls_ch_squeeze = 960
            self.cls_ch_expand = 1280
G
Guanghua Yu 已提交
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
        elif model_name == "small":
            self.cfg = [
                # kernel_size, expand, channel, se_block, act_mode, stride
                [3, 16, 16, True, 'relu', 2],
                [3, 72, 24, False, 'relu', 2],
                [3, 88, 24, False, 'relu', 1],
                [5, 96, 40, True, 'hard_swish', 2],
                [5, 240, 40, True, 'hard_swish', 1],
                [5, 240, 40, True, 'hard_swish', 1],
                [5, 120, 48, True, 'hard_swish', 1],
                [5, 144, 48, True, 'hard_swish', 1],
                [5, 288, 96, True, 'hard_swish', 2],
                [5, 576, 96, True, 'hard_swish', 1],
                [5, 576, 96, True, 'hard_swish', 1],
            ]
125 126
            self.cls_ch_squeeze = 576
            self.cls_ch_expand = 1280
G
Guanghua Yu 已提交
127 128 129
        else:
            raise NotImplementedError

130 131 132 133 134 135 136
        if multiplier != 1.0:
            self.cfg[-3][2] = int(self.cfg[-3][2] * multiplier)
            self.cfg[-2][1] = int(self.cfg[-2][1] * multiplier)
            self.cfg[-2][2] = int(self.cfg[-2][2] * multiplier)
            self.cfg[-1][1] = int(self.cfg[-1][1] * multiplier)
            self.cfg[-1][2] = int(self.cfg[-1][2] * multiplier)

G
Guanghua Yu 已提交
137 138 139 140 141 142 143 144 145 146 147
    def _conv_bn_layer(self,
                       input,
                       filter_size,
                       num_filters,
                       stride,
                       padding,
                       num_groups=1,
                       if_act=True,
                       act=None,
                       name=None,
                       use_cudnn=True):
148 149 150
        lr_idx = self.curr_stage // 3
        lr_idx = min(lr_idx, len(self.lr_mult_list) - 1)
        lr_mult = self.lr_mult_list[lr_idx]
G
Guanghua Yu 已提交
151 152 153 154 155 156 157 158 159
        conv = fluid.layers.conv2d(
            input=input,
            num_filters=num_filters,
            filter_size=filter_size,
            stride=stride,
            padding=padding,
            groups=num_groups,
            act=None,
            use_cudnn=use_cudnn,
160 161 162 163
            param_attr=ParamAttr(
                name=name + '_weights',
                learning_rate=lr_mult,
                regularizer=L2Decay(self.conv_decay)),
G
Guanghua Yu 已提交
164 165
            bias_attr=False)
        bn_name = name + '_bn'
166 167
        bn = self._bn(conv, bn_name=bn_name)

G
Guanghua Yu 已提交
168 169 170 171 172 173 174 175 176
        if if_act:
            if act == 'relu':
                bn = fluid.layers.relu(bn)
            elif act == 'hard_swish':
                bn = self._hard_swish(bn)
            elif act == 'relu6':
                bn = fluid.layers.relu6(bn)
        return bn

177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
    def _bn(self, input, act=None, bn_name=None):
        lr_idx = self.curr_stage // 3
        lr_idx = min(lr_idx, len(self.lr_mult_list) - 1)
        lr_mult = self.lr_mult_list[lr_idx]
        norm_lr = 0. if self.freeze_norm else lr_mult
        norm_decay = self.norm_decay
        pattr = ParamAttr(
            name=bn_name + '_scale',
            learning_rate=norm_lr,
            regularizer=L2Decay(norm_decay))
        battr = ParamAttr(
            name=bn_name + '_offset',
            learning_rate=norm_lr,
            regularizer=L2Decay(norm_decay))

        conv = input

        if self.norm_type in ['bn', 'sync_bn']:
            global_stats = True if self.freeze_norm else False
            out = fluid.layers.batch_norm(
                input=conv,
                act=act,
                name=bn_name + '.output.1',
                param_attr=pattr,
                bias_attr=battr,
                moving_mean_name=bn_name + '_mean',
                moving_variance_name=bn_name + '_variance',
                use_global_stats=global_stats)
            scale = fluid.framework._get_var(pattr.name)
            bias = fluid.framework._get_var(battr.name)
        elif self.norm_type == 'affine_channel':
            scale = fluid.layers.create_parameter(
                shape=[conv.shape[1]],
                dtype=conv.dtype,
                attr=pattr,
                default_initializer=fluid.initializer.Constant(1.))
            bias = fluid.layers.create_parameter(
                shape=[conv.shape[1]],
                dtype=conv.dtype,
                attr=battr,
                default_initializer=fluid.initializer.Constant(0.))
            out = fluid.layers.affine_channel(
                x=conv, scale=scale, bias=bias, act=act)

        if self.freeze_norm:
            scale.stop_gradient = True
            bias.stop_gradient = True

        return out

G
Guanghua Yu 已提交
227 228 229 230
    def _hard_swish(self, x):
        return x * fluid.layers.relu6(x + 3) / 6.

    def _se_block(self, input, num_out_filter, ratio=4, name=None):
231 232 233 234
        lr_idx = self.curr_stage // 3
        lr_idx = min(lr_idx, len(self.lr_mult_list) - 1)
        lr_mult = self.lr_mult_list[lr_idx]

G
Guanghua Yu 已提交
235 236 237 238 239 240 241 242
        num_mid_filter = int(num_out_filter // ratio)
        pool = fluid.layers.pool2d(
            input=input, pool_type='avg', global_pooling=True, use_cudnn=False)
        conv1 = fluid.layers.conv2d(
            input=pool,
            filter_size=1,
            num_filters=num_mid_filter,
            act='relu',
243 244 245 246 247 248 249 250
            param_attr=ParamAttr(
                name=name + '_1_weights',
                learning_rate=lr_mult,
                regularizer=L2Decay(self.conv_decay)),
            bias_attr=ParamAttr(
                name=name + '_1_offset',
                learning_rate=lr_mult,
                regularizer=L2Decay(self.conv_decay)))
G
Guanghua Yu 已提交
251 252 253 254 255
        conv2 = fluid.layers.conv2d(
            input=conv1,
            filter_size=1,
            num_filters=num_out_filter,
            act='hard_sigmoid',
256 257 258 259 260 261 262 263
            param_attr=ParamAttr(
                name=name + '_2_weights',
                learning_rate=lr_mult,
                regularizer=L2Decay(self.conv_decay)),
            bias_attr=ParamAttr(
                name=name + '_2_offset',
                learning_rate=lr_mult,
                regularizer=L2Decay(self.conv_decay)))
G
Guanghua Yu 已提交
264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287

        scale = fluid.layers.elementwise_mul(x=input, y=conv2, axis=0)
        return scale

    def _residual_unit(self,
                       input,
                       num_in_filter,
                       num_mid_filter,
                       num_out_filter,
                       stride,
                       filter_size,
                       act=None,
                       use_se=False,
                       name=None):
        input_data = input
        conv0 = self._conv_bn_layer(
            input=input,
            filter_size=1,
            num_filters=num_mid_filter,
            stride=1,
            padding=0,
            if_act=True,
            act=act,
            name=name + '_expand')
288

289 290 291 292 293
        if self.block_stride == 4 and stride == 2:
            self.block_stride += 1
            if self.block_stride in self.feature_maps:
                self.end_points.append(conv0)

294 295 296 297 298 299 300 301 302 303 304 305
        with fluid.name_scope('res_conv1'):
            conv1 = self._conv_bn_layer(
                input=conv0,
                filter_size=filter_size,
                num_filters=num_mid_filter,
                stride=stride,
                padding=int((filter_size - 1) // 2),
                if_act=True,
                act=act,
                num_groups=num_mid_filter,
                use_cudnn=False,
                name=name + '_depthwise')
G
Guanghua Yu 已提交
306 307

        if use_se:
308 309 310 311 312
            with fluid.name_scope('se_block'):
                conv1 = self._se_block(
                    input=conv1,
                    num_out_filter=num_mid_filter,
                    name=name + '_se')
G
Guanghua Yu 已提交
313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360

        conv2 = self._conv_bn_layer(
            input=conv1,
            filter_size=1,
            num_filters=num_out_filter,
            stride=1,
            padding=0,
            if_act=False,
            name=name + '_linear')
        if num_in_filter != num_out_filter or stride != 1:
            return conv2
        else:
            return fluid.layers.elementwise_add(x=input_data, y=conv2, act=None)

    def _extra_block_dw(self,
                        input,
                        num_filters1,
                        num_filters2,
                        stride,
                        name=None):
        pointwise_conv = self._conv_bn_layer(
            input=input,
            filter_size=1,
            num_filters=int(num_filters1),
            stride=1,
            padding="SAME",
            act='relu6',
            name=name + "_extra1")
        depthwise_conv = self._conv_bn_layer(
            input=pointwise_conv,
            filter_size=3,
            num_filters=int(num_filters2),
            stride=stride,
            padding="SAME",
            num_groups=int(num_filters1),
            act='relu6',
            use_cudnn=False,
            name=name + "_extra2_dw")
        normal_conv = self._conv_bn_layer(
            input=depthwise_conv,
            filter_size=1,
            num_filters=int(num_filters2),
            stride=1,
            padding="SAME",
            act='relu6',
            name=name + "_extra2_sep")
        return normal_conv

361 362 363 364 365 366 367 368
    def _make_divisible(self, v, divisor=8, min_value=None):
        if min_value is None:
            min_value = divisor
        new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
        if new_v < 0.9 * v:
            new_v += divisor
        return new_v

G
Guanghua Yu 已提交
369 370 371 372 373 374 375 376 377 378
    def __call__(self, input):
        scale = self.scale
        inplanes = self.inplanes
        cfg = self.cfg
        blocks = []

        #conv1
        conv = self._conv_bn_layer(
            input,
            filter_size=3,
379
            num_filters=self._make_divisible(inplanes * scale),
G
Guanghua Yu 已提交
380 381 382 383 384 385 386
            stride=2,
            padding=1,
            num_groups=1,
            if_act=True,
            act='hard_swish',
            name='conv1')
        i = 0
387
        inplanes = self._make_divisible(inplanes * scale)
G
Guanghua Yu 已提交
388
        for layer_cfg in cfg:
K
Kaipeng Deng 已提交
389
            if layer_cfg[5] == 2:
390 391 392 393
                self.block_stride += 1
                if self.block_stride in self.feature_maps:
                    self.end_points.append(conv)

G
Guanghua Yu 已提交
394 395 396
            conv = self._residual_unit(
                input=conv,
                num_in_filter=inplanes,
397 398
                num_mid_filter=self._make_divisible(scale * layer_cfg[1]),
                num_out_filter=self._make_divisible(scale * layer_cfg[2]),
G
Guanghua Yu 已提交
399 400 401 402 403
                act=layer_cfg[4],
                stride=layer_cfg[5],
                filter_size=layer_cfg[0],
                use_se=layer_cfg[3],
                name='conv' + str(i + 2))
404
            inplanes = self._make_divisible(scale * layer_cfg[2])
G
Guanghua Yu 已提交
405
            i += 1
406
            self.curr_stage += 1
407 408 409
        self.block_stride += 1
        if self.block_stride in self.feature_maps:
            self.end_points.append(conv)
G
Guanghua Yu 已提交
410 411

        # extra block
412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
        # check whether conv_extra is needed
        if self.block_stride < max(self.feature_maps):
            conv_extra = self._conv_bn_layer(
                conv,
                filter_size=1,
                num_filters=self._make_divisible(scale * cfg[-1][1]),
                stride=1,
                padding="SAME",
                num_groups=1,
                if_act=True,
                act='hard_swish',
                name='conv' + str(i + 2))
            self.block_stride += 1
            if self.block_stride in self.feature_maps:
                self.end_points.append(conv_extra)
            i += 1
G
Guanghua Yu 已提交
428 429 430 431
        for block_filter in self.extra_block_filters:
            conv_extra = self._extra_block_dw(conv_extra, block_filter[0],
                                              block_filter[1], 2,
                                              'conv' + str(i + 2))
432 433 434
            self.block_stride += 1
            if self.block_stride in self.feature_maps:
                self.end_points.append(conv_extra)
G
Guanghua Yu 已提交
435 436
            i += 1

437 438
        return OrderedDict([('mbv3_{}'.format(idx), feat)
                            for idx, feat in enumerate(self.end_points)])
439 440 441 442


@register
class MobileNetV3RCNN(MobileNetV3):
W
wangguanzhong 已提交
443 444 445 446 447 448 449 450 451
    def __init__(self,
                 scale=1.0,
                 model_name='large',
                 conv_decay=0.0,
                 norm_type='bn',
                 norm_decay=0.0,
                 freeze_norm=True,
                 feature_maps=[2, 3, 4, 5],
                 lr_mult_list=[1.0, 1.0, 1.0, 1.0, 1.0]):
452 453 454 455 456 457 458
        super(MobileNetV3RCNN, self).__init__(
            scale=scale,
            model_name=model_name,
            conv_decay=conv_decay,
            norm_type=norm_type,
            norm_decay=norm_decay,
            lr_mult_list=lr_mult_list,
W
wangguanzhong 已提交
459 460
            feature_maps=feature_maps,
            freeze_norm=freeze_norm)
461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567
        self.curr_stage = 0
        self.block_stride = 1

    def _residual_unit(self,
                       input,
                       num_in_filter,
                       num_mid_filter,
                       num_out_filter,
                       stride,
                       filter_size,
                       act=None,
                       use_se=False,
                       name=None):
        input_data = input
        conv0 = self._conv_bn_layer(
            input=input,
            filter_size=1,
            num_filters=num_mid_filter,
            stride=1,
            padding=0,
            if_act=True,
            act=act,
            name=name + '_expand')

        feature_level = int(np.log2(self.block_stride))
        if feature_level in self.feature_maps and stride == 2:
            self.end_points.append(conv0)

        conv1 = self._conv_bn_layer(
            input=conv0,
            filter_size=filter_size,
            num_filters=num_mid_filter,
            stride=stride,
            padding=int((filter_size - 1) // 2),
            if_act=True,
            act=act,
            num_groups=num_mid_filter,
            use_cudnn=False,
            name=name + '_depthwise')

        if use_se:
            conv1 = self._se_block(
                input=conv1, num_out_filter=num_mid_filter, name=name + '_se')

        conv2 = self._conv_bn_layer(
            input=conv1,
            filter_size=1,
            num_filters=num_out_filter,
            stride=1,
            padding=0,
            if_act=False,
            name=name + '_linear')
        if num_in_filter != num_out_filter or stride != 1:
            return conv2
        else:
            return fluid.layers.elementwise_add(x=input_data, y=conv2, act=None)

    def __call__(self, input):
        scale = self.scale
        inplanes = self.inplanes
        cfg = self.cfg
        #conv1
        conv = self._conv_bn_layer(
            input,
            filter_size=3,
            num_filters=self._make_divisible(inplanes * scale),
            stride=2,
            padding=1,
            num_groups=1,
            if_act=True,
            act='hard_swish',
            name='conv1')
        i = 0
        inplanes = self._make_divisible(inplanes * scale)
        for layer_cfg in cfg:
            self.block_stride *= layer_cfg[5]
            conv = self._residual_unit(
                input=conv,
                num_in_filter=inplanes,
                num_mid_filter=self._make_divisible(scale * layer_cfg[1]),
                num_out_filter=self._make_divisible(scale * layer_cfg[2]),
                act=layer_cfg[4],
                stride=layer_cfg[5],
                filter_size=layer_cfg[0],
                use_se=layer_cfg[3],
                name='conv' + str(i + 2))
            inplanes = self._make_divisible(scale * layer_cfg[2])
            i += 1
            self.curr_stage += 1

        if np.max(self.feature_maps) >= 5:
            conv = self._conv_bn_layer(
                input=conv,
                filter_size=1,
                num_filters=self._make_divisible(scale * cfg[-1][1]),
                stride=1,
                padding=0,
                num_groups=1,
                if_act=True,
                act='hard_swish',
                name='conv_last')
            self.end_points.append(conv)
            i += 1

        res = OrderedDict([('mv3_{}'.format(idx), self.end_points[idx])
                           for idx, feat_idx in enumerate(self.feature_maps)])
        return res