Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
c06f1ea0
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
1 年多 前同步成功
通知
696
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
c06f1ea0
编写于
4月 04, 2020
作者:
G
Guanghua Yu
提交者:
GitHub
4月 04, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add mobilenetvs & ssdlite (#439)
上级
2866aa3d
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
433 addition
and
2 deletion
+433
-2
ppdet/modeling/backbones/__init__.py
ppdet/modeling/backbones/__init__.py
+2
-0
ppdet/modeling/backbones/mobilenet_v3.py
ppdet/modeling/backbones/mobilenet_v3.py
+277
-0
ppdet/modeling/ops.py
ppdet/modeling/ops.py
+154
-2
未找到文件。
ppdet/modeling/backbones/__init__.py
浏览文件 @
c06f1ea0
...
...
@@ -18,6 +18,7 @@ from . import resnet
from
.
import
resnext
from
.
import
darknet
from
.
import
mobilenet
from
.
import
mobilenet_v3
from
.
import
senet
from
.
import
fpn
from
.
import
vgg
...
...
@@ -33,6 +34,7 @@ from .resnet import *
from
.resnext
import
*
from
.darknet
import
*
from
.mobilenet
import
*
from
.mobilenet_v3
import
*
from
.senet
import
*
from
.fpn
import
*
from
.vgg
import
*
...
...
ppdet/modeling/backbones/mobilenet_v3.py
0 → 100644
浏览文件 @
c06f1ea0
import
paddle.fluid
as
fluid
from
paddle.fluid.param_attr
import
ParamAttr
from
paddle.fluid.regularizer
import
L2Decay
from
ppdet.core.workspace
import
register
import
math
__all__
=
[
'MobileNetV3'
]
@
register
class
MobileNetV3
():
def
__init__
(
self
,
scale
=
1.0
,
model_name
=
'small'
,
with_extra_blocks
=
False
,
conv_decay
=
0.0
,
bn_decay
=
0.0
,
extra_block_filters
=
[[
256
,
512
],
[
128
,
256
],
[
128
,
256
],
[
64
,
128
]]):
self
.
scale
=
scale
self
.
model_name
=
model_name
self
.
with_extra_blocks
=
with_extra_blocks
self
.
extra_block_filters
=
extra_block_filters
self
.
conv_decay
=
conv_decay
self
.
bn_decay
=
bn_decay
self
.
inplanes
=
16
self
.
end_points
=
[]
self
.
block_stride
=
1
if
model_name
==
"large"
:
self
.
cfg
=
[
# kernel_size, expand, channel, se_block, act_mode, stride
[
3
,
16
,
16
,
False
,
'relu'
,
1
],
[
3
,
64
,
24
,
False
,
'relu'
,
2
],
[
3
,
72
,
24
,
False
,
'relu'
,
1
],
[
5
,
72
,
40
,
True
,
'relu'
,
2
],
[
5
,
120
,
40
,
True
,
'relu'
,
1
],
[
5
,
120
,
40
,
True
,
'relu'
,
1
],
[
3
,
240
,
80
,
False
,
'hard_swish'
,
2
],
[
3
,
200
,
80
,
False
,
'hard_swish'
,
1
],
[
3
,
184
,
80
,
False
,
'hard_swish'
,
1
],
[
3
,
184
,
80
,
False
,
'hard_swish'
,
1
],
[
3
,
480
,
112
,
True
,
'hard_swish'
,
1
],
[
3
,
672
,
112
,
True
,
'hard_swish'
,
1
],
[
5
,
672
,
160
,
True
,
'hard_swish'
,
2
],
[
5
,
960
,
160
,
True
,
'hard_swish'
,
1
],
[
5
,
960
,
160
,
True
,
'hard_swish'
,
1
],
]
elif
model_name
==
"small"
:
self
.
cfg
=
[
# kernel_size, expand, channel, se_block, act_mode, stride
[
3
,
16
,
16
,
True
,
'relu'
,
2
],
[
3
,
72
,
24
,
False
,
'relu'
,
2
],
[
3
,
88
,
24
,
False
,
'relu'
,
1
],
[
5
,
96
,
40
,
True
,
'hard_swish'
,
2
],
[
5
,
240
,
40
,
True
,
'hard_swish'
,
1
],
[
5
,
240
,
40
,
True
,
'hard_swish'
,
1
],
[
5
,
120
,
48
,
True
,
'hard_swish'
,
1
],
[
5
,
144
,
48
,
True
,
'hard_swish'
,
1
],
[
5
,
288
,
96
,
True
,
'hard_swish'
,
2
],
[
5
,
576
,
96
,
True
,
'hard_swish'
,
1
],
[
5
,
576
,
96
,
True
,
'hard_swish'
,
1
],
]
else
:
raise
NotImplementedError
def
_conv_bn_layer
(
self
,
input
,
filter_size
,
num_filters
,
stride
,
padding
,
num_groups
=
1
,
if_act
=
True
,
act
=
None
,
name
=
None
,
use_cudnn
=
True
):
conv_param_attr
=
ParamAttr
(
name
=
name
+
'_weights'
,
regularizer
=
L2Decay
(
self
.
conv_decay
))
conv
=
fluid
.
layers
.
conv2d
(
input
=
input
,
num_filters
=
num_filters
,
filter_size
=
filter_size
,
stride
=
stride
,
padding
=
padding
,
groups
=
num_groups
,
act
=
None
,
use_cudnn
=
use_cudnn
,
param_attr
=
conv_param_attr
,
bias_attr
=
False
)
bn_name
=
name
+
'_bn'
bn_param_attr
=
ParamAttr
(
name
=
bn_name
+
"_scale"
,
regularizer
=
L2Decay
(
self
.
bn_decay
))
bn_bias_attr
=
ParamAttr
(
name
=
bn_name
+
"_offset"
,
regularizer
=
L2Decay
(
self
.
bn_decay
))
bn
=
fluid
.
layers
.
batch_norm
(
input
=
conv
,
param_attr
=
bn_param_attr
,
bias_attr
=
bn_bias_attr
,
moving_mean_name
=
bn_name
+
'_mean'
,
moving_variance_name
=
bn_name
+
'_variance'
)
if
if_act
:
if
act
==
'relu'
:
bn
=
fluid
.
layers
.
relu
(
bn
)
elif
act
==
'hard_swish'
:
bn
=
self
.
_hard_swish
(
bn
)
elif
act
==
'relu6'
:
bn
=
fluid
.
layers
.
relu6
(
bn
)
return
bn
def
_hard_swish
(
self
,
x
):
return
x
*
fluid
.
layers
.
relu6
(
x
+
3
)
/
6.
def
_se_block
(
self
,
input
,
num_out_filter
,
ratio
=
4
,
name
=
None
):
num_mid_filter
=
int
(
num_out_filter
//
ratio
)
pool
=
fluid
.
layers
.
pool2d
(
input
=
input
,
pool_type
=
'avg'
,
global_pooling
=
True
,
use_cudnn
=
False
)
conv1
=
fluid
.
layers
.
conv2d
(
input
=
pool
,
filter_size
=
1
,
num_filters
=
num_mid_filter
,
act
=
'relu'
,
param_attr
=
ParamAttr
(
name
=
name
+
'_1_weights'
),
bias_attr
=
ParamAttr
(
name
=
name
+
'_1_offset'
))
conv2
=
fluid
.
layers
.
conv2d
(
input
=
conv1
,
filter_size
=
1
,
num_filters
=
num_out_filter
,
act
=
'hard_sigmoid'
,
param_attr
=
ParamAttr
(
name
=
name
+
'_2_weights'
),
bias_attr
=
ParamAttr
(
name
=
name
+
'_2_offset'
))
scale
=
fluid
.
layers
.
elementwise_mul
(
x
=
input
,
y
=
conv2
,
axis
=
0
)
return
scale
def
_residual_unit
(
self
,
input
,
num_in_filter
,
num_mid_filter
,
num_out_filter
,
stride
,
filter_size
,
act
=
None
,
use_se
=
False
,
name
=
None
):
input_data
=
input
conv0
=
self
.
_conv_bn_layer
(
input
=
input
,
filter_size
=
1
,
num_filters
=
num_mid_filter
,
stride
=
1
,
padding
=
0
,
if_act
=
True
,
act
=
act
,
name
=
name
+
'_expand'
)
if
self
.
block_stride
==
16
and
stride
==
2
:
self
.
end_points
.
append
(
conv0
)
conv1
=
self
.
_conv_bn_layer
(
input
=
conv0
,
filter_size
=
filter_size
,
num_filters
=
num_mid_filter
,
stride
=
stride
,
padding
=
int
((
filter_size
-
1
)
//
2
),
if_act
=
True
,
act
=
act
,
num_groups
=
num_mid_filter
,
use_cudnn
=
False
,
name
=
name
+
'_depthwise'
)
if
use_se
:
conv1
=
self
.
_se_block
(
input
=
conv1
,
num_out_filter
=
num_mid_filter
,
name
=
name
+
'_se'
)
conv2
=
self
.
_conv_bn_layer
(
input
=
conv1
,
filter_size
=
1
,
num_filters
=
num_out_filter
,
stride
=
1
,
padding
=
0
,
if_act
=
False
,
name
=
name
+
'_linear'
)
if
num_in_filter
!=
num_out_filter
or
stride
!=
1
:
return
conv2
else
:
return
fluid
.
layers
.
elementwise_add
(
x
=
input_data
,
y
=
conv2
,
act
=
None
)
def
_extra_block_dw
(
self
,
input
,
num_filters1
,
num_filters2
,
stride
,
name
=
None
):
pointwise_conv
=
self
.
_conv_bn_layer
(
input
=
input
,
filter_size
=
1
,
num_filters
=
int
(
num_filters1
),
stride
=
1
,
padding
=
"SAME"
,
act
=
'relu6'
,
name
=
name
+
"_extra1"
)
depthwise_conv
=
self
.
_conv_bn_layer
(
input
=
pointwise_conv
,
filter_size
=
3
,
num_filters
=
int
(
num_filters2
),
stride
=
stride
,
padding
=
"SAME"
,
num_groups
=
int
(
num_filters1
),
act
=
'relu6'
,
use_cudnn
=
False
,
name
=
name
+
"_extra2_dw"
)
normal_conv
=
self
.
_conv_bn_layer
(
input
=
depthwise_conv
,
filter_size
=
1
,
num_filters
=
int
(
num_filters2
),
stride
=
1
,
padding
=
"SAME"
,
act
=
'relu6'
,
name
=
name
+
"_extra2_sep"
)
return
normal_conv
def
__call__
(
self
,
input
):
scale
=
self
.
scale
inplanes
=
self
.
inplanes
cfg
=
self
.
cfg
blocks
=
[]
#conv1
conv
=
self
.
_conv_bn_layer
(
input
,
filter_size
=
3
,
num_filters
=
inplanes
if
scale
<=
1.0
else
int
(
inplanes
*
scale
),
stride
=
2
,
padding
=
1
,
num_groups
=
1
,
if_act
=
True
,
act
=
'hard_swish'
,
name
=
'conv1'
)
i
=
0
for
layer_cfg
in
cfg
:
self
.
block_stride
*=
layer_cfg
[
5
]
conv
=
self
.
_residual_unit
(
input
=
conv
,
num_in_filter
=
inplanes
,
num_mid_filter
=
int
(
scale
*
layer_cfg
[
1
]),
num_out_filter
=
int
(
scale
*
layer_cfg
[
2
]),
act
=
layer_cfg
[
4
],
stride
=
layer_cfg
[
5
],
filter_size
=
layer_cfg
[
0
],
use_se
=
layer_cfg
[
3
],
name
=
'conv'
+
str
(
i
+
2
))
inplanes
=
int
(
scale
*
layer_cfg
[
2
])
i
+=
1
if
not
self
.
with_extra_blocks
:
return
conv
# extra block
conv_extra
=
self
.
_conv_bn_layer
(
conv
,
filter_size
=
1
,
num_filters
=
int
(
scale
*
cfg
[
-
1
][
1
]),
stride
=
1
,
padding
=
"SAME"
,
num_groups
=
1
,
if_act
=
True
,
act
=
'hard_swish'
,
name
=
'conv'
+
str
(
i
+
2
))
self
.
end_points
.
append
(
conv_extra
)
i
+=
1
for
block_filter
in
self
.
extra_block_filters
:
conv_extra
=
self
.
_extra_block_dw
(
conv_extra
,
block_filter
[
0
],
block_filter
[
1
],
2
,
'conv'
+
str
(
i
+
2
))
self
.
end_points
.
append
(
conv_extra
)
i
+=
1
return
self
.
end_points
ppdet/modeling/ops.py
浏览文件 @
c06f1ea0
...
...
@@ -14,6 +14,8 @@
import
numpy
as
np
from
numbers
import
Integral
import
math
import
six
from
paddle
import
fluid
from
paddle.fluid.param_attr
import
ParamAttr
...
...
@@ -24,8 +26,9 @@ from ppdet.utils.bbox_utils import bbox_overlaps, box_to_delta
__all__
=
[
'AnchorGenerator'
,
'DropBlock'
,
'RPNTargetAssign'
,
'GenerateProposals'
,
'MultiClassNMS'
,
'BBoxAssigner'
,
'MaskAssigner'
,
'RoIAlign'
,
'RoIPool'
,
'MultiBoxHead'
,
'SSDOutputDecoder'
,
'RetinaTargetAssign'
,
'RetinaOutputDecoder'
,
'ConvNorm'
,
'MultiClassSoftNMS'
,
'LibraBBoxAssigner'
'MultiBoxHead'
,
'SSDLiteMultiBoxHead'
,
'SSDOutputDecoder'
,
'RetinaTargetAssign'
,
'RetinaOutputDecoder'
,
'ConvNorm'
,
'MultiClassSoftNMS'
,
'LibraBBoxAssigner'
]
...
...
@@ -1064,6 +1067,155 @@ class MultiBoxHead(object):
self
.
pad
=
pad
@
register
@
serializable
class
SSDLiteMultiBoxHead
(
object
):
def
__init__
(
self
,
min_ratio
=
20
,
max_ratio
=
90
,
base_size
=
300
,
min_sizes
=
None
,
max_sizes
=
None
,
aspect_ratios
=
[[
2.
],
[
2.
,
3.
],
[
2.
,
3.
],
[
2.
,
3.
],
[
2.
,
3.
],
[
2.
,
3.
]],
steps
=
None
,
offset
=
0.5
,
flip
=
True
,
clip
=
False
,
pad
=
0
,
conv_decay
=
0.0
):
super
(
SSDLiteMultiBoxHead
,
self
).
__init__
()
self
.
min_ratio
=
min_ratio
self
.
max_ratio
=
max_ratio
self
.
base_size
=
base_size
self
.
min_sizes
=
min_sizes
self
.
max_sizes
=
max_sizes
self
.
aspect_ratios
=
aspect_ratios
self
.
steps
=
steps
self
.
offset
=
offset
self
.
flip
=
flip
self
.
pad
=
pad
self
.
clip
=
clip
self
.
conv_decay
=
conv_decay
def
_separable_conv
(
self
,
input
,
num_filters
,
name
):
dwconv_param_attr
=
ParamAttr
(
name
=
name
+
'dw_weights'
,
regularizer
=
L2Decay
(
self
.
conv_decay
))
num_filter1
=
input
.
shape
[
1
]
depthwise_conv
=
fluid
.
layers
.
conv2d
(
input
=
input
,
num_filters
=
num_filter1
,
filter_size
=
3
,
stride
=
1
,
padding
=
"SAME"
,
groups
=
int
(
num_filter1
),
act
=
None
,
use_cudnn
=
False
,
param_attr
=
dwconv_param_attr
,
bias_attr
=
False
)
bn_name
=
name
+
'_bn'
bn_param_attr
=
ParamAttr
(
name
=
bn_name
+
"_scale"
,
regularizer
=
L2Decay
(
0.0
))
bn_bias_attr
=
ParamAttr
(
name
=
bn_name
+
"_offset"
,
regularizer
=
L2Decay
(
0.0
))
bn
=
fluid
.
layers
.
batch_norm
(
input
=
depthwise_conv
,
param_attr
=
bn_param_attr
,
bias_attr
=
bn_bias_attr
,
moving_mean_name
=
bn_name
+
'_mean'
,
moving_variance_name
=
bn_name
+
'_variance'
)
bn
=
fluid
.
layers
.
relu6
(
bn
)
pwconv_param_attr
=
ParamAttr
(
name
=
name
+
'pw_weights'
,
regularizer
=
L2Decay
(
self
.
conv_decay
))
pointwise_conv
=
fluid
.
layers
.
conv2d
(
input
=
bn
,
num_filters
=
num_filters
,
filter_size
=
1
,
stride
=
1
,
act
=
None
,
use_cudnn
=
True
,
param_attr
=
pwconv_param_attr
,
bias_attr
=
False
)
return
pointwise_conv
def
__call__
(
self
,
inputs
,
image
,
num_classes
):
def
_permute_and_reshape
(
input
,
last_dim
):
trans
=
fluid
.
layers
.
transpose
(
input
,
perm
=
[
0
,
2
,
3
,
1
])
compile_shape
=
[
0
,
-
1
,
last_dim
]
return
fluid
.
layers
.
reshape
(
trans
,
shape
=
compile_shape
)
def
_is_list_or_tuple_
(
data
):
return
(
isinstance
(
data
,
list
)
or
isinstance
(
data
,
tuple
))
if
self
.
min_sizes
is
None
and
self
.
max_sizes
is
None
:
num_layer
=
len
(
inputs
)
self
.
min_sizes
=
[]
self
.
max_sizes
=
[]
step
=
int
(
math
.
floor
(((
self
.
max_ratio
-
self
.
min_ratio
))
/
(
num_layer
-
2
)))
for
ratio
in
six
.
moves
.
range
(
self
.
min_ratio
,
self
.
max_ratio
+
1
,
step
):
self
.
min_sizes
.
append
(
self
.
base_size
*
ratio
/
100.
)
self
.
max_sizes
.
append
(
self
.
base_size
*
(
ratio
+
step
)
/
100.
)
self
.
min_sizes
=
[
self
.
base_size
*
.
10
]
+
self
.
min_sizes
self
.
max_sizes
=
[
self
.
base_size
*
.
20
]
+
self
.
max_sizes
locs
,
confs
=
[],
[]
boxes
,
mvars
=
[],
[]
for
i
,
input
in
enumerate
(
inputs
):
min_size
=
self
.
min_sizes
[
i
]
max_size
=
self
.
max_sizes
[
i
]
if
not
_is_list_or_tuple_
(
min_size
):
min_size
=
[
min_size
]
if
not
_is_list_or_tuple_
(
max_size
):
max_size
=
[
max_size
]
step
=
[
self
.
steps
[
i
]
if
self
.
steps
else
0.0
,
self
.
steps
[
i
]
if
self
.
steps
else
0.0
]
box
,
var
=
fluid
.
layers
.
prior_box
(
input
,
image
,
min_sizes
=
min_size
,
max_sizes
=
max_size
,
steps
=
step
,
aspect_ratios
=
self
.
aspect_ratios
[
i
],
variance
=
[
0.1
,
0.1
,
0.2
,
0.2
],
clip
=
self
.
clip
,
flip
=
self
.
flip
,
offset
=
0.5
)
num_boxes
=
box
.
shape
[
2
]
box
=
fluid
.
layers
.
reshape
(
box
,
shape
=
[
-
1
,
4
])
var
=
fluid
.
layers
.
reshape
(
var
,
shape
=
[
-
1
,
4
])
num_loc_output
=
num_boxes
*
4
num_conf_output
=
num_boxes
*
num_classes
# get loc
mbox_loc
=
self
.
_separable_conv
(
input
,
num_loc_output
,
"loc_{}"
.
format
(
i
+
1
))
loc
=
_permute_and_reshape
(
mbox_loc
,
4
)
# get conf
mbox_conf
=
self
.
_separable_conv
(
input
,
num_conf_output
,
"conf_{}"
.
format
(
i
+
1
))
conf
=
_permute_and_reshape
(
mbox_conf
,
num_classes
)
locs
.
append
(
loc
)
confs
.
append
(
conf
)
boxes
.
append
(
box
)
mvars
.
append
(
var
)
ssd_mbox_loc
=
fluid
.
layers
.
concat
(
locs
,
axis
=
1
)
ssd_mbox_conf
=
fluid
.
layers
.
concat
(
confs
,
axis
=
1
)
prior_boxes
=
fluid
.
layers
.
concat
(
boxes
)
box_vars
=
fluid
.
layers
.
concat
(
mvars
)
prior_boxes
.
stop_gradient
=
True
box_vars
.
stop_gradient
=
True
return
ssd_mbox_loc
,
ssd_mbox_conf
,
prior_boxes
,
box_vars
@
register
@
serializable
class
SSDOutputDecoder
(
object
):
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录