mobilenet_v3.py 11.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16 17 18 19 20
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

from collections import OrderedDict

G
Guanghua Yu 已提交
21 22 23 24 25
import paddle.fluid as fluid
from paddle.fluid.param_attr import ParamAttr
from paddle.fluid.regularizer import L2Decay

from ppdet.core.workspace import register
26
from numbers import Integral
G
Guanghua Yu 已提交
27 28 29 30 31 32

__all__ = ['MobileNetV3']


@register
class MobileNetV3():
33 34 35 36 37 38 39 40
    """
    MobileNet v3, see https://arxiv.org/abs/1905.02244
    Args:
	scale (float): scaling factor for convolution groups proportion of mobilenet_v3.
        model_name (str): There are two modes, small and large.
        norm_type (str): normalization type, 'bn' and 'sync_bn' are supported.
        norm_decay (float): weight decay for normalization layer weights.
        conv_decay (float): weight decay for convolution layer weights.
41
        feature_maps (list): index of stages whose feature maps are returned.
42 43 44 45
        extra_block_filters (list): number of filter for each extra block.
    """
    __shared__ = ['norm_type']

G
Guanghua Yu 已提交
46 47 48
    def __init__(self,
                 scale=1.0,
                 model_name='small',
49
                 feature_maps=[5, 6, 7, 8, 9, 10],
G
Guanghua Yu 已提交
50
                 conv_decay=0.0,
K
Kaipeng Deng 已提交
51 52
                 norm_type='bn',
                 norm_decay=0.0,
G
Guanghua Yu 已提交
53 54
                 extra_block_filters=[[256, 512], [128, 256], [128, 256],
                                      [64, 128]]):
55 56 57
        if isinstance(feature_maps, Integral):
            feature_maps = [feature_maps]

G
Guanghua Yu 已提交
58 59
        self.scale = scale
        self.model_name = model_name
60
        self.feature_maps = feature_maps
G
Guanghua Yu 已提交
61 62
        self.extra_block_filters = extra_block_filters
        self.conv_decay = conv_decay
K
Kaipeng Deng 已提交
63
        self.norm_decay = norm_decay
G
Guanghua Yu 已提交
64 65
        self.inplanes = 16
        self.end_points = []
66
        self.block_stride = 0
G
Guanghua Yu 已提交
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
        if model_name == "large":
            self.cfg = [
                # kernel_size, expand, channel, se_block, act_mode, stride
                [3, 16, 16, False, 'relu', 1],
                [3, 64, 24, False, 'relu', 2],
                [3, 72, 24, False, 'relu', 1],
                [5, 72, 40, True, 'relu', 2],
                [5, 120, 40, True, 'relu', 1],
                [5, 120, 40, True, 'relu', 1],
                [3, 240, 80, False, 'hard_swish', 2],
                [3, 200, 80, False, 'hard_swish', 1],
                [3, 184, 80, False, 'hard_swish', 1],
                [3, 184, 80, False, 'hard_swish', 1],
                [3, 480, 112, True, 'hard_swish', 1],
                [3, 672, 112, True, 'hard_swish', 1],
                [5, 672, 160, True, 'hard_swish', 2],
                [5, 960, 160, True, 'hard_swish', 1],
                [5, 960, 160, True, 'hard_swish', 1],
            ]
        elif model_name == "small":
            self.cfg = [
                # kernel_size, expand, channel, se_block, act_mode, stride
                [3, 16, 16, True, 'relu', 2],
                [3, 72, 24, False, 'relu', 2],
                [3, 88, 24, False, 'relu', 1],
                [5, 96, 40, True, 'hard_swish', 2],
                [5, 240, 40, True, 'hard_swish', 1],
                [5, 240, 40, True, 'hard_swish', 1],
                [5, 120, 48, True, 'hard_swish', 1],
                [5, 144, 48, True, 'hard_swish', 1],
                [5, 288, 96, True, 'hard_swish', 2],
                [5, 576, 96, True, 'hard_swish', 1],
                [5, 576, 96, True, 'hard_swish', 1],
            ]
        else:
            raise NotImplementedError

    def _conv_bn_layer(self,
                       input,
                       filter_size,
                       num_filters,
                       stride,
                       padding,
                       num_groups=1,
                       if_act=True,
                       act=None,
                       name=None,
                       use_cudnn=True):
        conv_param_attr = ParamAttr(
            name=name + '_weights', regularizer=L2Decay(self.conv_decay))
        conv = fluid.layers.conv2d(
            input=input,
            num_filters=num_filters,
            filter_size=filter_size,
            stride=stride,
            padding=padding,
            groups=num_groups,
            act=None,
            use_cudnn=use_cudnn,
            param_attr=conv_param_attr,
            bias_attr=False)
        bn_name = name + '_bn'
        bn_param_attr = ParamAttr(
K
Kaipeng Deng 已提交
130
            name=bn_name + "_scale", regularizer=L2Decay(self.norm_decay))
G
Guanghua Yu 已提交
131
        bn_bias_attr = ParamAttr(
K
Kaipeng Deng 已提交
132
            name=bn_name + "_offset", regularizer=L2Decay(self.norm_decay))
G
Guanghua Yu 已提交
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
        bn = fluid.layers.batch_norm(
            input=conv,
            param_attr=bn_param_attr,
            bias_attr=bn_bias_attr,
            moving_mean_name=bn_name + '_mean',
            moving_variance_name=bn_name + '_variance')
        if if_act:
            if act == 'relu':
                bn = fluid.layers.relu(bn)
            elif act == 'hard_swish':
                bn = self._hard_swish(bn)
            elif act == 'relu6':
                bn = fluid.layers.relu6(bn)
        return bn

    def _hard_swish(self, x):
        return x * fluid.layers.relu6(x + 3) / 6.

    def _se_block(self, input, num_out_filter, ratio=4, name=None):
        num_mid_filter = int(num_out_filter // ratio)
        pool = fluid.layers.pool2d(
            input=input, pool_type='avg', global_pooling=True, use_cudnn=False)
        conv1 = fluid.layers.conv2d(
            input=pool,
            filter_size=1,
            num_filters=num_mid_filter,
            act='relu',
            param_attr=ParamAttr(name=name + '_1_weights'),
            bias_attr=ParamAttr(name=name + '_1_offset'))
        conv2 = fluid.layers.conv2d(
            input=conv1,
            filter_size=1,
            num_filters=num_out_filter,
            act='hard_sigmoid',
            param_attr=ParamAttr(name=name + '_2_weights'),
            bias_attr=ParamAttr(name=name + '_2_offset'))

        scale = fluid.layers.elementwise_mul(x=input, y=conv2, axis=0)
        return scale

    def _residual_unit(self,
                       input,
                       num_in_filter,
                       num_mid_filter,
                       num_out_filter,
                       stride,
                       filter_size,
                       act=None,
                       use_se=False,
                       name=None):
        input_data = input
        conv0 = self._conv_bn_layer(
            input=input,
            filter_size=1,
            num_filters=num_mid_filter,
            stride=1,
            padding=0,
            if_act=True,
            act=act,
            name=name + '_expand')
193 194 195 196 197
        if self.block_stride == 4 and stride == 2:
            self.block_stride += 1
            if self.block_stride in self.feature_maps:
                self.end_points.append(conv0)

G
Guanghua Yu 已提交
198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
        conv1 = self._conv_bn_layer(
            input=conv0,
            filter_size=filter_size,
            num_filters=num_mid_filter,
            stride=stride,
            padding=int((filter_size - 1) // 2),
            if_act=True,
            act=act,
            num_groups=num_mid_filter,
            use_cudnn=False,
            name=name + '_depthwise')

        if use_se:
            conv1 = self._se_block(
                input=conv1, num_out_filter=num_mid_filter, name=name + '_se')

        conv2 = self._conv_bn_layer(
            input=conv1,
            filter_size=1,
            num_filters=num_out_filter,
            stride=1,
            padding=0,
            if_act=False,
            name=name + '_linear')
        if num_in_filter != num_out_filter or stride != 1:
            return conv2
        else:
            return fluid.layers.elementwise_add(x=input_data, y=conv2, act=None)

    def _extra_block_dw(self,
                        input,
                        num_filters1,
                        num_filters2,
                        stride,
                        name=None):
        pointwise_conv = self._conv_bn_layer(
            input=input,
            filter_size=1,
            num_filters=int(num_filters1),
            stride=1,
            padding="SAME",
            act='relu6',
            name=name + "_extra1")
        depthwise_conv = self._conv_bn_layer(
            input=pointwise_conv,
            filter_size=3,
            num_filters=int(num_filters2),
            stride=stride,
            padding="SAME",
            num_groups=int(num_filters1),
            act='relu6',
            use_cudnn=False,
            name=name + "_extra2_dw")
        normal_conv = self._conv_bn_layer(
            input=depthwise_conv,
            filter_size=1,
            num_filters=int(num_filters2),
            stride=1,
            padding="SAME",
            act='relu6',
            name=name + "_extra2_sep")
        return normal_conv

    def __call__(self, input):
        scale = self.scale
        inplanes = self.inplanes
        cfg = self.cfg
        blocks = []

        #conv1
        conv = self._conv_bn_layer(
            input,
            filter_size=3,
            num_filters=inplanes if scale <= 1.0 else int(inplanes * scale),
            stride=2,
            padding=1,
            num_groups=1,
            if_act=True,
            act='hard_swish',
            name='conv1')
        i = 0
        for layer_cfg in cfg:
K
Kaipeng Deng 已提交
280
            if layer_cfg[5] == 2:
281 282 283 284
                self.block_stride += 1
                if self.block_stride in self.feature_maps:
                    self.end_points.append(conv)

G
Guanghua Yu 已提交
285 286 287 288 289 290 291 292 293 294 295 296
            conv = self._residual_unit(
                input=conv,
                num_in_filter=inplanes,
                num_mid_filter=int(scale * layer_cfg[1]),
                num_out_filter=int(scale * layer_cfg[2]),
                act=layer_cfg[4],
                stride=layer_cfg[5],
                filter_size=layer_cfg[0],
                use_se=layer_cfg[3],
                name='conv' + str(i + 2))
            inplanes = int(scale * layer_cfg[2])
            i += 1
297 298 299
        self.block_stride += 1
        if self.block_stride in self.feature_maps:
            self.end_points.append(conv)
G
Guanghua Yu 已提交
300 301 302 303 304 305 306 307 308 309 310 311

        # extra block
        conv_extra = self._conv_bn_layer(
            conv,
            filter_size=1,
            num_filters=int(scale * cfg[-1][1]),
            stride=1,
            padding="SAME",
            num_groups=1,
            if_act=True,
            act='hard_swish',
            name='conv' + str(i + 2))
312 313 314
        self.block_stride += 1
        if self.block_stride in self.feature_maps:
            self.end_points.append(conv_extra)
G
Guanghua Yu 已提交
315 316 317 318 319
        i += 1
        for block_filter in self.extra_block_filters:
            conv_extra = self._extra_block_dw(conv_extra, block_filter[0],
                                              block_filter[1], 2,
                                              'conv' + str(i + 2))
320 321 322
            self.block_stride += 1
            if self.block_stride in self.feature_maps:
                self.end_points.append(conv_extra)
G
Guanghua Yu 已提交
323 324
            i += 1

325 326
        return OrderedDict([('mbv3_{}'.format(idx), feat)
                            for idx, feat in enumerate(self.end_points)])