utils.py 16.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import cv2
import time
import numpy as np
19
import collections
20
import math
21 22

__all__ = [
23
    'MOTTimer', 'Detection', 'write_mot_results', 'load_det_results',
24 25
    'preprocess_reid', 'get_crops', 'clip_box', 'scale_coords',
    'flow_statistic', 'update_object_info'
26 27 28 29 30 31 32 33
]


class MOTTimer(object):
    """
    This class used to compute and print the current FPS while evaling.
    """

34
    def __init__(self, window_size=20):
35 36 37
        self.start_time = 0.
        self.diff = 0.
        self.duration = 0.
38
        self.deque = collections.deque(maxlen=window_size)
39 40 41 42 43 44 45 46

    def tic(self):
        # using time.time instead of time.clock because time time.clock
        # does not normalize for multithreading
        self.start_time = time.time()

    def toc(self, average=True):
        self.diff = time.time() - self.start_time
47
        self.deque.append(self.diff)
48
        if average:
49
            self.duration = np.mean(self.deque)
50
        else:
51
            self.duration = np.sum(self.deque)
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
        return self.duration

    def clear(self):
        self.start_time = 0.
        self.diff = 0.
        self.duration = 0.


class Detection(object):
    """
    This class represents a bounding box detection in a single image.

    Args:
        tlwh (Tensor): Bounding box in format `(top left x, top left y,
            width, height)`.
        score (Tensor): Bounding box confidence score.
        feature (Tensor): A feature vector that describes the object 
            contained in this image.
        cls_id (Tensor): Bounding box category id.
    """

    def __init__(self, tlwh, score, feature, cls_id):
        self.tlwh = np.asarray(tlwh, dtype=np.float32)
        self.score = float(score)
        self.feature = np.asarray(feature, dtype=np.float32)
        self.cls_id = int(cls_id)

    def to_tlbr(self):
        """
        Convert bounding box to format `(min x, min y, max x, max y)`, i.e.,
        `(top left, bottom right)`.
        """
        ret = self.tlwh.copy()
        ret[2:] += ret[:2]
        return ret

    def to_xyah(self):
        """
        Convert bounding box to format `(center x, center y, aspect ratio,
        height)`, where the aspect ratio is `width / height`.
        """
        ret = self.tlwh.copy()
        ret[:2] += ret[2:] / 2
        ret[2] /= ret[3]
        return ret


def write_mot_results(filename, results, data_type='mot', num_classes=1):
    # support single and multi classes
    if data_type in ['mot', 'mcmot']:
        save_format = '{frame},{id},{x1},{y1},{w},{h},{score},{cls_id},-1,-1\n'
    elif data_type == 'kitti':
        save_format = '{frame} {id} car 0 0 -10 {x1} {y1} {x2} {y2} -10 -10 -10 -1000 -1000 -1000 -10\n'
    else:
        raise ValueError(data_type)

    f = open(filename, 'w')
    for cls_id in range(num_classes):
        for frame_id, tlwhs, tscores, track_ids in results[cls_id]:
F
Feng Ni 已提交
111 112
            if data_type == 'kitti':
                frame_id -= 1
113 114
            for tlwh, score, track_id in zip(tlwhs, tscores, track_ids):
                if track_id < 0: continue
F
Feng Ni 已提交
115
                if data_type == 'mot':
116 117 118
                    cls_id = -1

                x1, y1, w, h = tlwh
F
Feng Ni 已提交
119
                x2, y2 = x1 + w, y1 + h
120 121 122 123 124
                line = save_format.format(
                    frame=frame_id,
                    id=track_id,
                    x1=x1,
                    y1=y1,
F
Feng Ni 已提交
125 126
                    x2=x2,
                    y2=y2,
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
                    w=w,
                    h=h,
                    score=score,
                    cls_id=cls_id)
                f.write(line)
    print('MOT results save in {}'.format(filename))


def load_det_results(det_file, num_frames):
    assert os.path.exists(det_file) and os.path.isfile(det_file), \
        '{} is not exist or not a file.'.format(det_file)
    labels = np.loadtxt(det_file, dtype='float32', delimiter=',')
    assert labels.shape[1] == 7, \
        "Each line of {} should have 7 items: '[frame_id],[x0],[y0],[w],[h],[score],[class_id]'.".format(det_file)
    results_list = []
    for frame_i in range(num_frames):
        results = {'bbox': [], 'score': [], 'cls_id': []}
        lables_with_frame = labels[labels[:, 0] == frame_i + 1]
        # each line of lables_with_frame:
        # [frame_id],[x0],[y0],[w],[h],[score],[class_id]
        for l in lables_with_frame:
            results['bbox'].append(l[1:5])
F
Feng Ni 已提交
149 150
            results['score'].append(l[5:6])
            results['cls_id'].append(l[6:7])
151 152 153 154 155
        results_list.append(results)
    return results_list


def scale_coords(coords, input_shape, im_shape, scale_factor):
F
Feng Ni 已提交
156 157 158 159 160 161 162
    # Note: ratio has only one value, scale_factor[0] == scale_factor[1]
    # 
    # This function only used for JDE YOLOv3 or other detectors with 
    # LetterBoxResize and JDEBBoxPostProcess, coords output from detector had
    # not scaled back to the origin image.

    ratio = scale_factor[0]
163 164 165 166 167
    pad_w = (input_shape[1] - int(im_shape[1])) / 2
    pad_h = (input_shape[0] - int(im_shape[0])) / 2
    coords[:, 0::2] -= pad_w
    coords[:, 1::2] -= pad_h
    coords[:, 0:4] /= ratio
F
Feng Ni 已提交
168
    coords[:, :4] = np.clip(coords[:, :4], a_min=0, a_max=coords[:, :4].max())
169 170 171
    return coords.round()


F
Feng Ni 已提交
172 173 174 175
def clip_box(xyxy, ori_image_shape):
    H, W = ori_image_shape
    xyxy[:, 0::2] = np.clip(xyxy[:, 0::2], a_min=0, a_max=W)
    xyxy[:, 1::2] = np.clip(xyxy[:, 1::2], a_min=0, a_max=H)
176 177
    w = xyxy[:, 2:3] - xyxy[:, 0:1]
    h = xyxy[:, 3:4] - xyxy[:, 1:2]
F
Feng Ni 已提交
178 179 180
    mask = np.logical_and(h > 0, w > 0)
    keep_idx = np.nonzero(mask)
    return xyxy[keep_idx[0]], keep_idx
181 182 183 184


def get_crops(xyxy, ori_img, w, h):
    crops = []
F
Feng Ni 已提交
185
    xyxy = xyxy.astype(np.int64)
186
    ori_img = ori_img.transpose(1, 0, 2)  # [h,w,3]->[w,h,3]
187 188 189 190 191 192 193 194 195 196 197 198 199 200
    for i, bbox in enumerate(xyxy):
        crop = ori_img[bbox[0]:bbox[2], bbox[1]:bbox[3], :]
        crops.append(crop)
    crops = preprocess_reid(crops, w, h)
    return crops


def preprocess_reid(imgs,
                    w=64,
                    h=192,
                    mean=[0.485, 0.456, 0.406],
                    std=[0.229, 0.224, 0.225]):
    im_batch = []
    for img in imgs:
201
        img = cv2.resize(img, (w, h))
202 203 204 205 206 207 208 209 210
        img = img[:, :, ::-1].astype('float32').transpose((2, 0, 1)) / 255
        img_mean = np.array(mean).reshape((3, 1, 1))
        img_std = np.array(std).reshape((3, 1, 1))
        img -= img_mean
        img /= img_std
        img = np.expand_dims(img, axis=0)
        im_batch.append(img)
    im_batch = np.concatenate(im_batch, 0)
    return im_batch
211 212 213 214 215


def flow_statistic(result,
                   secs_interval,
                   do_entrance_counting,
216 217
                   do_break_in_counting,
                   region_type,
218 219 220 221 222 223 224 225
                   video_fps,
                   entrance,
                   id_set,
                   interval_id_set,
                   in_id_list,
                   out_id_list,
                   prev_center,
                   records,
226
                   data_type='mot',
227
                   num_classes=1):
228 229 230 231 232
    # Count in/out number: 
    # Note that 'region_type' should be one of ['horizontal', 'vertical', 'custom'],
    # 'horizontal' and 'vertical' means entrance is the center line as the entrance when do_entrance_counting, 
    # 'custom' means entrance is a region defined by users when do_break_in_counting.

233
    if do_entrance_counting:
234 235 236 237
        assert region_type in [
            'horizontal', 'vertical'
        ], "region_type should be 'horizontal' or 'vertical' when do entrance counting."
        entrance_x, entrance_y = entrance[0], entrance[1]
238 239 240 241 242 243 244 245 246
        frame_id, tlwhs, tscores, track_ids = result
        for tlwh, score, track_id in zip(tlwhs, tscores, track_ids):
            if track_id < 0: continue
            if data_type == 'kitti':
                frame_id -= 1
            x1, y1, w, h = tlwh
            center_x = x1 + w / 2.
            center_y = y1 + h / 2.
            if track_id in prev_center:
247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
                if region_type == 'horizontal':
                    # horizontal center line
                    if prev_center[track_id][1] <= entrance_y and \
                    center_y > entrance_y:
                        in_id_list.append(track_id)
                    if prev_center[track_id][1] >= entrance_y and \
                    center_y < entrance_y:
                        out_id_list.append(track_id)
                else:
                    # vertical center line
                    if prev_center[track_id][0] <= entrance_x and \
                    center_x > entrance_x:
                        in_id_list.append(track_id)
                    if prev_center[track_id][0] >= entrance_x and \
                    center_x < entrance_x:
                        out_id_list.append(track_id)
263 264 265 266
                prev_center[track_id][0] = center_x
                prev_center[track_id][1] = center_y
            else:
                prev_center[track_id] = [center_x, center_y]
267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305

    if do_break_in_counting:
        assert region_type in [
            'custom'
        ], "region_type should be 'custom' when do break_in counting."
        assert len(
            entrance
        ) >= 4, "entrance should be at least 3 points and (w,h) of image when do break_in counting."
        im_w, im_h = entrance[-1][:]
        entrance = np.array(entrance[:-1])

        frame_id, tlwhs, tscores, track_ids = result
        for tlwh, score, track_id in zip(tlwhs, tscores, track_ids):
            if track_id < 0: continue
            if data_type == 'kitti':
                frame_id -= 1
            x1, y1, w, h = tlwh
            center_x = min(x1 + w / 2., im_w - 1)
            center_down_y = min(y1 + h, im_h - 1)

            # counting objects in region of the first frame
            if frame_id == 1:
                if in_quadrangle([center_x, center_down_y], entrance, im_h,
                                 im_w):
                    in_id_list.append(-1)
                else:
                    prev_center[track_id] = [center_x, center_down_y]
            else:
                if track_id in prev_center:
                    if not in_quadrangle(prev_center[track_id], entrance, im_h,
                                         im_w) and in_quadrangle(
                                             [center_x, center_down_y],
                                             entrance, im_h, im_w):
                        in_id_list.append(track_id)
                    prev_center[track_id] = [center_x, center_down_y]
                else:
                    prev_center[track_id] = [center_x, center_down_y]

# Count totol number, number at a manual-setting interval
306 307 308 309 310 311 312 313 314 315 316 317 318 319
    frame_id, tlwhs, tscores, track_ids = result
    for tlwh, score, track_id in zip(tlwhs, tscores, track_ids):
        if track_id < 0: continue
        id_set.add(track_id)
        interval_id_set.add(track_id)

    # Reset counting at the interval beginning
    if frame_id % video_fps == 0 and frame_id / video_fps % secs_interval == 0:
        curr_interval_count = len(interval_id_set)
        interval_id_set.clear()
    info = "Frame id: {}, Total count: {}".format(frame_id, len(id_set))
    if do_entrance_counting:
        info += ", In count: {}, Out count: {}".format(
            len(in_id_list), len(out_id_list))
320 321
    if do_break_in_counting:
        info += ", Break_in count: {}".format(len(in_id_list))
322 323 324 325 326 327 328 329 330 331 332 333 334 335
    if frame_id % video_fps == 0 and frame_id / video_fps % secs_interval == 0:
        info += ", Count during {} secs: {}".format(secs_interval,
                                                    curr_interval_count)
        interval_id_set.clear()
    print(info)
    info += "\n"
    records.append(info)

    return {
        "id_set": id_set,
        "interval_id_set": interval_id_set,
        "in_id_list": in_id_list,
        "out_id_list": out_id_list,
        "prev_center": prev_center,
336
        "records": records,
337
    }
338 339


340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426
def distance(center_1, center_2):
    return math.sqrt(
        math.pow(center_1[0] - center_2[0], 2) + math.pow(center_1[1] -
                                                          center_2[1], 2))


# update vehicle parking info
def update_object_info(object_in_region_info,
                       result,
                       region_type,
                       entrance,
                       fps,
                       illegal_parking_time,
                       distance_threshold_frame=3,
                       distance_threshold_interval=50):
    '''
    For consecutive frames, the distance between two frame is smaller than distance_threshold_frame, regard as parking
    For parking in general, the move distance should smaller than distance_threshold_interval
    The moving distance of the vehicle is scaled according to the y, which is inversely proportional to y.
    '''

    assert region_type in [
        'custom'
    ], "region_type should be 'custom' when do break_in counting."
    assert len(
        entrance
    ) >= 4, "entrance should be at least 3 points and (w,h) of image when do break_in counting."

    frame_id, tlwhs, tscores, track_ids = result  # result from mot

    im_w, im_h = entrance[-1][:]
    entrance = np.array(entrance[:-1])

    illegal_parking_dict = {}
    for tlwh, score, track_id in zip(tlwhs, tscores, track_ids):
        if track_id < 0: continue

        x1, y1, w, h = tlwh
        center_x = min(x1 + w / 2., im_w - 1)
        center_y = min(y1 + h / 2, im_h - 1)

        if not in_quadrangle([center_x, center_y], entrance, im_h, im_w):
            continue

        current_center = (center_x, center_y)
        if track_id not in object_in_region_info.keys(
        ):  # first time appear in region
            object_in_region_info[track_id] = {}
            object_in_region_info[track_id]["start_frame"] = frame_id
            object_in_region_info[track_id]["end_frame"] = frame_id
            object_in_region_info[track_id]["prev_center"] = current_center
            object_in_region_info[track_id]["start_center"] = current_center
        else:
            prev_center = object_in_region_info[track_id]["prev_center"]

            dis = distance(current_center, prev_center)
            scaled_dis = 200 * dis / (
                current_center[1] + 1)  # scale distance according to y
            dis = scaled_dis

            if dis < distance_threshold_frame:  # not move
                object_in_region_info[track_id]["end_frame"] = frame_id
                object_in_region_info[track_id]["prev_center"] = current_center
            else:  # move
                object_in_region_info[track_id]["start_frame"] = frame_id
                object_in_region_info[track_id]["end_frame"] = frame_id
                object_in_region_info[track_id]["prev_center"] = current_center
                object_in_region_info[track_id]["start_center"] = current_center

        # whether current object parking
        distance_from_start = distance(
            object_in_region_info[track_id]["start_center"], current_center)
        if distance_from_start > distance_threshold_interval:
            # moved
            object_in_region_info[track_id]["start_frame"] = frame_id
            object_in_region_info[track_id]["end_frame"] = frame_id
            object_in_region_info[track_id]["prev_center"] = current_center
            object_in_region_info[track_id]["start_center"] = current_center
            continue

        if (object_in_region_info[track_id]["end_frame"]-object_in_region_info[track_id]["start_frame"]) /fps >= illegal_parking_time \
            and distance_from_start<distance_threshold_interval:
            illegal_parking_dict[track_id] = {"bbox": [x1, y1, w, h]}

    return object_in_region_info, illegal_parking_dict


427 428 429 430 431 432 433 434
def in_quadrangle(point, entrance, im_h, im_w):
    mask = np.zeros((im_h, im_w, 1), np.uint8)
    cv2.fillPoly(mask, [entrance], 255)
    p = tuple(map(int, point))
    if mask[p[1], p[0], :] > 0:
        return True
    else:
        return False