utils.py 10.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import cv2
import time
import paddle
import numpy as np
20
import collections
21 22

__all__ = [
23 24
    'MOTTimer', 'Detection', 'write_mot_results', 'load_det_results',
    'preprocess_reid', 'get_crops', 'clip_box', 'scale_coords', 'flow_statistic'
25 26 27 28 29 30 31 32
]


class MOTTimer(object):
    """
    This class used to compute and print the current FPS while evaling.
    """

33
    def __init__(self, window_size=20):
34 35 36
        self.start_time = 0.
        self.diff = 0.
        self.duration = 0.
37
        self.deque = collections.deque(maxlen=window_size)
38 39 40 41 42 43 44 45

    def tic(self):
        # using time.time instead of time.clock because time time.clock
        # does not normalize for multithreading
        self.start_time = time.time()

    def toc(self, average=True):
        self.diff = time.time() - self.start_time
46
        self.deque.append(self.diff)
47
        if average:
48
            self.duration = np.mean(self.deque)
49
        else:
50
            self.duration = np.sum(self.deque)
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
        return self.duration

    def clear(self):
        self.start_time = 0.
        self.diff = 0.
        self.duration = 0.


class Detection(object):
    """
    This class represents a bounding box detection in a single image.

    Args:
        tlwh (Tensor): Bounding box in format `(top left x, top left y,
            width, height)`.
        score (Tensor): Bounding box confidence score.
        feature (Tensor): A feature vector that describes the object 
            contained in this image.
        cls_id (Tensor): Bounding box category id.
    """

    def __init__(self, tlwh, score, feature, cls_id):
        self.tlwh = np.asarray(tlwh, dtype=np.float32)
        self.score = float(score)
        self.feature = np.asarray(feature, dtype=np.float32)
        self.cls_id = int(cls_id)

    def to_tlbr(self):
        """
        Convert bounding box to format `(min x, min y, max x, max y)`, i.e.,
        `(top left, bottom right)`.
        """
        ret = self.tlwh.copy()
        ret[2:] += ret[:2]
        return ret

    def to_xyah(self):
        """
        Convert bounding box to format `(center x, center y, aspect ratio,
        height)`, where the aspect ratio is `width / height`.
        """
        ret = self.tlwh.copy()
        ret[:2] += ret[2:] / 2
        ret[2] /= ret[3]
        return ret


def write_mot_results(filename, results, data_type='mot', num_classes=1):
    # support single and multi classes
    if data_type in ['mot', 'mcmot']:
        save_format = '{frame},{id},{x1},{y1},{w},{h},{score},{cls_id},-1,-1\n'
    elif data_type == 'kitti':
        save_format = '{frame} {id} car 0 0 -10 {x1} {y1} {x2} {y2} -10 -10 -10 -1000 -1000 -1000 -10\n'
    else:
        raise ValueError(data_type)

    f = open(filename, 'w')
    for cls_id in range(num_classes):
        for frame_id, tlwhs, tscores, track_ids in results[cls_id]:
            for tlwh, score, track_id in zip(tlwhs, tscores, track_ids):
                if track_id < 0: continue
                if data_type == 'kitti':
                    frame_id -= 1
                elif data_type == 'mot':
                    cls_id = -1
                elif data_type == 'mcmot':
                    cls_id = cls_id

                x1, y1, w, h = tlwh
                line = save_format.format(
                    frame=frame_id,
                    id=track_id,
                    x1=x1,
                    y1=y1,
                    w=w,
                    h=h,
                    score=score,
                    cls_id=cls_id)
                f.write(line)
    print('MOT results save in {}'.format(filename))


def load_det_results(det_file, num_frames):
    assert os.path.exists(det_file) and os.path.isfile(det_file), \
        '{} is not exist or not a file.'.format(det_file)
    labels = np.loadtxt(det_file, dtype='float32', delimiter=',')
    assert labels.shape[1] == 7, \
        "Each line of {} should have 7 items: '[frame_id],[x0],[y0],[w],[h],[score],[class_id]'.".format(det_file)
    results_list = []
    for frame_i in range(num_frames):
        results = {'bbox': [], 'score': [], 'cls_id': []}
        lables_with_frame = labels[labels[:, 0] == frame_i + 1]
        # each line of lables_with_frame:
        # [frame_id],[x0],[y0],[w],[h],[score],[class_id]
        for l in lables_with_frame:
            results['bbox'].append(l[1:5])
            results['score'].append(l[5])
            results['cls_id'].append(l[6])
        results_list.append(results)
    return results_list


def scale_coords(coords, input_shape, im_shape, scale_factor):
    im_shape = im_shape.numpy()[0]
    ratio = scale_factor[0][0]
    pad_w = (input_shape[1] - int(im_shape[1])) / 2
    pad_h = (input_shape[0] - int(im_shape[0])) / 2
    coords = paddle.cast(coords, 'float32')
    coords[:, 0::2] -= pad_w
    coords[:, 1::2] -= pad_h
    coords[:, 0:4] /= ratio
    coords[:, :4] = paddle.clip(coords[:, :4], min=0, max=coords[:, :4].max())
    return coords.round()


def clip_box(xyxy, input_shape, im_shape, scale_factor):
    im_shape = im_shape.numpy()[0]
    ratio = scale_factor.numpy()[0][0]
    img0_shape = [int(im_shape[0] / ratio), int(im_shape[1] / ratio)]

    xyxy[:, 0::2] = paddle.clip(xyxy[:, 0::2], min=0, max=img0_shape[1])
    xyxy[:, 1::2] = paddle.clip(xyxy[:, 1::2], min=0, max=img0_shape[0])
    w = xyxy[:, 2:3] - xyxy[:, 0:1]
    h = xyxy[:, 3:4] - xyxy[:, 1:2]
    mask = paddle.logical_and(h > 0, w > 0)
    keep_idx = paddle.nonzero(mask)
    xyxy = paddle.gather_nd(xyxy, keep_idx[:, :1])
    return xyxy, keep_idx


def get_crops(xyxy, ori_img, w, h):
    crops = []
    xyxy = xyxy.numpy().astype(np.int64)
    ori_img = ori_img.numpy()
    ori_img = np.squeeze(ori_img, axis=0).transpose(1, 0, 2)
    for i, bbox in enumerate(xyxy):
        crop = ori_img[bbox[0]:bbox[2], bbox[1]:bbox[3], :]
        crops.append(crop)
    crops = preprocess_reid(crops, w, h)
    return crops


def preprocess_reid(imgs,
                    w=64,
                    h=192,
                    mean=[0.485, 0.456, 0.406],
                    std=[0.229, 0.224, 0.225]):
    im_batch = []
    for img in imgs:
        img = cv2.resize(img, (w, h))
        img = img[:, :, ::-1].astype('float32').transpose((2, 0, 1)) / 255
        img_mean = np.array(mean).reshape((3, 1, 1))
        img_std = np.array(std).reshape((3, 1, 1))
        img -= img_mean
        img /= img_std
        img = np.expand_dims(img, axis=0)
        im_batch.append(img)
    im_batch = np.concatenate(im_batch, 0)
    return im_batch
210 211 212 213 214 215 216 217 218 219 220 221 222


def flow_statistic(result,
                   secs_interval,
                   do_entrance_counting,
                   video_fps,
                   entrance,
                   id_set,
                   interval_id_set,
                   in_id_list,
                   out_id_list,
                   prev_center,
                   records,
223
                   data_type='mot',
224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
                   num_classes=1):
    # Count in and out number: 
    # Use horizontal center line as the entrance just for simplification.
    # If a person located in the above the horizontal center line 
    # at the previous frame and is in the below the line at the current frame,
    # the in number is increased by one.
    # If a person was in the below the horizontal center line 
    # at the previous frame and locates in the below the line at the current frame,
    # the out number is increased by one.
    # TODO: if the entrance is not the horizontal center line,
    # the counting method should be optimized.
    if do_entrance_counting:
        entrance_y = entrance[1]  # xmin, ymin, xmax, ymax
        frame_id, tlwhs, tscores, track_ids = result
        for tlwh, score, track_id in zip(tlwhs, tscores, track_ids):
            if track_id < 0: continue
            if data_type == 'kitti':
                frame_id -= 1

            x1, y1, w, h = tlwh
            center_x = x1 + w / 2.
            center_y = y1 + h / 2.
            if track_id in prev_center:
                if prev_center[track_id][1] <= entrance_y and \
                   center_y > entrance_y:
                    in_id_list.append(track_id)
                if prev_center[track_id][1] >= entrance_y and \
                   center_y < entrance_y:
                    out_id_list.append(track_id)
                prev_center[track_id][0] = center_x
                prev_center[track_id][1] = center_y
            else:
                prev_center[track_id] = [center_x, center_y]
    # Count totol number, number at a manual-setting interval
    frame_id, tlwhs, tscores, track_ids = result
    for tlwh, score, track_id in zip(tlwhs, tscores, track_ids):
        if track_id < 0: continue
        id_set.add(track_id)
        interval_id_set.add(track_id)

    # Reset counting at the interval beginning
    if frame_id % video_fps == 0 and frame_id / video_fps % secs_interval == 0:
        curr_interval_count = len(interval_id_set)
        interval_id_set.clear()
    info = "Frame id: {}, Total count: {}".format(frame_id, len(id_set))
    if do_entrance_counting:
        info += ", In count: {}, Out count: {}".format(
            len(in_id_list), len(out_id_list))
    if frame_id % video_fps == 0 and frame_id / video_fps % secs_interval == 0:
        info += ", Count during {} secs: {}".format(secs_interval,
                                                    curr_interval_count)
        interval_id_set.clear()
    print(info)
    info += "\n"
    records.append(info)

    return {
        "id_set": id_set,
        "interval_id_set": interval_id_set,
        "in_id_list": in_id_list,
        "out_id_list": out_id_list,
        "prev_center": prev_center,
        "records": records
    }