utils.py 12.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import cv2
import time
import numpy as np
19
import collections
20 21

__all__ = [
22
    'MOTTimer', 'Detection', 'write_mot_results', 'load_det_results',
23
    'preprocess_reid', 'get_crops', 'clip_box', 'scale_coords', 'flow_statistic'
24 25 26 27 28 29 30 31
]


class MOTTimer(object):
    """
    This class used to compute and print the current FPS while evaling.
    """

32
    def __init__(self, window_size=20):
33 34 35
        self.start_time = 0.
        self.diff = 0.
        self.duration = 0.
36
        self.deque = collections.deque(maxlen=window_size)
37 38 39 40 41 42 43 44

    def tic(self):
        # using time.time instead of time.clock because time time.clock
        # does not normalize for multithreading
        self.start_time = time.time()

    def toc(self, average=True):
        self.diff = time.time() - self.start_time
45
        self.deque.append(self.diff)
46
        if average:
47
            self.duration = np.mean(self.deque)
48
        else:
49
            self.duration = np.sum(self.deque)
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
        return self.duration

    def clear(self):
        self.start_time = 0.
        self.diff = 0.
        self.duration = 0.


class Detection(object):
    """
    This class represents a bounding box detection in a single image.

    Args:
        tlwh (Tensor): Bounding box in format `(top left x, top left y,
            width, height)`.
        score (Tensor): Bounding box confidence score.
        feature (Tensor): A feature vector that describes the object 
            contained in this image.
        cls_id (Tensor): Bounding box category id.
    """

    def __init__(self, tlwh, score, feature, cls_id):
        self.tlwh = np.asarray(tlwh, dtype=np.float32)
        self.score = float(score)
        self.feature = np.asarray(feature, dtype=np.float32)
        self.cls_id = int(cls_id)

    def to_tlbr(self):
        """
        Convert bounding box to format `(min x, min y, max x, max y)`, i.e.,
        `(top left, bottom right)`.
        """
        ret = self.tlwh.copy()
        ret[2:] += ret[:2]
        return ret

    def to_xyah(self):
        """
        Convert bounding box to format `(center x, center y, aspect ratio,
        height)`, where the aspect ratio is `width / height`.
        """
        ret = self.tlwh.copy()
        ret[:2] += ret[2:] / 2
        ret[2] /= ret[3]
        return ret


def write_mot_results(filename, results, data_type='mot', num_classes=1):
    # support single and multi classes
    if data_type in ['mot', 'mcmot']:
        save_format = '{frame},{id},{x1},{y1},{w},{h},{score},{cls_id},-1,-1\n'
    elif data_type == 'kitti':
        save_format = '{frame} {id} car 0 0 -10 {x1} {y1} {x2} {y2} -10 -10 -10 -1000 -1000 -1000 -10\n'
    else:
        raise ValueError(data_type)

    f = open(filename, 'w')
    for cls_id in range(num_classes):
        for frame_id, tlwhs, tscores, track_ids in results[cls_id]:
F
Feng Ni 已提交
109 110
            if data_type == 'kitti':
                frame_id -= 1
111 112
            for tlwh, score, track_id in zip(tlwhs, tscores, track_ids):
                if track_id < 0: continue
F
Feng Ni 已提交
113
                if data_type == 'mot':
114 115 116
                    cls_id = -1

                x1, y1, w, h = tlwh
F
Feng Ni 已提交
117
                x2, y2 = x1 + w, y1 + h
118 119 120 121 122
                line = save_format.format(
                    frame=frame_id,
                    id=track_id,
                    x1=x1,
                    y1=y1,
F
Feng Ni 已提交
123 124
                    x2=x2,
                    y2=y2,
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
                    w=w,
                    h=h,
                    score=score,
                    cls_id=cls_id)
                f.write(line)
    print('MOT results save in {}'.format(filename))


def load_det_results(det_file, num_frames):
    assert os.path.exists(det_file) and os.path.isfile(det_file), \
        '{} is not exist or not a file.'.format(det_file)
    labels = np.loadtxt(det_file, dtype='float32', delimiter=',')
    assert labels.shape[1] == 7, \
        "Each line of {} should have 7 items: '[frame_id],[x0],[y0],[w],[h],[score],[class_id]'.".format(det_file)
    results_list = []
    for frame_i in range(num_frames):
        results = {'bbox': [], 'score': [], 'cls_id': []}
        lables_with_frame = labels[labels[:, 0] == frame_i + 1]
        # each line of lables_with_frame:
        # [frame_id],[x0],[y0],[w],[h],[score],[class_id]
        for l in lables_with_frame:
            results['bbox'].append(l[1:5])
F
Feng Ni 已提交
147 148
            results['score'].append(l[5:6])
            results['cls_id'].append(l[6:7])
149 150 151 152 153
        results_list.append(results)
    return results_list


def scale_coords(coords, input_shape, im_shape, scale_factor):
F
Feng Ni 已提交
154 155 156 157 158 159 160
    # Note: ratio has only one value, scale_factor[0] == scale_factor[1]
    # 
    # This function only used for JDE YOLOv3 or other detectors with 
    # LetterBoxResize and JDEBBoxPostProcess, coords output from detector had
    # not scaled back to the origin image.

    ratio = scale_factor[0]
161 162 163 164 165
    pad_w = (input_shape[1] - int(im_shape[1])) / 2
    pad_h = (input_shape[0] - int(im_shape[0])) / 2
    coords[:, 0::2] -= pad_w
    coords[:, 1::2] -= pad_h
    coords[:, 0:4] /= ratio
F
Feng Ni 已提交
166
    coords[:, :4] = np.clip(coords[:, :4], a_min=0, a_max=coords[:, :4].max())
167 168 169
    return coords.round()


F
Feng Ni 已提交
170 171 172 173
def clip_box(xyxy, ori_image_shape):
    H, W = ori_image_shape
    xyxy[:, 0::2] = np.clip(xyxy[:, 0::2], a_min=0, a_max=W)
    xyxy[:, 1::2] = np.clip(xyxy[:, 1::2], a_min=0, a_max=H)
174 175
    w = xyxy[:, 2:3] - xyxy[:, 0:1]
    h = xyxy[:, 3:4] - xyxy[:, 1:2]
F
Feng Ni 已提交
176 177 178
    mask = np.logical_and(h > 0, w > 0)
    keep_idx = np.nonzero(mask)
    return xyxy[keep_idx[0]], keep_idx
179 180 181 182


def get_crops(xyxy, ori_img, w, h):
    crops = []
F
Feng Ni 已提交
183
    xyxy = xyxy.astype(np.int64)
184
    ori_img = ori_img.transpose(1, 0, 2)  # [h,w,3]->[w,h,3]
185 186 187 188 189 190 191 192 193 194 195 196 197 198
    for i, bbox in enumerate(xyxy):
        crop = ori_img[bbox[0]:bbox[2], bbox[1]:bbox[3], :]
        crops.append(crop)
    crops = preprocess_reid(crops, w, h)
    return crops


def preprocess_reid(imgs,
                    w=64,
                    h=192,
                    mean=[0.485, 0.456, 0.406],
                    std=[0.229, 0.224, 0.225]):
    im_batch = []
    for img in imgs:
199
        img = cv2.resize(img, (w, h))
200 201 202 203 204 205 206 207 208
        img = img[:, :, ::-1].astype('float32').transpose((2, 0, 1)) / 255
        img_mean = np.array(mean).reshape((3, 1, 1))
        img_std = np.array(std).reshape((3, 1, 1))
        img -= img_mean
        img /= img_std
        img = np.expand_dims(img, axis=0)
        im_batch.append(img)
    im_batch = np.concatenate(im_batch, 0)
    return im_batch
209 210 211 212 213


def flow_statistic(result,
                   secs_interval,
                   do_entrance_counting,
214 215
                   do_break_in_counting,
                   region_type,
216 217 218 219 220 221 222 223
                   video_fps,
                   entrance,
                   id_set,
                   interval_id_set,
                   in_id_list,
                   out_id_list,
                   prev_center,
                   records,
224
                   data_type='mot',
225
                   num_classes=1):
226 227 228 229 230
    # Count in/out number: 
    # Note that 'region_type' should be one of ['horizontal', 'vertical', 'custom'],
    # 'horizontal' and 'vertical' means entrance is the center line as the entrance when do_entrance_counting, 
    # 'custom' means entrance is a region defined by users when do_break_in_counting.

231
    if do_entrance_counting:
232 233 234 235
        assert region_type in [
            'horizontal', 'vertical'
        ], "region_type should be 'horizontal' or 'vertical' when do entrance counting."
        entrance_x, entrance_y = entrance[0], entrance[1]
236 237 238 239 240 241 242 243 244
        frame_id, tlwhs, tscores, track_ids = result
        for tlwh, score, track_id in zip(tlwhs, tscores, track_ids):
            if track_id < 0: continue
            if data_type == 'kitti':
                frame_id -= 1
            x1, y1, w, h = tlwh
            center_x = x1 + w / 2.
            center_y = y1 + h / 2.
            if track_id in prev_center:
245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
                if region_type == 'horizontal':
                    # horizontal center line
                    if prev_center[track_id][1] <= entrance_y and \
                    center_y > entrance_y:
                        in_id_list.append(track_id)
                    if prev_center[track_id][1] >= entrance_y and \
                    center_y < entrance_y:
                        out_id_list.append(track_id)
                else:
                    # vertical center line
                    if prev_center[track_id][0] <= entrance_x and \
                    center_x > entrance_x:
                        in_id_list.append(track_id)
                    if prev_center[track_id][0] >= entrance_x and \
                    center_x < entrance_x:
                        out_id_list.append(track_id)
261 262 263 264
                prev_center[track_id][0] = center_x
                prev_center[track_id][1] = center_y
            else:
                prev_center[track_id] = [center_x, center_y]
265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303

    if do_break_in_counting:
        assert region_type in [
            'custom'
        ], "region_type should be 'custom' when do break_in counting."
        assert len(
            entrance
        ) >= 4, "entrance should be at least 3 points and (w,h) of image when do break_in counting."
        im_w, im_h = entrance[-1][:]
        entrance = np.array(entrance[:-1])

        frame_id, tlwhs, tscores, track_ids = result
        for tlwh, score, track_id in zip(tlwhs, tscores, track_ids):
            if track_id < 0: continue
            if data_type == 'kitti':
                frame_id -= 1
            x1, y1, w, h = tlwh
            center_x = min(x1 + w / 2., im_w - 1)
            center_down_y = min(y1 + h, im_h - 1)

            # counting objects in region of the first frame
            if frame_id == 1:
                if in_quadrangle([center_x, center_down_y], entrance, im_h,
                                 im_w):
                    in_id_list.append(-1)
                else:
                    prev_center[track_id] = [center_x, center_down_y]
            else:
                if track_id in prev_center:
                    if not in_quadrangle(prev_center[track_id], entrance, im_h,
                                         im_w) and in_quadrangle(
                                             [center_x, center_down_y],
                                             entrance, im_h, im_w):
                        in_id_list.append(track_id)
                    prev_center[track_id] = [center_x, center_down_y]
                else:
                    prev_center[track_id] = [center_x, center_down_y]

# Count totol number, number at a manual-setting interval
304 305 306 307 308 309 310 311 312 313 314 315 316 317
    frame_id, tlwhs, tscores, track_ids = result
    for tlwh, score, track_id in zip(tlwhs, tscores, track_ids):
        if track_id < 0: continue
        id_set.add(track_id)
        interval_id_set.add(track_id)

    # Reset counting at the interval beginning
    if frame_id % video_fps == 0 and frame_id / video_fps % secs_interval == 0:
        curr_interval_count = len(interval_id_set)
        interval_id_set.clear()
    info = "Frame id: {}, Total count: {}".format(frame_id, len(id_set))
    if do_entrance_counting:
        info += ", In count: {}, Out count: {}".format(
            len(in_id_list), len(out_id_list))
318 319
    if do_break_in_counting:
        info += ", Break_in count: {}".format(len(in_id_list))
320 321 322 323 324 325 326 327 328 329 330 331 332 333
    if frame_id % video_fps == 0 and frame_id / video_fps % secs_interval == 0:
        info += ", Count during {} secs: {}".format(secs_interval,
                                                    curr_interval_count)
        interval_id_set.clear()
    print(info)
    info += "\n"
    records.append(info)

    return {
        "id_set": id_set,
        "interval_id_set": interval_id_set,
        "in_id_list": in_id_list,
        "out_id_list": out_id_list,
        "prev_center": prev_center,
334
        "records": records,
335
    }
336 337 338 339 340 341 342 343 344 345


def in_quadrangle(point, entrance, im_h, im_w):
    mask = np.zeros((im_h, im_w, 1), np.uint8)
    cv2.fillPoly(mask, [entrance], 255)
    p = tuple(map(int, point))
    if mask[p[1], p[0], :] > 0:
        return True
    else:
        return False