ppyoloe_head.py 27.3 KB
Newer Older
S
shangliang Xu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from ppdet.core.workspace import register
19 20 21
from paddle import ParamAttr
from paddle.nn.initializer import KaimingNormal
from paddle.nn.initializer import Normal, Constant
S
shangliang Xu 已提交
22 23 24 25 26

from ..bbox_utils import batch_distance2bbox
from ..losses import GIoULoss
from ..initializer import bias_init_with_prob, constant_, normal_
from ..assigners.utils import generate_anchors_for_grid_cell
27
from ppdet.modeling.backbones.cspresnet import ConvBNLayer, RepVggBlock
W
wangguanzhong 已提交
28
from ppdet.modeling.ops import get_static_shape, get_act_fn
W
wangxinxin08 已提交
29
from ppdet.modeling.layers import MultiClassNMS
S
shangliang Xu 已提交
30

31
__all__ = ['PPYOLOEHead', 'SimpleConvHead']
S
shangliang Xu 已提交
32 33 34


class ESEAttn(nn.Layer):
35
    def __init__(self, feat_channels, act='swish', attn_conv='convbn'):
S
shangliang Xu 已提交
36 37
        super(ESEAttn, self).__init__()
        self.fc = nn.Conv2D(feat_channels, feat_channels, 1)
38 39 40 41
        if attn_conv == 'convbn':
            self.conv = ConvBNLayer(feat_channels, feat_channels, 1, act=act)
        else:
            self.conv = RepVggBlock(feat_channels, feat_channels, act=act)
S
shangliang Xu 已提交
42 43 44 45 46 47 48 49 50 51 52
        self._init_weights()

    def _init_weights(self):
        normal_(self.fc.weight, std=0.001)

    def forward(self, feat, avg_feat):
        weight = F.sigmoid(self.fc(avg_feat))
        return self.conv(feat * weight)


@register
S
shangliang Xu 已提交
53
class PPYOLOEHead(nn.Layer):
54
    __shared__ = [
55
        'num_classes', 'eval_size', 'trt', 'exclude_nms',
F
Feng Ni 已提交
56
        'exclude_post_process', 'use_shared_conv', 'for_distill'
57
    ]
S
shangliang Xu 已提交
58 59 60 61 62 63 64 65 66 67
    __inject__ = ['static_assigner', 'assigner', 'nms']

    def __init__(self,
                 in_channels=[1024, 512, 256],
                 num_classes=80,
                 act='swish',
                 fpn_strides=(32, 16, 8),
                 grid_cell_scale=5.0,
                 grid_cell_offset=0.5,
                 reg_max=16,
68
                 reg_range=None,
S
shangliang Xu 已提交
69 70 71 72 73
                 static_assigner_epoch=4,
                 use_varifocal_loss=True,
                 static_assigner='ATSSAssigner',
                 assigner='TaskAlignedAssigner',
                 nms='MultiClassNMS',
74
                 eval_size=None,
S
shangliang Xu 已提交
75 76 77 78 79
                 loss_weight={
                     'class': 1.0,
                     'iou': 2.5,
                     'dfl': 0.5,
                 },
S
shangliang Xu 已提交
80
                 trt=False,
81
                 attn_conv='convbn',
82
                 exclude_nms=False,
83
                 exclude_post_process=False,
F
Feng Ni 已提交
84 85
                 use_shared_conv=True,
                 for_distill=False):
S
shangliang Xu 已提交
86
        super(PPYOLOEHead, self).__init__()
S
shangliang Xu 已提交
87 88 89 90 91 92
        assert len(in_channels) > 0, "len(in_channels) should > 0"
        self.in_channels = in_channels
        self.num_classes = num_classes
        self.fpn_strides = fpn_strides
        self.grid_cell_scale = grid_cell_scale
        self.grid_cell_offset = grid_cell_offset
93 94 95 96
        if reg_range:
            self.sm_use = True
            self.reg_range = reg_range
        else:
97
            self.sm_use = False
98 99
            self.reg_range = (0, reg_max + 1)
        self.reg_channels = self.reg_range[1] - self.reg_range[0]
S
shangliang Xu 已提交
100 101 102
        self.iou_loss = GIoULoss()
        self.loss_weight = loss_weight
        self.use_varifocal_loss = use_varifocal_loss
103
        self.eval_size = eval_size
S
shangliang Xu 已提交
104 105 106 107 108

        self.static_assigner_epoch = static_assigner_epoch
        self.static_assigner = static_assigner
        self.assigner = assigner
        self.nms = nms
W
wangxinxin08 已提交
109 110
        if isinstance(self.nms, MultiClassNMS) and trt:
            self.nms.trt = trt
S
shangliang Xu 已提交
111
        self.exclude_nms = exclude_nms
112
        self.exclude_post_process = exclude_post_process
113
        self.use_shared_conv = use_shared_conv
F
Feng Ni 已提交
114
        self.for_distill = for_distill
115
        self.is_teacher = False
116

S
shangliang Xu 已提交
117 118 119 120 121 122 123
        # stem
        self.stem_cls = nn.LayerList()
        self.stem_reg = nn.LayerList()
        act = get_act_fn(
            act, trt=trt) if act is None or isinstance(act,
                                                       (str, dict)) else act
        for in_c in self.in_channels:
124 125
            self.stem_cls.append(ESEAttn(in_c, act=act, attn_conv=attn_conv))
            self.stem_reg.append(ESEAttn(in_c, act=act, attn_conv=attn_conv))
S
shangliang Xu 已提交
126 127 128 129 130 131 132 133 134
        # pred head
        self.pred_cls = nn.LayerList()
        self.pred_reg = nn.LayerList()
        for in_c in self.in_channels:
            self.pred_cls.append(
                nn.Conv2D(
                    in_c, self.num_classes, 3, padding=1))
            self.pred_reg.append(
                nn.Conv2D(
135
                    in_c, 4 * self.reg_channels, 3, padding=1))
S
shangliang Xu 已提交
136
        # projection conv
137
        self.proj_conv = nn.Conv2D(self.reg_channels, 1, 1, bias_attr=False)
138
        self.proj_conv.skip_quant = True
S
shangliang Xu 已提交
139 140
        self._init_weights()

F
Feng Ni 已提交
141 142 143
        if self.for_distill:
            self.distill_pairs = {}

S
shangliang Xu 已提交
144 145 146 147 148 149 150 151 152 153 154 155
    @classmethod
    def from_config(cls, cfg, input_shape):
        return {'in_channels': [i.channels for i in input_shape], }

    def _init_weights(self):
        bias_cls = bias_init_with_prob(0.01)
        for cls_, reg_ in zip(self.pred_cls, self.pred_reg):
            constant_(cls_.weight)
            constant_(cls_.bias, bias_cls)
            constant_(reg_.weight)
            constant_(reg_.bias, 1.0)

156 157 158
        proj = paddle.linspace(self.reg_range[0], self.reg_range[1] - 1,
                               self.reg_channels).reshape(
                                   [1, self.reg_channels, 1, 1])
159
        self.proj_conv.weight.set_value(proj)
S
shangliang Xu 已提交
160
        self.proj_conv.weight.stop_gradient = True
161
        if self.eval_size:
S
shangliang Xu 已提交
162
            anchor_points, stride_tensor = self._generate_anchors()
W
wangxinxin08 已提交
163 164
            self.anchor_points = anchor_points
            self.stride_tensor = stride_tensor
S
shangliang Xu 已提交
165

166
    def forward_train(self, feats, targets, aux_pred=None):
S
shangliang Xu 已提交
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
        anchors, anchor_points, num_anchors_list, stride_tensor = \
            generate_anchors_for_grid_cell(
                feats, self.fpn_strides, self.grid_cell_scale,
                self.grid_cell_offset)

        cls_score_list, reg_distri_list = [], []
        for i, feat in enumerate(feats):
            avg_feat = F.adaptive_avg_pool2d(feat, (1, 1))
            cls_logit = self.pred_cls[i](self.stem_cls[i](feat, avg_feat) +
                                         feat)
            reg_distri = self.pred_reg[i](self.stem_reg[i](feat, avg_feat))
            # cls and reg
            cls_score = F.sigmoid(cls_logit)
            cls_score_list.append(cls_score.flatten(2).transpose([0, 2, 1]))
            reg_distri_list.append(reg_distri.flatten(2).transpose([0, 2, 1]))
        cls_score_list = paddle.concat(cls_score_list, axis=1)
        reg_distri_list = paddle.concat(reg_distri_list, axis=1)

185 186 187 188 189 190 191 192
        if targets.get('is_teacher', False):
            pred_deltas, pred_dfls = self._bbox_decode_fake(reg_distri_list)
            return cls_score_list, pred_deltas * stride_tensor, pred_dfls

        if targets.get('get_data', False):
            pred_deltas, pred_dfls = self._bbox_decode_fake(reg_distri_list)
            return cls_score_list, pred_deltas * stride_tensor, pred_dfls

S
shangliang Xu 已提交
193 194 195
        return self.get_loss([
            cls_score_list, reg_distri_list, anchors, anchor_points,
            num_anchors_list, stride_tensor
196
        ], targets, aux_pred)
S
shangliang Xu 已提交
197

S
shangliang Xu 已提交
198
    def _generate_anchors(self, feats=None, dtype='float32'):
S
shangliang Xu 已提交
199 200 201 202 203 204 205
        # just use in eval time
        anchor_points = []
        stride_tensor = []
        for i, stride in enumerate(self.fpn_strides):
            if feats is not None:
                _, _, h, w = feats[i].shape
            else:
206 207
                h = int(self.eval_size[0] / stride)
                w = int(self.eval_size[1] / stride)
S
shangliang Xu 已提交
208 209 210 211 212
            shift_x = paddle.arange(end=w) + self.grid_cell_offset
            shift_y = paddle.arange(end=h) + self.grid_cell_offset
            shift_y, shift_x = paddle.meshgrid(shift_y, shift_x)
            anchor_point = paddle.cast(
                paddle.stack(
S
shangliang Xu 已提交
213
                    [shift_x, shift_y], axis=-1), dtype=dtype)
S
shangliang Xu 已提交
214
            anchor_points.append(anchor_point.reshape([-1, 2]))
S
shangliang Xu 已提交
215
            stride_tensor.append(paddle.full([h * w, 1], stride, dtype=dtype))
S
shangliang Xu 已提交
216 217 218 219 220
        anchor_points = paddle.concat(anchor_points)
        stride_tensor = paddle.concat(stride_tensor)
        return anchor_points, stride_tensor

    def forward_eval(self, feats):
221
        if self.eval_size:
S
shangliang Xu 已提交
222 223 224 225 226
            anchor_points, stride_tensor = self.anchor_points, self.stride_tensor
        else:
            anchor_points, stride_tensor = self._generate_anchors(feats)
        cls_score_list, reg_dist_list = [], []
        for i, feat in enumerate(feats):
227
            _, _, h, w = feat.shape
S
shangliang Xu 已提交
228 229 230 231 232
            l = h * w
            avg_feat = F.adaptive_avg_pool2d(feat, (1, 1))
            cls_logit = self.pred_cls[i](self.stem_cls[i](feat, avg_feat) +
                                         feat)
            reg_dist = self.pred_reg[i](self.stem_reg[i](feat, avg_feat))
233 234
            reg_dist = reg_dist.reshape(
                [-1, 4, self.reg_channels, l]).transpose([0, 2, 3, 1])
235 236 237 238 239
            if self.use_shared_conv:
                reg_dist = self.proj_conv(F.softmax(
                    reg_dist, axis=1)).squeeze(1)
            else:
                reg_dist = F.softmax(reg_dist, axis=1)
S
shangliang Xu 已提交
240 241
            # cls and reg
            cls_score = F.sigmoid(cls_logit)
242
            cls_score_list.append(cls_score.reshape([-1, self.num_classes, l]))
243
            reg_dist_list.append(reg_dist)
S
shangliang Xu 已提交
244 245

        cls_score_list = paddle.concat(cls_score_list, axis=-1)
246 247 248 249 250
        if self.use_shared_conv:
            reg_dist_list = paddle.concat(reg_dist_list, axis=1)
        else:
            reg_dist_list = paddle.concat(reg_dist_list, axis=2)
            reg_dist_list = self.proj_conv(reg_dist_list).squeeze(1)
S
shangliang Xu 已提交
251 252 253

        return cls_score_list, reg_dist_list, anchor_points, stride_tensor

254
    def forward(self, feats, targets=None, aux_pred=None):
S
shangliang Xu 已提交
255 256 257 258
        assert len(feats) == len(self.fpn_strides), \
            "The size of feats is not equal to size of fpn_strides"

        if self.training:
259
            return self.forward_train(feats, targets, aux_pred)
S
shangliang Xu 已提交
260
        else:
261 262 263 264 265 266 267 268
            if targets is not None:
                # only for semi-det
                self.is_teacher = targets.get('is_teacher', False)
                if self.is_teacher:
                    return self.forward_train(feats, targets, aux_pred=None)
                else:
                    return self.forward_eval(feats)

S
shangliang Xu 已提交
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
            return self.forward_eval(feats)

    @staticmethod
    def _focal_loss(score, label, alpha=0.25, gamma=2.0):
        weight = (score - label).pow(gamma)
        if alpha > 0:
            alpha_t = alpha * label + (1 - alpha) * (1 - label)
            weight *= alpha_t
        loss = F.binary_cross_entropy(
            score, label, weight=weight, reduction='sum')
        return loss

    @staticmethod
    def _varifocal_loss(pred_score, gt_score, label, alpha=0.75, gamma=2.0):
        weight = alpha * pred_score.pow(gamma) * (1 - label) + gt_score * label
        loss = F.binary_cross_entropy(
            pred_score, gt_score, weight=weight, reduction='sum')
        return loss

    def _bbox_decode(self, anchor_points, pred_dist):
289
        _, l, _ = get_static_shape(pred_dist)
290
        pred_dist = F.softmax(pred_dist.reshape([-1, l, 4, self.reg_channels]))
291
        pred_dist = self.proj_conv(pred_dist.transpose([0, 3, 1, 2])).squeeze(1)
S
shangliang Xu 已提交
292 293
        return batch_distance2bbox(anchor_points, pred_dist)

294 295 296 297 298 299 300 301
    def _bbox_decode_fake(self, pred_dist):
        _, l, _ = get_static_shape(pred_dist)
        pred_dist_dfl = F.softmax(
            pred_dist.reshape([-1, l, 4, self.reg_channels]))
        pred_dist = self.proj_conv(pred_dist_dfl.transpose([0, 3, 1, 2
                                                            ])).squeeze(1)
        return pred_dist, pred_dist_dfl

S
shangliang Xu 已提交
302 303 304 305
    def _bbox2distance(self, points, bbox):
        x1y1, x2y2 = paddle.split(bbox, 2, -1)
        lt = points - x1y1
        rb = x2y2 - points
306 307
        return paddle.concat([lt, rb], -1).clip(self.reg_range[0],
                                                self.reg_range[1] - 1 - 0.01)
S
shangliang Xu 已提交
308

309 310
    def _df_loss(self, pred_dist, target, lower_bound=0):
        target_left = paddle.cast(target.floor(), 'int64')
S
shangliang Xu 已提交
311 312 313 314
        target_right = target_left + 1
        weight_left = target_right.astype('float32') - target
        weight_right = 1 - weight_left
        loss_left = F.cross_entropy(
315 316
            pred_dist, target_left - lower_bound,
            reduction='none') * weight_left
S
shangliang Xu 已提交
317
        loss_right = F.cross_entropy(
318 319
            pred_dist, target_right - lower_bound,
            reduction='none') * weight_right
S
shangliang Xu 已提交
320 321 322 323 324 325
        return (loss_left + loss_right).mean(-1, keepdim=True)

    def _bbox_loss(self, pred_dist, pred_bboxes, anchor_points, assigned_labels,
                   assigned_bboxes, assigned_scores, assigned_scores_sum):
        # select positive samples mask
        mask_positive = (assigned_labels != self.num_classes)
326
        self.distill_pairs['mask_positive_select'] = mask_positive
S
shangliang Xu 已提交
327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345
        num_pos = mask_positive.sum()
        # pos/neg loss
        if num_pos > 0:
            # l1 + iou
            bbox_mask = mask_positive.unsqueeze(-1).tile([1, 1, 4])
            pred_bboxes_pos = paddle.masked_select(pred_bboxes,
                                                   bbox_mask).reshape([-1, 4])
            assigned_bboxes_pos = paddle.masked_select(
                assigned_bboxes, bbox_mask).reshape([-1, 4])
            bbox_weight = paddle.masked_select(
                assigned_scores.sum(-1), mask_positive).unsqueeze(-1)

            loss_l1 = F.l1_loss(pred_bboxes_pos, assigned_bboxes_pos)

            loss_iou = self.iou_loss(pred_bboxes_pos,
                                     assigned_bboxes_pos) * bbox_weight
            loss_iou = loss_iou.sum() / assigned_scores_sum

            dist_mask = mask_positive.unsqueeze(-1).tile(
346
                [1, 1, self.reg_channels * 4])
S
shangliang Xu 已提交
347
            pred_dist_pos = paddle.masked_select(
348
                pred_dist, dist_mask).reshape([-1, 4, self.reg_channels])
S
shangliang Xu 已提交
349 350 351
            assigned_ltrb = self._bbox2distance(anchor_points, assigned_bboxes)
            assigned_ltrb_pos = paddle.masked_select(
                assigned_ltrb, bbox_mask).reshape([-1, 4])
352 353
            loss_dfl = self._df_loss(pred_dist_pos, assigned_ltrb_pos,
                                     self.reg_range[0]) * bbox_weight
S
shangliang Xu 已提交
354
            loss_dfl = loss_dfl.sum() / assigned_scores_sum
F
Feng Ni 已提交
355 356 357 358
            if self.for_distill:
                self.distill_pairs['pred_bboxes_pos'] = pred_bboxes_pos
                self.distill_pairs['pred_dist_pos'] = pred_dist_pos
                self.distill_pairs['bbox_weight'] = bbox_weight
S
shangliang Xu 已提交
359 360 361
        else:
            loss_l1 = paddle.zeros([1])
            loss_iou = paddle.zeros([1])
362
            loss_dfl = pred_dist.sum() * 0.
S
shangliang Xu 已提交
363 364
        return loss_l1, loss_iou, loss_dfl

365
    def get_loss(self, head_outs, gt_meta, aux_pred=None):
S
shangliang Xu 已提交
366 367 368 369 370 371
        pred_scores, pred_distri, anchors,\
        anchor_points, num_anchors_list, stride_tensor = head_outs

        anchor_points_s = anchor_points / stride_tensor
        pred_bboxes = self._bbox_decode(anchor_points_s, pred_distri)

372 373 374 375
        if aux_pred is not None:
            pred_scores_aux = aux_pred[0]
            pred_bboxes_aux = self._bbox_decode(anchor_points_s, aux_pred[1])

S
shangliang Xu 已提交
376 377 378 379 380
        gt_labels = gt_meta['gt_class']
        gt_bboxes = gt_meta['gt_bbox']
        pad_gt_mask = gt_meta['pad_gt_mask']
        # label assignment
        if gt_meta['epoch_id'] < self.static_assigner_epoch:
F
Feng Ni 已提交
381
            assigned_labels, assigned_bboxes, assigned_scores, mask_positive = \
S
shangliang Xu 已提交
382 383 384 385 386 387 388 389 390 391
                self.static_assigner(
                    anchors,
                    num_anchors_list,
                    gt_labels,
                    gt_bboxes,
                    pad_gt_mask,
                    bg_index=self.num_classes,
                    pred_bboxes=pred_bboxes.detach() * stride_tensor)
            alpha_l = 0.25
        else:
392
            if self.sm_use:
393
                # only used in smalldet of PPYOLOE-SOD model
F
Feng Ni 已提交
394
                assigned_labels, assigned_bboxes, assigned_scores, mask_positive = \
395 396 397 398 399 400 401 402 403 404
                    self.assigner(
                    pred_scores.detach(),
                    pred_bboxes.detach() * stride_tensor,
                    anchor_points,
                    stride_tensor,
                    gt_labels,
                    gt_bboxes,
                    pad_gt_mask,
                    bg_index=self.num_classes)
            else:
405
                if aux_pred is None:
F
Feng Ni 已提交
406 407 408 409 410 411 412 413 414 415 416
                    if not hasattr(self, "assigned_labels"):
                        assigned_labels, assigned_bboxes, assigned_scores, mask_positive = \
                            self.assigner(
                            pred_scores.detach(),
                            pred_bboxes.detach() * stride_tensor,
                            anchor_points,
                            num_anchors_list,
                            gt_labels,
                            gt_bboxes,
                            pad_gt_mask,
                            bg_index=self.num_classes)
417 418 419 420 421
                        if self.for_distill:
                            self.assigned_labels = assigned_labels
                            self.assigned_bboxes = assigned_bboxes
                            self.assigned_scores = assigned_scores
                            self.mask_positive = mask_positive
F
Feng Ni 已提交
422
                    else:
423
                        # only used in distill
F
Feng Ni 已提交
424 425 426 427
                        assigned_labels = self.assigned_labels
                        assigned_bboxes = self.assigned_bboxes
                        assigned_scores = self.assigned_scores
                        mask_positive = self.mask_positive
428
                else:
F
Feng Ni 已提交
429
                    assigned_labels, assigned_bboxes, assigned_scores, mask_positive = \
430 431 432 433 434 435 436 437 438
                            self.assigner(
                            pred_scores_aux.detach(),
                            pred_bboxes_aux.detach() * stride_tensor,
                            anchor_points,
                            num_anchors_list,
                            gt_labels,
                            gt_bboxes,
                            pad_gt_mask,
                            bg_index=self.num_classes)
S
shangliang Xu 已提交
439 440 441
            alpha_l = -1
        # rescale bbox
        assigned_bboxes /= stride_tensor
442 443 444

        assign_out_dict = self.get_loss_from_assign(
            pred_scores, pred_distri, pred_bboxes, anchor_points_s,
F
Feng Ni 已提交
445 446
            assigned_labels, assigned_bboxes, assigned_scores, mask_positive,
            alpha_l)
447 448 449 450

        if aux_pred is not None:
            assign_out_dict_aux = self.get_loss_from_assign(
                aux_pred[0], aux_pred[1], pred_bboxes_aux, anchor_points_s,
F
Feng Ni 已提交
451 452
                assigned_labels, assigned_bboxes, assigned_scores,
                mask_positive, alpha_l)
453 454 455 456 457 458 459 460 461 462
            loss = {}
            for key in assign_out_dict.keys():
                loss[key] = assign_out_dict[key] + assign_out_dict_aux[key]
        else:
            loss = assign_out_dict

        return loss

    def get_loss_from_assign(self, pred_scores, pred_distri, pred_bboxes,
                             anchor_points_s, assigned_labels, assigned_bboxes,
F
Feng Ni 已提交
463
                             assigned_scores, mask_positive, alpha_l):
S
shangliang Xu 已提交
464 465
        # cls loss
        if self.use_varifocal_loss:
S
shangliang Xu 已提交
466 467
            one_hot_label = F.one_hot(assigned_labels,
                                      self.num_classes + 1)[..., :-1]
S
shangliang Xu 已提交
468 469 470
            loss_cls = self._varifocal_loss(pred_scores, assigned_scores,
                                            one_hot_label)
        else:
S
shangliang Xu 已提交
471
            loss_cls = self._focal_loss(pred_scores, assigned_scores, alpha_l)
S
shangliang Xu 已提交
472 473

        assigned_scores_sum = assigned_scores.sum()
W
wangguanzhong 已提交
474
        if paddle.distributed.get_world_size() > 1:
S
shangliang Xu 已提交
475
            paddle.distributed.all_reduce(assigned_scores_sum)
476 477
            assigned_scores_sum /= paddle.distributed.get_world_size()
        assigned_scores_sum = paddle.clip(assigned_scores_sum, min=1.)
S
shangliang Xu 已提交
478 479
        loss_cls /= assigned_scores_sum

F
Feng Ni 已提交
480 481 482 483 484 485 486 487 488
        if self.for_distill:
            self.distill_pairs['pred_cls_scores'] = pred_scores
            self.distill_pairs['pos_num'] = assigned_scores_sum
            self.distill_pairs['assigned_scores'] = assigned_scores
            self.distill_pairs['mask_positive'] = mask_positive
            one_hot_label = F.one_hot(assigned_labels,
                                      self.num_classes + 1)[..., :-1]
            self.distill_pairs['target_labels'] = one_hot_label

S
shangliang Xu 已提交
489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504
        loss_l1, loss_iou, loss_dfl = \
            self._bbox_loss(pred_distri, pred_bboxes, anchor_points_s,
                            assigned_labels, assigned_bboxes, assigned_scores,
                            assigned_scores_sum)
        loss = self.loss_weight['class'] * loss_cls + \
               self.loss_weight['iou'] * loss_iou + \
               self.loss_weight['dfl'] * loss_dfl
        out_dict = {
            'loss': loss,
            'loss_cls': loss_cls,
            'loss_iou': loss_iou,
            'loss_dfl': loss_dfl,
            'loss_l1': loss_l1,
        }
        return out_dict

S
shangliang Xu 已提交
505
    def post_process(self, head_outs, scale_factor):
S
shangliang Xu 已提交
506
        pred_scores, pred_dist, anchor_points, stride_tensor = head_outs
507
        pred_bboxes = batch_distance2bbox(anchor_points, pred_dist)
S
shangliang Xu 已提交
508
        pred_bboxes *= stride_tensor
509 510
        if self.exclude_post_process:
            return paddle.concat(
F
Feng Ni 已提交
511 512
                [pred_bboxes, pred_scores.transpose([0, 2, 1])],
                axis=-1), None, None
S
shangliang Xu 已提交
513
        else:
514 515 516 517 518 519 520 521
            # scale bbox to origin
            scale_y, scale_x = paddle.split(scale_factor, 2, axis=-1)
            scale_factor = paddle.concat(
                [scale_x, scale_y, scale_x, scale_y],
                axis=-1).reshape([-1, 1, 4])
            pred_bboxes /= scale_factor
            if self.exclude_nms:
                # `exclude_nms=True` just use in benchmark
F
Feng Ni 已提交
522
                return pred_bboxes, pred_scores, None
523
            else:
F
Feng Ni 已提交
524 525
                bbox_pred, bbox_num, before_nms_indexes = self.nms(pred_bboxes,
                                                                   pred_scores)
X
xs1997zju 已提交
526
                return bbox_pred, bbox_num, before_nms_indexes
527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692


def get_activation(name="LeakyReLU"):
    if name == "silu":
        module = nn.Silu()
    elif name == "relu":
        module = nn.ReLU()
    elif name in ["LeakyReLU", 'leakyrelu', 'lrelu']:
        module = nn.LeakyReLU(0.1)
    elif name is None:
        module = nn.Identity()
    else:
        raise AttributeError("Unsupported act type: {}".format(name))
    return module


class ConvNormLayer(nn.Layer):
    def __init__(self,
                 in_channels,
                 out_channels,
                 kernel_size,
                 stride=1,
                 padding=0,
                 dilation=1,
                 groups=1,
                 norm_type='gn',
                 activation="LeakyReLU"):
        super(ConvNormLayer, self).__init__()
        assert norm_type in ['bn', 'sync_bn', 'syncbn', 'gn', None]
        self.conv = nn.Conv2D(
            in_channels,
            out_channels,
            kernel_size,
            stride=stride,
            padding=padding,
            dilation=dilation,
            groups=groups,
            bias_attr=False,
            weight_attr=ParamAttr(initializer=KaimingNormal()))

        if norm_type in ['bn', 'sync_bn', 'syncbn']:
            self.norm = nn.BatchNorm2D(out_channels)
        elif norm_type == 'gn':
            self.norm = nn.GroupNorm(num_groups=32, num_channels=out_channels)
        else:
            self.norm = None

        self.act = get_activation(activation)

    def forward(self, x):
        y = self.conv(x)
        if self.norm is not None:
            y = self.norm(y)
        y = self.act(y)
        return y


class ScaleReg(nn.Layer):
    """
    Parameter for scaling the regression outputs.
    """

    def __init__(self, scale=1.0):
        super(ScaleReg, self).__init__()
        scale = paddle.to_tensor(scale)
        self.scale = self.create_parameter(
            shape=[1],
            dtype='float32',
            default_initializer=nn.initializer.Assign(scale))

    def forward(self, x):
        return x * self.scale


@register
class SimpleConvHead(nn.Layer):
    __shared__ = ['num_classes']

    def __init__(self,
                 num_classes=80,
                 feat_in=288,
                 feat_out=288,
                 num_convs=1,
                 fpn_strides=[32, 16, 8, 4],
                 norm_type='gn',
                 act='LeakyReLU',
                 prior_prob=0.01,
                 reg_max=16):
        super(SimpleConvHead, self).__init__()
        self.num_classes = num_classes
        self.feat_in = feat_in
        self.feat_out = feat_out
        self.num_convs = num_convs
        self.fpn_strides = fpn_strides
        self.reg_max = reg_max

        self.cls_convs = nn.LayerList()
        self.reg_convs = nn.LayerList()
        for i in range(self.num_convs):
            in_c = feat_in if i == 0 else feat_out
            self.cls_convs.append(
                ConvNormLayer(
                    in_c,
                    feat_out,
                    3,
                    stride=1,
                    padding=1,
                    norm_type=norm_type,
                    activation=act))
            self.reg_convs.append(
                ConvNormLayer(
                    in_c,
                    feat_out,
                    3,
                    stride=1,
                    padding=1,
                    norm_type=norm_type,
                    activation=act))

        bias_cls = bias_init_with_prob(prior_prob)
        self.gfl_cls = nn.Conv2D(
            feat_out,
            self.num_classes,
            kernel_size=3,
            stride=1,
            padding=1,
            weight_attr=ParamAttr(initializer=Normal(
                mean=0.0, std=0.01)),
            bias_attr=ParamAttr(initializer=Constant(value=bias_cls)))
        self.gfl_reg = nn.Conv2D(
            feat_out,
            4 * (self.reg_max + 1),
            kernel_size=3,
            stride=1,
            padding=1,
            weight_attr=ParamAttr(initializer=Normal(
                mean=0.0, std=0.01)),
            bias_attr=ParamAttr(initializer=Constant(value=0)))

        self.scales = nn.LayerList()
        for i in range(len(self.fpn_strides)):
            self.scales.append(ScaleReg(1.0))

    def forward(self, feats):
        cls_scores = []
        bbox_preds = []
        for x, scale in zip(feats, self.scales):
            cls_feat = x
            reg_feat = x
            for cls_conv in self.cls_convs:
                cls_feat = cls_conv(cls_feat)
            for reg_conv in self.reg_convs:
                reg_feat = reg_conv(reg_feat)

            cls_score = self.gfl_cls(cls_feat)
            cls_score = F.sigmoid(cls_score)
            cls_score = cls_score.flatten(2).transpose([0, 2, 1])
            cls_scores.append(cls_score)

            bbox_pred = scale(self.gfl_reg(reg_feat))
            bbox_pred = bbox_pred.flatten(2).transpose([0, 2, 1])
            bbox_preds.append(bbox_pred)

        cls_scores = paddle.concat(cls_scores, axis=1)
        bbox_preds = paddle.concat(bbox_preds, axis=1)
        return cls_scores, bbox_preds