ppyoloe_head.py 24.4 KB
Newer Older
S
shangliang Xu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from ppdet.core.workspace import register
19 20 21
from paddle import ParamAttr
from paddle.nn.initializer import KaimingNormal
from paddle.nn.initializer import Normal, Constant
S
shangliang Xu 已提交
22 23 24 25 26

from ..bbox_utils import batch_distance2bbox
from ..losses import GIoULoss
from ..initializer import bias_init_with_prob, constant_, normal_
from ..assigners.utils import generate_anchors_for_grid_cell
27
from ppdet.modeling.backbones.cspresnet import ConvBNLayer, RepVggBlock
W
wangguanzhong 已提交
28
from ppdet.modeling.ops import get_static_shape, get_act_fn
W
wangxinxin08 已提交
29
from ppdet.modeling.layers import MultiClassNMS
S
shangliang Xu 已提交
30

31
__all__ = ['PPYOLOEHead', 'SimpleConvHead']
S
shangliang Xu 已提交
32 33 34


class ESEAttn(nn.Layer):
35
    def __init__(self, feat_channels, act='swish', attn_conv='convbn'):
S
shangliang Xu 已提交
36 37
        super(ESEAttn, self).__init__()
        self.fc = nn.Conv2D(feat_channels, feat_channels, 1)
38 39 40 41
        if attn_conv == 'convbn':
            self.conv = ConvBNLayer(feat_channels, feat_channels, 1, act=act)
        else:
            self.conv = RepVggBlock(feat_channels, feat_channels, act=act)
S
shangliang Xu 已提交
42 43 44 45 46 47 48 49 50 51 52
        self._init_weights()

    def _init_weights(self):
        normal_(self.fc.weight, std=0.001)

    def forward(self, feat, avg_feat):
        weight = F.sigmoid(self.fc(avg_feat))
        return self.conv(feat * weight)


@register
S
shangliang Xu 已提交
53
class PPYOLOEHead(nn.Layer):
54
    __shared__ = [
55 56
        'num_classes', 'eval_size', 'trt', 'exclude_nms',
        'exclude_post_process', 'use_shared_conv'
57
    ]
S
shangliang Xu 已提交
58 59 60 61 62 63 64 65 66 67
    __inject__ = ['static_assigner', 'assigner', 'nms']

    def __init__(self,
                 in_channels=[1024, 512, 256],
                 num_classes=80,
                 act='swish',
                 fpn_strides=(32, 16, 8),
                 grid_cell_scale=5.0,
                 grid_cell_offset=0.5,
                 reg_max=16,
68
                 reg_range=None,
S
shangliang Xu 已提交
69 70 71 72 73
                 static_assigner_epoch=4,
                 use_varifocal_loss=True,
                 static_assigner='ATSSAssigner',
                 assigner='TaskAlignedAssigner',
                 nms='MultiClassNMS',
74
                 eval_size=None,
S
shangliang Xu 已提交
75 76 77 78 79
                 loss_weight={
                     'class': 1.0,
                     'iou': 2.5,
                     'dfl': 0.5,
                 },
S
shangliang Xu 已提交
80
                 trt=False,
81
                 attn_conv='convbn',
82
                 exclude_nms=False,
83 84
                 exclude_post_process=False,
                 use_shared_conv=True):
S
shangliang Xu 已提交
85
        super(PPYOLOEHead, self).__init__()
S
shangliang Xu 已提交
86 87 88 89 90 91
        assert len(in_channels) > 0, "len(in_channels) should > 0"
        self.in_channels = in_channels
        self.num_classes = num_classes
        self.fpn_strides = fpn_strides
        self.grid_cell_scale = grid_cell_scale
        self.grid_cell_offset = grid_cell_offset
92 93 94 95
        if reg_range:
            self.sm_use = True
            self.reg_range = reg_range
        else:
96
            self.sm_use = False
97 98
            self.reg_range = (0, reg_max + 1)
        self.reg_channels = self.reg_range[1] - self.reg_range[0]
S
shangliang Xu 已提交
99 100 101
        self.iou_loss = GIoULoss()
        self.loss_weight = loss_weight
        self.use_varifocal_loss = use_varifocal_loss
102
        self.eval_size = eval_size
S
shangliang Xu 已提交
103 104 105 106 107

        self.static_assigner_epoch = static_assigner_epoch
        self.static_assigner = static_assigner
        self.assigner = assigner
        self.nms = nms
W
wangxinxin08 已提交
108 109
        if isinstance(self.nms, MultiClassNMS) and trt:
            self.nms.trt = trt
S
shangliang Xu 已提交
110
        self.exclude_nms = exclude_nms
111
        self.exclude_post_process = exclude_post_process
112 113
        self.use_shared_conv = use_shared_conv

S
shangliang Xu 已提交
114 115 116 117 118 119 120
        # stem
        self.stem_cls = nn.LayerList()
        self.stem_reg = nn.LayerList()
        act = get_act_fn(
            act, trt=trt) if act is None or isinstance(act,
                                                       (str, dict)) else act
        for in_c in self.in_channels:
121 122
            self.stem_cls.append(ESEAttn(in_c, act=act, attn_conv=attn_conv))
            self.stem_reg.append(ESEAttn(in_c, act=act, attn_conv=attn_conv))
S
shangliang Xu 已提交
123 124 125 126 127 128 129 130 131
        # pred head
        self.pred_cls = nn.LayerList()
        self.pred_reg = nn.LayerList()
        for in_c in self.in_channels:
            self.pred_cls.append(
                nn.Conv2D(
                    in_c, self.num_classes, 3, padding=1))
            self.pred_reg.append(
                nn.Conv2D(
132
                    in_c, 4 * self.reg_channels, 3, padding=1))
S
shangliang Xu 已提交
133
        # projection conv
134
        self.proj_conv = nn.Conv2D(self.reg_channels, 1, 1, bias_attr=False)
135
        self.proj_conv.skip_quant = True
S
shangliang Xu 已提交
136 137 138 139 140 141 142 143 144 145 146 147 148 149
        self._init_weights()

    @classmethod
    def from_config(cls, cfg, input_shape):
        return {'in_channels': [i.channels for i in input_shape], }

    def _init_weights(self):
        bias_cls = bias_init_with_prob(0.01)
        for cls_, reg_ in zip(self.pred_cls, self.pred_reg):
            constant_(cls_.weight)
            constant_(cls_.bias, bias_cls)
            constant_(reg_.weight)
            constant_(reg_.bias, 1.0)

150 151 152
        proj = paddle.linspace(self.reg_range[0], self.reg_range[1] - 1,
                               self.reg_channels).reshape(
                                   [1, self.reg_channels, 1, 1])
153
        self.proj_conv.weight.set_value(proj)
S
shangliang Xu 已提交
154
        self.proj_conv.weight.stop_gradient = True
155
        if self.eval_size:
S
shangliang Xu 已提交
156
            anchor_points, stride_tensor = self._generate_anchors()
W
wangxinxin08 已提交
157 158
            self.anchor_points = anchor_points
            self.stride_tensor = stride_tensor
S
shangliang Xu 已提交
159

160
    def forward_train(self, feats, targets, aux_pred=None):
S
shangliang Xu 已提交
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
        anchors, anchor_points, num_anchors_list, stride_tensor = \
            generate_anchors_for_grid_cell(
                feats, self.fpn_strides, self.grid_cell_scale,
                self.grid_cell_offset)

        cls_score_list, reg_distri_list = [], []
        for i, feat in enumerate(feats):
            avg_feat = F.adaptive_avg_pool2d(feat, (1, 1))
            cls_logit = self.pred_cls[i](self.stem_cls[i](feat, avg_feat) +
                                         feat)
            reg_distri = self.pred_reg[i](self.stem_reg[i](feat, avg_feat))
            # cls and reg
            cls_score = F.sigmoid(cls_logit)
            cls_score_list.append(cls_score.flatten(2).transpose([0, 2, 1]))
            reg_distri_list.append(reg_distri.flatten(2).transpose([0, 2, 1]))
        cls_score_list = paddle.concat(cls_score_list, axis=1)
        reg_distri_list = paddle.concat(reg_distri_list, axis=1)

        return self.get_loss([
            cls_score_list, reg_distri_list, anchors, anchor_points,
            num_anchors_list, stride_tensor
182
        ], targets, aux_pred)
S
shangliang Xu 已提交
183

S
shangliang Xu 已提交
184
    def _generate_anchors(self, feats=None, dtype='float32'):
S
shangliang Xu 已提交
185 186 187 188 189 190 191
        # just use in eval time
        anchor_points = []
        stride_tensor = []
        for i, stride in enumerate(self.fpn_strides):
            if feats is not None:
                _, _, h, w = feats[i].shape
            else:
192 193
                h = int(self.eval_size[0] / stride)
                w = int(self.eval_size[1] / stride)
S
shangliang Xu 已提交
194 195 196 197 198
            shift_x = paddle.arange(end=w) + self.grid_cell_offset
            shift_y = paddle.arange(end=h) + self.grid_cell_offset
            shift_y, shift_x = paddle.meshgrid(shift_y, shift_x)
            anchor_point = paddle.cast(
                paddle.stack(
S
shangliang Xu 已提交
199
                    [shift_x, shift_y], axis=-1), dtype=dtype)
S
shangliang Xu 已提交
200
            anchor_points.append(anchor_point.reshape([-1, 2]))
S
shangliang Xu 已提交
201
            stride_tensor.append(paddle.full([h * w, 1], stride, dtype=dtype))
S
shangliang Xu 已提交
202 203 204 205 206
        anchor_points = paddle.concat(anchor_points)
        stride_tensor = paddle.concat(stride_tensor)
        return anchor_points, stride_tensor

    def forward_eval(self, feats):
207
        if self.eval_size:
S
shangliang Xu 已提交
208 209 210 211 212
            anchor_points, stride_tensor = self.anchor_points, self.stride_tensor
        else:
            anchor_points, stride_tensor = self._generate_anchors(feats)
        cls_score_list, reg_dist_list = [], []
        for i, feat in enumerate(feats):
213
            _, _, h, w = feat.shape
S
shangliang Xu 已提交
214 215 216 217 218
            l = h * w
            avg_feat = F.adaptive_avg_pool2d(feat, (1, 1))
            cls_logit = self.pred_cls[i](self.stem_cls[i](feat, avg_feat) +
                                         feat)
            reg_dist = self.pred_reg[i](self.stem_reg[i](feat, avg_feat))
219 220
            reg_dist = reg_dist.reshape(
                [-1, 4, self.reg_channels, l]).transpose([0, 2, 3, 1])
221 222 223 224 225
            if self.use_shared_conv:
                reg_dist = self.proj_conv(F.softmax(
                    reg_dist, axis=1)).squeeze(1)
            else:
                reg_dist = F.softmax(reg_dist, axis=1)
S
shangliang Xu 已提交
226 227
            # cls and reg
            cls_score = F.sigmoid(cls_logit)
228
            cls_score_list.append(cls_score.reshape([-1, self.num_classes, l]))
229
            reg_dist_list.append(reg_dist)
S
shangliang Xu 已提交
230 231

        cls_score_list = paddle.concat(cls_score_list, axis=-1)
232 233 234 235 236
        if self.use_shared_conv:
            reg_dist_list = paddle.concat(reg_dist_list, axis=1)
        else:
            reg_dist_list = paddle.concat(reg_dist_list, axis=2)
            reg_dist_list = self.proj_conv(reg_dist_list).squeeze(1)
S
shangliang Xu 已提交
237 238 239

        return cls_score_list, reg_dist_list, anchor_points, stride_tensor

240
    def forward(self, feats, targets=None, aux_pred=None):
S
shangliang Xu 已提交
241 242 243 244
        assert len(feats) == len(self.fpn_strides), \
            "The size of feats is not equal to size of fpn_strides"

        if self.training:
245
            return self.forward_train(feats, targets, aux_pred)
S
shangliang Xu 已提交
246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
        else:
            return self.forward_eval(feats)

    @staticmethod
    def _focal_loss(score, label, alpha=0.25, gamma=2.0):
        weight = (score - label).pow(gamma)
        if alpha > 0:
            alpha_t = alpha * label + (1 - alpha) * (1 - label)
            weight *= alpha_t
        loss = F.binary_cross_entropy(
            score, label, weight=weight, reduction='sum')
        return loss

    @staticmethod
    def _varifocal_loss(pred_score, gt_score, label, alpha=0.75, gamma=2.0):
        weight = alpha * pred_score.pow(gamma) * (1 - label) + gt_score * label
        loss = F.binary_cross_entropy(
            pred_score, gt_score, weight=weight, reduction='sum')
        return loss

    def _bbox_decode(self, anchor_points, pred_dist):
267
        _, l, _ = get_static_shape(pred_dist)
268
        pred_dist = F.softmax(pred_dist.reshape([-1, l, 4, self.reg_channels]))
269
        pred_dist = self.proj_conv(pred_dist.transpose([0, 3, 1, 2])).squeeze(1)
S
shangliang Xu 已提交
270 271 272 273 274 275
        return batch_distance2bbox(anchor_points, pred_dist)

    def _bbox2distance(self, points, bbox):
        x1y1, x2y2 = paddle.split(bbox, 2, -1)
        lt = points - x1y1
        rb = x2y2 - points
276 277
        return paddle.concat([lt, rb], -1).clip(self.reg_range[0],
                                                self.reg_range[1] - 1 - 0.01)
S
shangliang Xu 已提交
278

279 280
    def _df_loss(self, pred_dist, target, lower_bound=0):
        target_left = paddle.cast(target.floor(), 'int64')
S
shangliang Xu 已提交
281 282 283 284
        target_right = target_left + 1
        weight_left = target_right.astype('float32') - target
        weight_right = 1 - weight_left
        loss_left = F.cross_entropy(
285 286
            pred_dist, target_left - lower_bound,
            reduction='none') * weight_left
S
shangliang Xu 已提交
287
        loss_right = F.cross_entropy(
288 289
            pred_dist, target_right - lower_bound,
            reduction='none') * weight_right
S
shangliang Xu 已提交
290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
        return (loss_left + loss_right).mean(-1, keepdim=True)

    def _bbox_loss(self, pred_dist, pred_bboxes, anchor_points, assigned_labels,
                   assigned_bboxes, assigned_scores, assigned_scores_sum):
        # select positive samples mask
        mask_positive = (assigned_labels != self.num_classes)
        num_pos = mask_positive.sum()
        # pos/neg loss
        if num_pos > 0:
            # l1 + iou
            bbox_mask = mask_positive.unsqueeze(-1).tile([1, 1, 4])
            pred_bboxes_pos = paddle.masked_select(pred_bboxes,
                                                   bbox_mask).reshape([-1, 4])
            assigned_bboxes_pos = paddle.masked_select(
                assigned_bboxes, bbox_mask).reshape([-1, 4])
            bbox_weight = paddle.masked_select(
                assigned_scores.sum(-1), mask_positive).unsqueeze(-1)

            loss_l1 = F.l1_loss(pred_bboxes_pos, assigned_bboxes_pos)

            loss_iou = self.iou_loss(pred_bboxes_pos,
                                     assigned_bboxes_pos) * bbox_weight
            loss_iou = loss_iou.sum() / assigned_scores_sum

            dist_mask = mask_positive.unsqueeze(-1).tile(
315
                [1, 1, self.reg_channels * 4])
S
shangliang Xu 已提交
316
            pred_dist_pos = paddle.masked_select(
317
                pred_dist, dist_mask).reshape([-1, 4, self.reg_channels])
S
shangliang Xu 已提交
318 319 320
            assigned_ltrb = self._bbox2distance(anchor_points, assigned_bboxes)
            assigned_ltrb_pos = paddle.masked_select(
                assigned_ltrb, bbox_mask).reshape([-1, 4])
321 322
            loss_dfl = self._df_loss(pred_dist_pos, assigned_ltrb_pos,
                                     self.reg_range[0]) * bbox_weight
S
shangliang Xu 已提交
323 324 325 326
            loss_dfl = loss_dfl.sum() / assigned_scores_sum
        else:
            loss_l1 = paddle.zeros([1])
            loss_iou = paddle.zeros([1])
327
            loss_dfl = pred_dist.sum() * 0.
S
shangliang Xu 已提交
328 329
        return loss_l1, loss_iou, loss_dfl

330
    def get_loss(self, head_outs, gt_meta, aux_pred=None):
S
shangliang Xu 已提交
331 332 333 334 335 336
        pred_scores, pred_distri, anchors,\
        anchor_points, num_anchors_list, stride_tensor = head_outs

        anchor_points_s = anchor_points / stride_tensor
        pred_bboxes = self._bbox_decode(anchor_points_s, pred_distri)

337 338 339 340
        if aux_pred is not None:
            pred_scores_aux = aux_pred[0]
            pred_bboxes_aux = self._bbox_decode(anchor_points_s, aux_pred[1])

S
shangliang Xu 已提交
341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
        gt_labels = gt_meta['gt_class']
        gt_bboxes = gt_meta['gt_bbox']
        pad_gt_mask = gt_meta['pad_gt_mask']
        # label assignment
        if gt_meta['epoch_id'] < self.static_assigner_epoch:
            assigned_labels, assigned_bboxes, assigned_scores = \
                self.static_assigner(
                    anchors,
                    num_anchors_list,
                    gt_labels,
                    gt_bboxes,
                    pad_gt_mask,
                    bg_index=self.num_classes,
                    pred_bboxes=pred_bboxes.detach() * stride_tensor)
            alpha_l = 0.25
        else:
357
            if self.sm_use:
358
                # only used in smalldet of PPYOLOE-SOD model
359 360 361 362 363 364 365 366 367 368 369
                assigned_labels, assigned_bboxes, assigned_scores = \
                    self.assigner(
                    pred_scores.detach(),
                    pred_bboxes.detach() * stride_tensor,
                    anchor_points,
                    stride_tensor,
                    gt_labels,
                    gt_bboxes,
                    pad_gt_mask,
                    bg_index=self.num_classes)
            else:
370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
                if aux_pred is None:
                    assigned_labels, assigned_bboxes, assigned_scores = \
                        self.assigner(
                        pred_scores.detach(),
                        pred_bboxes.detach() * stride_tensor,
                        anchor_points,
                        num_anchors_list,
                        gt_labels,
                        gt_bboxes,
                        pad_gt_mask,
                        bg_index=self.num_classes)
                else:
                    assigned_labels, assigned_bboxes, assigned_scores = \
                            self.assigner(
                            pred_scores_aux.detach(),
                            pred_bboxes_aux.detach() * stride_tensor,
                            anchor_points,
                            num_anchors_list,
                            gt_labels,
                            gt_bboxes,
                            pad_gt_mask,
                            bg_index=self.num_classes)
S
shangliang Xu 已提交
392 393 394
            alpha_l = -1
        # rescale bbox
        assigned_bboxes /= stride_tensor
395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414

        assign_out_dict = self.get_loss_from_assign(
            pred_scores, pred_distri, pred_bboxes, anchor_points_s,
            assigned_labels, assigned_bboxes, assigned_scores, alpha_l)

        if aux_pred is not None:
            assign_out_dict_aux = self.get_loss_from_assign(
                aux_pred[0], aux_pred[1], pred_bboxes_aux, anchor_points_s,
                assigned_labels, assigned_bboxes, assigned_scores, alpha_l)
            loss = {}
            for key in assign_out_dict.keys():
                loss[key] = assign_out_dict[key] + assign_out_dict_aux[key]
        else:
            loss = assign_out_dict

        return loss

    def get_loss_from_assign(self, pred_scores, pred_distri, pred_bboxes,
                             anchor_points_s, assigned_labels, assigned_bboxes,
                             assigned_scores, alpha_l):
S
shangliang Xu 已提交
415 416
        # cls loss
        if self.use_varifocal_loss:
S
shangliang Xu 已提交
417 418
            one_hot_label = F.one_hot(assigned_labels,
                                      self.num_classes + 1)[..., :-1]
S
shangliang Xu 已提交
419 420 421
            loss_cls = self._varifocal_loss(pred_scores, assigned_scores,
                                            one_hot_label)
        else:
S
shangliang Xu 已提交
422
            loss_cls = self._focal_loss(pred_scores, assigned_scores, alpha_l)
S
shangliang Xu 已提交
423 424

        assigned_scores_sum = assigned_scores.sum()
W
wangguanzhong 已提交
425
        if paddle.distributed.get_world_size() > 1:
S
shangliang Xu 已提交
426
            paddle.distributed.all_reduce(assigned_scores_sum)
427 428
            assigned_scores_sum /= paddle.distributed.get_world_size()
        assigned_scores_sum = paddle.clip(assigned_scores_sum, min=1.)
S
shangliang Xu 已提交
429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
        loss_cls /= assigned_scores_sum

        loss_l1, loss_iou, loss_dfl = \
            self._bbox_loss(pred_distri, pred_bboxes, anchor_points_s,
                            assigned_labels, assigned_bboxes, assigned_scores,
                            assigned_scores_sum)
        loss = self.loss_weight['class'] * loss_cls + \
               self.loss_weight['iou'] * loss_iou + \
               self.loss_weight['dfl'] * loss_dfl
        out_dict = {
            'loss': loss,
            'loss_cls': loss_cls,
            'loss_iou': loss_iou,
            'loss_dfl': loss_dfl,
            'loss_l1': loss_l1,
        }
        return out_dict

S
shangliang Xu 已提交
447
    def post_process(self, head_outs, scale_factor):
S
shangliang Xu 已提交
448
        pred_scores, pred_dist, anchor_points, stride_tensor = head_outs
449
        pred_bboxes = batch_distance2bbox(anchor_points, pred_dist)
S
shangliang Xu 已提交
450
        pred_bboxes *= stride_tensor
451 452 453
        if self.exclude_post_process:
            return paddle.concat(
                [pred_bboxes, pred_scores.transpose([0, 2, 1])], axis=-1), None
S
shangliang Xu 已提交
454
        else:
455 456 457 458 459 460 461 462 463 464
            # scale bbox to origin
            scale_y, scale_x = paddle.split(scale_factor, 2, axis=-1)
            scale_factor = paddle.concat(
                [scale_x, scale_y, scale_x, scale_y],
                axis=-1).reshape([-1, 1, 4])
            pred_bboxes /= scale_factor
            if self.exclude_nms:
                # `exclude_nms=True` just use in benchmark
                return pred_bboxes, pred_scores
            else:
X
xs1997zju 已提交
465 466
                bbox_pred, bbox_num, before_nms_indexes = self.nms(pred_bboxes, pred_scores)
                return bbox_pred, bbox_num, before_nms_indexes
467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632


def get_activation(name="LeakyReLU"):
    if name == "silu":
        module = nn.Silu()
    elif name == "relu":
        module = nn.ReLU()
    elif name in ["LeakyReLU", 'leakyrelu', 'lrelu']:
        module = nn.LeakyReLU(0.1)
    elif name is None:
        module = nn.Identity()
    else:
        raise AttributeError("Unsupported act type: {}".format(name))
    return module


class ConvNormLayer(nn.Layer):
    def __init__(self,
                 in_channels,
                 out_channels,
                 kernel_size,
                 stride=1,
                 padding=0,
                 dilation=1,
                 groups=1,
                 norm_type='gn',
                 activation="LeakyReLU"):
        super(ConvNormLayer, self).__init__()
        assert norm_type in ['bn', 'sync_bn', 'syncbn', 'gn', None]
        self.conv = nn.Conv2D(
            in_channels,
            out_channels,
            kernel_size,
            stride=stride,
            padding=padding,
            dilation=dilation,
            groups=groups,
            bias_attr=False,
            weight_attr=ParamAttr(initializer=KaimingNormal()))

        if norm_type in ['bn', 'sync_bn', 'syncbn']:
            self.norm = nn.BatchNorm2D(out_channels)
        elif norm_type == 'gn':
            self.norm = nn.GroupNorm(num_groups=32, num_channels=out_channels)
        else:
            self.norm = None

        self.act = get_activation(activation)

    def forward(self, x):
        y = self.conv(x)
        if self.norm is not None:
            y = self.norm(y)
        y = self.act(y)
        return y


class ScaleReg(nn.Layer):
    """
    Parameter for scaling the regression outputs.
    """

    def __init__(self, scale=1.0):
        super(ScaleReg, self).__init__()
        scale = paddle.to_tensor(scale)
        self.scale = self.create_parameter(
            shape=[1],
            dtype='float32',
            default_initializer=nn.initializer.Assign(scale))

    def forward(self, x):
        return x * self.scale


@register
class SimpleConvHead(nn.Layer):
    __shared__ = ['num_classes']

    def __init__(self,
                 num_classes=80,
                 feat_in=288,
                 feat_out=288,
                 num_convs=1,
                 fpn_strides=[32, 16, 8, 4],
                 norm_type='gn',
                 act='LeakyReLU',
                 prior_prob=0.01,
                 reg_max=16):
        super(SimpleConvHead, self).__init__()
        self.num_classes = num_classes
        self.feat_in = feat_in
        self.feat_out = feat_out
        self.num_convs = num_convs
        self.fpn_strides = fpn_strides
        self.reg_max = reg_max

        self.cls_convs = nn.LayerList()
        self.reg_convs = nn.LayerList()
        for i in range(self.num_convs):
            in_c = feat_in if i == 0 else feat_out
            self.cls_convs.append(
                ConvNormLayer(
                    in_c,
                    feat_out,
                    3,
                    stride=1,
                    padding=1,
                    norm_type=norm_type,
                    activation=act))
            self.reg_convs.append(
                ConvNormLayer(
                    in_c,
                    feat_out,
                    3,
                    stride=1,
                    padding=1,
                    norm_type=norm_type,
                    activation=act))

        bias_cls = bias_init_with_prob(prior_prob)
        self.gfl_cls = nn.Conv2D(
            feat_out,
            self.num_classes,
            kernel_size=3,
            stride=1,
            padding=1,
            weight_attr=ParamAttr(initializer=Normal(
                mean=0.0, std=0.01)),
            bias_attr=ParamAttr(initializer=Constant(value=bias_cls)))
        self.gfl_reg = nn.Conv2D(
            feat_out,
            4 * (self.reg_max + 1),
            kernel_size=3,
            stride=1,
            padding=1,
            weight_attr=ParamAttr(initializer=Normal(
                mean=0.0, std=0.01)),
            bias_attr=ParamAttr(initializer=Constant(value=0)))

        self.scales = nn.LayerList()
        for i in range(len(self.fpn_strides)):
            self.scales.append(ScaleReg(1.0))

    def forward(self, feats):
        cls_scores = []
        bbox_preds = []
        for x, scale in zip(feats, self.scales):
            cls_feat = x
            reg_feat = x
            for cls_conv in self.cls_convs:
                cls_feat = cls_conv(cls_feat)
            for reg_conv in self.reg_convs:
                reg_feat = reg_conv(reg_feat)

            cls_score = self.gfl_cls(cls_feat)
            cls_score = F.sigmoid(cls_score)
            cls_score = cls_score.flatten(2).transpose([0, 2, 1])
            cls_scores.append(cls_score)

            bbox_pred = scale(self.gfl_reg(reg_feat))
            bbox_pred = bbox_pred.flatten(2).transpose([0, 2, 1])
            bbox_preds.append(bbox_pred)

        cls_scores = paddle.concat(cls_scores, axis=1)
        bbox_preds = paddle.concat(bbox_preds, axis=1)
        return cls_scores, bbox_preds