ppyoloe_head.py 17.2 KB
Newer Older
S
shangliang Xu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from ppdet.core.workspace import register

from ..bbox_utils import batch_distance2bbox
from ..losses import GIoULoss
from ..initializer import bias_init_with_prob, constant_, normal_
from ..assigners.utils import generate_anchors_for_grid_cell
from ppdet.modeling.backbones.cspresnet import ConvBNLayer
W
wangguanzhong 已提交
25
from ppdet.modeling.ops import get_static_shape, get_act_fn
W
wangxinxin08 已提交
26
from ppdet.modeling.layers import MultiClassNMS
S
shangliang Xu 已提交
27

S
shangliang Xu 已提交
28
__all__ = ['PPYOLOEHead']
S
shangliang Xu 已提交
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47


class ESEAttn(nn.Layer):
    def __init__(self, feat_channels, act='swish'):
        super(ESEAttn, self).__init__()
        self.fc = nn.Conv2D(feat_channels, feat_channels, 1)
        self.conv = ConvBNLayer(feat_channels, feat_channels, 1, act=act)

        self._init_weights()

    def _init_weights(self):
        normal_(self.fc.weight, std=0.001)

    def forward(self, feat, avg_feat):
        weight = F.sigmoid(self.fc(avg_feat))
        return self.conv(feat * weight)


@register
S
shangliang Xu 已提交
48
class PPYOLOEHead(nn.Layer):
49
    __shared__ = [
50 51
        'num_classes', 'eval_size', 'trt', 'exclude_nms',
        'exclude_post_process', 'use_shared_conv'
52
    ]
S
shangliang Xu 已提交
53 54 55 56 57 58 59 60 61 62
    __inject__ = ['static_assigner', 'assigner', 'nms']

    def __init__(self,
                 in_channels=[1024, 512, 256],
                 num_classes=80,
                 act='swish',
                 fpn_strides=(32, 16, 8),
                 grid_cell_scale=5.0,
                 grid_cell_offset=0.5,
                 reg_max=16,
63
                 reg_range=None,
S
shangliang Xu 已提交
64 65 66 67 68
                 static_assigner_epoch=4,
                 use_varifocal_loss=True,
                 static_assigner='ATSSAssigner',
                 assigner='TaskAlignedAssigner',
                 nms='MultiClassNMS',
69
                 eval_size=None,
S
shangliang Xu 已提交
70 71 72 73 74
                 loss_weight={
                     'class': 1.0,
                     'iou': 2.5,
                     'dfl': 0.5,
                 },
S
shangliang Xu 已提交
75
                 trt=False,
76
                 exclude_nms=False,
77 78
                 exclude_post_process=False,
                 use_shared_conv=True):
S
shangliang Xu 已提交
79
        super(PPYOLOEHead, self).__init__()
S
shangliang Xu 已提交
80 81 82 83 84 85
        assert len(in_channels) > 0, "len(in_channels) should > 0"
        self.in_channels = in_channels
        self.num_classes = num_classes
        self.fpn_strides = fpn_strides
        self.grid_cell_scale = grid_cell_scale
        self.grid_cell_offset = grid_cell_offset
86 87 88 89
        if reg_range:
            self.sm_use = True
            self.reg_range = reg_range
        else:
90
            self.sm_use = False
91 92
            self.reg_range = (0, reg_max + 1)
        self.reg_channels = self.reg_range[1] - self.reg_range[0]
S
shangliang Xu 已提交
93 94 95
        self.iou_loss = GIoULoss()
        self.loss_weight = loss_weight
        self.use_varifocal_loss = use_varifocal_loss
96
        self.eval_size = eval_size
S
shangliang Xu 已提交
97 98 99 100 101

        self.static_assigner_epoch = static_assigner_epoch
        self.static_assigner = static_assigner
        self.assigner = assigner
        self.nms = nms
W
wangxinxin08 已提交
102 103
        if isinstance(self.nms, MultiClassNMS) and trt:
            self.nms.trt = trt
S
shangliang Xu 已提交
104
        self.exclude_nms = exclude_nms
105
        self.exclude_post_process = exclude_post_process
106 107
        self.use_shared_conv = use_shared_conv

S
shangliang Xu 已提交
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
        # stem
        self.stem_cls = nn.LayerList()
        self.stem_reg = nn.LayerList()
        act = get_act_fn(
            act, trt=trt) if act is None or isinstance(act,
                                                       (str, dict)) else act
        for in_c in self.in_channels:
            self.stem_cls.append(ESEAttn(in_c, act=act))
            self.stem_reg.append(ESEAttn(in_c, act=act))
        # pred head
        self.pred_cls = nn.LayerList()
        self.pred_reg = nn.LayerList()
        for in_c in self.in_channels:
            self.pred_cls.append(
                nn.Conv2D(
                    in_c, self.num_classes, 3, padding=1))
            self.pred_reg.append(
                nn.Conv2D(
126
                    in_c, 4 * self.reg_channels, 3, padding=1))
S
shangliang Xu 已提交
127
        # projection conv
128
        self.proj_conv = nn.Conv2D(self.reg_channels, 1, 1, bias_attr=False)
129
        self.proj_conv.skip_quant = True
S
shangliang Xu 已提交
130 131 132 133 134 135 136 137 138 139 140 141 142 143
        self._init_weights()

    @classmethod
    def from_config(cls, cfg, input_shape):
        return {'in_channels': [i.channels for i in input_shape], }

    def _init_weights(self):
        bias_cls = bias_init_with_prob(0.01)
        for cls_, reg_ in zip(self.pred_cls, self.pred_reg):
            constant_(cls_.weight)
            constant_(cls_.bias, bias_cls)
            constant_(reg_.weight)
            constant_(reg_.bias, 1.0)

144 145 146
        proj = paddle.linspace(self.reg_range[0], self.reg_range[1] - 1,
                               self.reg_channels).reshape(
                                   [1, self.reg_channels, 1, 1])
147
        self.proj_conv.weight.set_value(proj)
S
shangliang Xu 已提交
148
        self.proj_conv.weight.stop_gradient = True
149
        if self.eval_size:
S
shangliang Xu 已提交
150
            anchor_points, stride_tensor = self._generate_anchors()
W
wangxinxin08 已提交
151 152
            self.anchor_points = anchor_points
            self.stride_tensor = stride_tensor
S
shangliang Xu 已提交
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177

    def forward_train(self, feats, targets):
        anchors, anchor_points, num_anchors_list, stride_tensor = \
            generate_anchors_for_grid_cell(
                feats, self.fpn_strides, self.grid_cell_scale,
                self.grid_cell_offset)

        cls_score_list, reg_distri_list = [], []
        for i, feat in enumerate(feats):
            avg_feat = F.adaptive_avg_pool2d(feat, (1, 1))
            cls_logit = self.pred_cls[i](self.stem_cls[i](feat, avg_feat) +
                                         feat)
            reg_distri = self.pred_reg[i](self.stem_reg[i](feat, avg_feat))
            # cls and reg
            cls_score = F.sigmoid(cls_logit)
            cls_score_list.append(cls_score.flatten(2).transpose([0, 2, 1]))
            reg_distri_list.append(reg_distri.flatten(2).transpose([0, 2, 1]))
        cls_score_list = paddle.concat(cls_score_list, axis=1)
        reg_distri_list = paddle.concat(reg_distri_list, axis=1)

        return self.get_loss([
            cls_score_list, reg_distri_list, anchors, anchor_points,
            num_anchors_list, stride_tensor
        ], targets)

S
shangliang Xu 已提交
178
    def _generate_anchors(self, feats=None, dtype='float32'):
S
shangliang Xu 已提交
179 180 181 182 183 184 185
        # just use in eval time
        anchor_points = []
        stride_tensor = []
        for i, stride in enumerate(self.fpn_strides):
            if feats is not None:
                _, _, h, w = feats[i].shape
            else:
186 187
                h = int(self.eval_size[0] / stride)
                w = int(self.eval_size[1] / stride)
S
shangliang Xu 已提交
188 189 190 191 192
            shift_x = paddle.arange(end=w) + self.grid_cell_offset
            shift_y = paddle.arange(end=h) + self.grid_cell_offset
            shift_y, shift_x = paddle.meshgrid(shift_y, shift_x)
            anchor_point = paddle.cast(
                paddle.stack(
S
shangliang Xu 已提交
193
                    [shift_x, shift_y], axis=-1), dtype=dtype)
S
shangliang Xu 已提交
194
            anchor_points.append(anchor_point.reshape([-1, 2]))
S
shangliang Xu 已提交
195
            stride_tensor.append(paddle.full([h * w, 1], stride, dtype=dtype))
S
shangliang Xu 已提交
196 197 198 199 200
        anchor_points = paddle.concat(anchor_points)
        stride_tensor = paddle.concat(stride_tensor)
        return anchor_points, stride_tensor

    def forward_eval(self, feats):
201
        if self.eval_size:
S
shangliang Xu 已提交
202 203 204 205 206
            anchor_points, stride_tensor = self.anchor_points, self.stride_tensor
        else:
            anchor_points, stride_tensor = self._generate_anchors(feats)
        cls_score_list, reg_dist_list = [], []
        for i, feat in enumerate(feats):
207
            _, _, h, w = feat.shape
S
shangliang Xu 已提交
208 209 210 211 212
            l = h * w
            avg_feat = F.adaptive_avg_pool2d(feat, (1, 1))
            cls_logit = self.pred_cls[i](self.stem_cls[i](feat, avg_feat) +
                                         feat)
            reg_dist = self.pred_reg[i](self.stem_reg[i](feat, avg_feat))
213 214
            reg_dist = reg_dist.reshape(
                [-1, 4, self.reg_channels, l]).transpose([0, 2, 3, 1])
215 216 217 218 219
            if self.use_shared_conv:
                reg_dist = self.proj_conv(F.softmax(
                    reg_dist, axis=1)).squeeze(1)
            else:
                reg_dist = F.softmax(reg_dist, axis=1)
S
shangliang Xu 已提交
220 221
            # cls and reg
            cls_score = F.sigmoid(cls_logit)
222
            cls_score_list.append(cls_score.reshape([-1, self.num_classes, l]))
223
            reg_dist_list.append(reg_dist)
S
shangliang Xu 已提交
224 225

        cls_score_list = paddle.concat(cls_score_list, axis=-1)
226 227 228 229 230
        if self.use_shared_conv:
            reg_dist_list = paddle.concat(reg_dist_list, axis=1)
        else:
            reg_dist_list = paddle.concat(reg_dist_list, axis=2)
            reg_dist_list = self.proj_conv(reg_dist_list).squeeze(1)
S
shangliang Xu 已提交
231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260

        return cls_score_list, reg_dist_list, anchor_points, stride_tensor

    def forward(self, feats, targets=None):
        assert len(feats) == len(self.fpn_strides), \
            "The size of feats is not equal to size of fpn_strides"

        if self.training:
            return self.forward_train(feats, targets)
        else:
            return self.forward_eval(feats)

    @staticmethod
    def _focal_loss(score, label, alpha=0.25, gamma=2.0):
        weight = (score - label).pow(gamma)
        if alpha > 0:
            alpha_t = alpha * label + (1 - alpha) * (1 - label)
            weight *= alpha_t
        loss = F.binary_cross_entropy(
            score, label, weight=weight, reduction='sum')
        return loss

    @staticmethod
    def _varifocal_loss(pred_score, gt_score, label, alpha=0.75, gamma=2.0):
        weight = alpha * pred_score.pow(gamma) * (1 - label) + gt_score * label
        loss = F.binary_cross_entropy(
            pred_score, gt_score, weight=weight, reduction='sum')
        return loss

    def _bbox_decode(self, anchor_points, pred_dist):
261
        _, l, _ = get_static_shape(pred_dist)
262
        pred_dist = F.softmax(pred_dist.reshape([-1, l, 4, self.reg_channels]))
263
        pred_dist = self.proj_conv(pred_dist.transpose([0, 3, 1, 2])).squeeze(1)
S
shangliang Xu 已提交
264 265 266 267 268 269
        return batch_distance2bbox(anchor_points, pred_dist)

    def _bbox2distance(self, points, bbox):
        x1y1, x2y2 = paddle.split(bbox, 2, -1)
        lt = points - x1y1
        rb = x2y2 - points
270 271
        return paddle.concat([lt, rb], -1).clip(self.reg_range[0],
                                                self.reg_range[1] - 1 - 0.01)
S
shangliang Xu 已提交
272

273 274
    def _df_loss(self, pred_dist, target, lower_bound=0):
        target_left = paddle.cast(target.floor(), 'int64')
S
shangliang Xu 已提交
275 276 277 278
        target_right = target_left + 1
        weight_left = target_right.astype('float32') - target
        weight_right = 1 - weight_left
        loss_left = F.cross_entropy(
279 280
            pred_dist, target_left - lower_bound,
            reduction='none') * weight_left
S
shangliang Xu 已提交
281
        loss_right = F.cross_entropy(
282 283
            pred_dist, target_right - lower_bound,
            reduction='none') * weight_right
S
shangliang Xu 已提交
284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
        return (loss_left + loss_right).mean(-1, keepdim=True)

    def _bbox_loss(self, pred_dist, pred_bboxes, anchor_points, assigned_labels,
                   assigned_bboxes, assigned_scores, assigned_scores_sum):
        # select positive samples mask
        mask_positive = (assigned_labels != self.num_classes)
        num_pos = mask_positive.sum()
        # pos/neg loss
        if num_pos > 0:
            # l1 + iou
            bbox_mask = mask_positive.unsqueeze(-1).tile([1, 1, 4])
            pred_bboxes_pos = paddle.masked_select(pred_bboxes,
                                                   bbox_mask).reshape([-1, 4])
            assigned_bboxes_pos = paddle.masked_select(
                assigned_bboxes, bbox_mask).reshape([-1, 4])
            bbox_weight = paddle.masked_select(
                assigned_scores.sum(-1), mask_positive).unsqueeze(-1)

            loss_l1 = F.l1_loss(pred_bboxes_pos, assigned_bboxes_pos)

            loss_iou = self.iou_loss(pred_bboxes_pos,
                                     assigned_bboxes_pos) * bbox_weight
            loss_iou = loss_iou.sum() / assigned_scores_sum

            dist_mask = mask_positive.unsqueeze(-1).tile(
309
                [1, 1, self.reg_channels * 4])
S
shangliang Xu 已提交
310
            pred_dist_pos = paddle.masked_select(
311
                pred_dist, dist_mask).reshape([-1, 4, self.reg_channels])
S
shangliang Xu 已提交
312 313 314
            assigned_ltrb = self._bbox2distance(anchor_points, assigned_bboxes)
            assigned_ltrb_pos = paddle.masked_select(
                assigned_ltrb, bbox_mask).reshape([-1, 4])
315 316
            loss_dfl = self._df_loss(pred_dist_pos, assigned_ltrb_pos,
                                     self.reg_range[0]) * bbox_weight
S
shangliang Xu 已提交
317 318 319 320
            loss_dfl = loss_dfl.sum() / assigned_scores_sum
        else:
            loss_l1 = paddle.zeros([1])
            loss_iou = paddle.zeros([1])
321
            loss_dfl = pred_dist.sum() * 0.
S
shangliang Xu 已提交
322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346
        return loss_l1, loss_iou, loss_dfl

    def get_loss(self, head_outs, gt_meta):
        pred_scores, pred_distri, anchors,\
        anchor_points, num_anchors_list, stride_tensor = head_outs

        anchor_points_s = anchor_points / stride_tensor
        pred_bboxes = self._bbox_decode(anchor_points_s, pred_distri)

        gt_labels = gt_meta['gt_class']
        gt_bboxes = gt_meta['gt_bbox']
        pad_gt_mask = gt_meta['pad_gt_mask']
        # label assignment
        if gt_meta['epoch_id'] < self.static_assigner_epoch:
            assigned_labels, assigned_bboxes, assigned_scores = \
                self.static_assigner(
                    anchors,
                    num_anchors_list,
                    gt_labels,
                    gt_bboxes,
                    pad_gt_mask,
                    bg_index=self.num_classes,
                    pred_bboxes=pred_bboxes.detach() * stride_tensor)
            alpha_l = 0.25
        else:
347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
            if self.sm_use:
                assigned_labels, assigned_bboxes, assigned_scores = \
                    self.assigner(
                    pred_scores.detach(),
                    pred_bboxes.detach() * stride_tensor,
                    anchor_points,
                    stride_tensor,
                    gt_labels,
                    gt_bboxes,
                    pad_gt_mask,
                    bg_index=self.num_classes)
            else:
                assigned_labels, assigned_bboxes, assigned_scores = \
                    self.assigner(
                    pred_scores.detach(),
                    pred_bboxes.detach() * stride_tensor,
                    anchor_points,
                    num_anchors_list,
                    gt_labels,
                    gt_bboxes,
                    pad_gt_mask,
                    bg_index=self.num_classes)
S
shangliang Xu 已提交
369 370 371 372 373
            alpha_l = -1
        # rescale bbox
        assigned_bboxes /= stride_tensor
        # cls loss
        if self.use_varifocal_loss:
S
shangliang Xu 已提交
374 375
            one_hot_label = F.one_hot(assigned_labels,
                                      self.num_classes + 1)[..., :-1]
S
shangliang Xu 已提交
376 377 378
            loss_cls = self._varifocal_loss(pred_scores, assigned_scores,
                                            one_hot_label)
        else:
S
shangliang Xu 已提交
379
            loss_cls = self._focal_loss(pred_scores, assigned_scores, alpha_l)
S
shangliang Xu 已提交
380 381

        assigned_scores_sum = assigned_scores.sum()
W
wangguanzhong 已提交
382
        if paddle.distributed.get_world_size() > 1:
S
shangliang Xu 已提交
383
            paddle.distributed.all_reduce(assigned_scores_sum)
384 385
            assigned_scores_sum /= paddle.distributed.get_world_size()
        assigned_scores_sum = paddle.clip(assigned_scores_sum, min=1.)
S
shangliang Xu 已提交
386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403
        loss_cls /= assigned_scores_sum

        loss_l1, loss_iou, loss_dfl = \
            self._bbox_loss(pred_distri, pred_bboxes, anchor_points_s,
                            assigned_labels, assigned_bboxes, assigned_scores,
                            assigned_scores_sum)
        loss = self.loss_weight['class'] * loss_cls + \
               self.loss_weight['iou'] * loss_iou + \
               self.loss_weight['dfl'] * loss_dfl
        out_dict = {
            'loss': loss,
            'loss_cls': loss_cls,
            'loss_iou': loss_iou,
            'loss_dfl': loss_dfl,
            'loss_l1': loss_l1,
        }
        return out_dict

S
shangliang Xu 已提交
404
    def post_process(self, head_outs, scale_factor):
S
shangliang Xu 已提交
405
        pred_scores, pred_dist, anchor_points, stride_tensor = head_outs
406
        pred_bboxes = batch_distance2bbox(anchor_points, pred_dist)
S
shangliang Xu 已提交
407
        pred_bboxes *= stride_tensor
408 409 410
        if self.exclude_post_process:
            return paddle.concat(
                [pred_bboxes, pred_scores.transpose([0, 2, 1])], axis=-1), None
S
shangliang Xu 已提交
411
        else:
412 413 414 415 416 417 418 419 420 421 422 423
            # scale bbox to origin
            scale_y, scale_x = paddle.split(scale_factor, 2, axis=-1)
            scale_factor = paddle.concat(
                [scale_x, scale_y, scale_x, scale_y],
                axis=-1).reshape([-1, 1, 4])
            pred_bboxes /= scale_factor
            if self.exclude_nms:
                # `exclude_nms=True` just use in benchmark
                return pred_bboxes, pred_scores
            else:
                bbox_pred, bbox_num, _ = self.nms(pred_bboxes, pred_scores)
                return bbox_pred, bbox_num