mot_keypoint_unite_infer.py 10.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import cv2
import math
import numpy as np
import paddle
20
import copy
21 22 23

from mot_keypoint_unite_utils import argsparser
from keypoint_infer import KeyPoint_Detector, PredictConfig_KeyPoint
24
from visualize import draw_pose
25 26 27 28
from benchmark_utils import PaddleInferBenchmark
from utils import Timer

from tracker import JDETracker
29
from mot_jde_infer import JDE_Detector, write_mot_results
G
George Ni 已提交
30
from infer import Detector, PredictConfig, print_arguments, get_test_images
31 32
from ppdet.modeling.mot import visualization as mot_vis
from ppdet.modeling.mot.utils import Timer as FPSTimer
G
George Ni 已提交
33
from utils import get_current_memory_mb
34
from det_keypoint_unite_infer import predict_with_given_det, bench_log
G
George Ni 已提交
35

36 37 38 39 40
# Global dictionary
KEYPOINT_SUPPORT_MODELS = {
    'HigherHRNet': 'keypoint_bottomup',
    'HRNet': 'keypoint_topdown'
}
G
George Ni 已提交
41

42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58

def convert_mot_to_det(tlwhs, scores):
    results = {}
    num_mot = len(tlwhs)
    xyxys = copy.deepcopy(tlwhs)
    for xyxy in xyxys.copy():
        xyxy[2:] = xyxy[2:] + xyxy[:2]
    # support single class now
    results['boxes'] = np.vstack(
        [np.hstack([0, scores[i], xyxys[i]]) for i in range(num_mot)])
    return results


def mot_keypoint_unite_predict_image(mot_model,
                                     keypoint_model,
                                     image_list,
                                     keypoint_batch_size=1):
G
George Ni 已提交
59
    image_list.sort()
G
George Ni 已提交
60 61 62 63
    for i, img_file in enumerate(image_list):
        frame = cv2.imread(img_file)

        if FLAGS.run_benchmark:
64 65
            online_tlwhs, online_scores, online_ids = mot_model.predict(
                [frame], FLAGS.mot_threshold, warmup=10, repeats=10)
G
George Ni 已提交
66 67 68 69 70
            cm, gm, gu = get_current_memory_mb()
            mot_model.cpu_mem += cm
            mot_model.gpu_mem += gm
            mot_model.gpu_util += gu

71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
        else:
            online_tlwhs, online_scores, online_ids = mot_model.predict(
                [frame], FLAGS.mot_threshold)

        keypoint_arch = keypoint_model.pred_config.arch
        if KEYPOINT_SUPPORT_MODELS[keypoint_arch] == 'keypoint_topdown':
            results = convert_mot_to_det(online_tlwhs, online_scores)
            keypoint_results = predict_with_given_det(
                frame, results, keypoint_model, keypoint_batch_size,
                FLAGS.mot_threshold, FLAGS.keypoint_threshold,
                FLAGS.run_benchmark)

        else:
            warmup = 10 if FLAGS.run_benchmark else 0
            repeats = 10 if FLAGS.run_benchmark else 1
            keypoint_results = keypoint_model.predict(
                [frame],
                FLAGS.keypoint_threshold,
                warmup=warmup,
                repeats=repeats)

        if FLAGS.run_benchmark:
G
George Ni 已提交
93 94 95 96 97 98 99 100 101
            cm, gm, gu = get_current_memory_mb()
            keypoint_model.cpu_mem += cm
            keypoint_model.gpu_mem += gm
            keypoint_model.gpu_util += gu
        else:
            im = draw_pose(
                frame,
                keypoint_results,
                visual_thread=FLAGS.keypoint_threshold,
102 103 104 105
                returnimg=True,
                ids=online_ids
                if KEYPOINT_SUPPORT_MODELS[keypoint_arch] == 'keypoint_topdown'
                else None)
G
George Ni 已提交
106 107 108

            online_im = mot_vis.plot_tracking(
                im, online_tlwhs, online_ids, online_scores, frame_id=i)
109

G
George Ni 已提交
110 111 112
            if FLAGS.save_images:
                if not os.path.exists(FLAGS.output_dir):
                    os.makedirs(FLAGS.output_dir)
113 114 115 116
                img_name = os.path.split(img_file)[-1]
                out_path = os.path.join(FLAGS.output_dir, img_name)
                cv2.imwrite(out_path, online_im)
                print("save result to: " + out_path)
117 118


119 120 121 122
def mot_keypoint_unite_predict_video(mot_model,
                                     keypoint_model,
                                     camera_id,
                                     keypoint_batch_size=1):
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
    if camera_id != -1:
        capture = cv2.VideoCapture(camera_id)
        video_name = 'output.mp4'
    else:
        capture = cv2.VideoCapture(FLAGS.video_file)
        video_name = os.path.split(FLAGS.video_file)[-1]
    fps = 30
    frame_count = int(capture.get(cv2.CAP_PROP_FRAME_COUNT))
    print('frame_count', frame_count)
    width = int(capture.get(cv2.CAP_PROP_FRAME_WIDTH))
    height = int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT))
    # yapf: disable
    fourcc = cv2.VideoWriter_fourcc(*'mp4v')
    # yapf: enable
    if not os.path.exists(FLAGS.output_dir):
        os.makedirs(FLAGS.output_dir)
    out_path = os.path.join(FLAGS.output_dir, video_name)
    writer = cv2.VideoWriter(out_path, fourcc, fps, (width, height))
    frame_id = 0
    timer_mot = FPSTimer()
    timer_kp = FPSTimer()
    timer_mot_kp = FPSTimer()
    mot_results = []
    while (1):
        ret, frame = capture.read()
        if not ret:
            break
        timer_mot_kp.tic()
        timer_mot.tic()
        online_tlwhs, online_scores, online_ids = mot_model.predict(
153
            [frame], FLAGS.mot_threshold)
154 155 156 157 158 159
        timer_mot.toc()
        mot_results.append(
            (frame_id + 1, online_tlwhs, online_scores, online_ids))
        mot_fps = 1. / timer_mot.average_time

        timer_kp.tic()
160 161 162 163 164 165 166 167 168 169 170 171

        keypoint_arch = keypoint_model.pred_config.arch
        if KEYPOINT_SUPPORT_MODELS[keypoint_arch] == 'keypoint_topdown':
            results = convert_mot_to_det(online_tlwhs, online_scores)
            keypoint_results = predict_with_given_det(
                frame, results, keypoint_model, keypoint_batch_size,
                FLAGS.mot_threshold, FLAGS.keypoint_threshold,
                FLAGS.run_benchmark)

        else:
            keypoint_results = keypoint_model.predict([frame],
                                                      FLAGS.keypoint_threshold)
172 173 174 175 176 177 178 179 180
        timer_kp.toc()
        timer_mot_kp.toc()
        kp_fps = 1. / timer_kp.average_time
        mot_kp_fps = 1. / timer_mot_kp.average_time

        im = draw_pose(
            frame,
            keypoint_results,
            visual_thread=FLAGS.keypoint_threshold,
181
            returnimg=True,
G
George Ni 已提交
182 183 184
            ids=online_ids
            if KEYPOINT_SUPPORT_MODELS[keypoint_arch] == 'keypoint_topdown' else
            None)
185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218

        online_im = mot_vis.plot_tracking(
            im,
            online_tlwhs,
            online_ids,
            online_scores,
            frame_id=frame_id,
            fps=mot_kp_fps)

        im = np.array(online_im)

        frame_id += 1
        print('detect frame:%d' % (frame_id))

        if FLAGS.save_images:
            save_dir = os.path.join(FLAGS.output_dir, video_name.split('.')[-2])
            if not os.path.exists(save_dir):
                os.makedirs(save_dir)
            cv2.imwrite(
                os.path.join(save_dir, '{:05d}.jpg'.format(frame_id)), im)

        writer.write(im)
        if camera_id != -1:
            cv2.imshow('Tracking and keypoint results', im)
            if cv2.waitKey(1) & 0xFF == ord('q'):
                break
    if FLAGS.save_mot_txts:
        result_filename = os.path.join(FLAGS.output_dir,
                                       video_name.split('.')[-2] + '.txt')
        write_mot_results(result_filename, mot_results)
    writer.release()


def main():
G
George Ni 已提交
219
    pred_config = PredictConfig(FLAGS.mot_model_dir)
220
    mot_model = JDE_Detector(
221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
        pred_config,
        FLAGS.mot_model_dir,
        device=FLAGS.device,
        run_mode=FLAGS.run_mode,
        trt_min_shape=FLAGS.trt_min_shape,
        trt_max_shape=FLAGS.trt_max_shape,
        trt_opt_shape=FLAGS.trt_opt_shape,
        trt_calib_mode=FLAGS.trt_calib_mode,
        cpu_threads=FLAGS.cpu_threads,
        enable_mkldnn=FLAGS.enable_mkldnn)

    pred_config = PredictConfig_KeyPoint(FLAGS.keypoint_model_dir)
    keypoint_model = KeyPoint_Detector(
        pred_config,
        FLAGS.keypoint_model_dir,
        device=FLAGS.device,
        run_mode=FLAGS.run_mode,
238
        batch_size=FLAGS.keypoint_batch_size,
239 240 241 242 243 244 245 246 247 248 249
        trt_min_shape=FLAGS.trt_min_shape,
        trt_max_shape=FLAGS.trt_max_shape,
        trt_opt_shape=FLAGS.trt_opt_shape,
        trt_calib_mode=FLAGS.trt_calib_mode,
        cpu_threads=FLAGS.cpu_threads,
        enable_mkldnn=FLAGS.enable_mkldnn,
        use_dark=FLAGS.use_dark)

    # predict from video file or camera video stream
    if FLAGS.video_file is not None or FLAGS.camera_id != -1:
        mot_keypoint_unite_predict_video(mot_model, keypoint_model,
250 251
                                         FLAGS.camera_id,
                                         FLAGS.keypoint_batch_size)
252
    else:
G
George Ni 已提交
253 254
        # predict from image
        img_list = get_test_images(FLAGS.image_dir, FLAGS.image_file)
255 256
        mot_keypoint_unite_predict_image(mot_model, keypoint_model, img_list,
                                         FLAGS.keypoint_batch_size)
G
George Ni 已提交
257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275

        if not FLAGS.run_benchmark:
            mot_model.det_times.info(average=True)
            keypoint_model.det_times.info(average=True)
        else:
            mode = FLAGS.run_mode
            mot_model_dir = FLAGS.mot_model_dir
            mot_model_info = {
                'model_name': mot_model_dir.strip('/').split('/')[-1],
                'precision': mode.split('_')[-1]
            }
            bench_log(mot_model, img_list, mot_model_info, name='MOT')

            keypoint_model_dir = FLAGS.keypoint_model_dir
            keypoint_model_info = {
                'model_name': keypoint_model_dir.strip('/').split('/')[-1],
                'precision': mode.split('_')[-1]
            }
            bench_log(keypoint_model, img_list, keypoint_model_info, 'KeyPoint')
276 277 278 279 280 281 282 283 284 285 286 287


if __name__ == '__main__':
    paddle.enable_static()
    parser = argsparser()
    FLAGS = parser.parse_args()
    print_arguments(FLAGS)
    FLAGS.device = FLAGS.device.upper()
    assert FLAGS.device in ['CPU', 'GPU', 'XPU'
                            ], "device should be CPU, GPU or XPU"

    main()