“b25c512408436e3a2b000e4fc3dabc3d17bac966”上不存在“git@gitcode.net:Crayonxin2000/Paddle.git”
mot_keypoint_unite_infer.py 5.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import cv2
import math
import numpy as np
import paddle

from mot_keypoint_unite_utils import argsparser
from keypoint_infer import KeyPoint_Detector, PredictConfig_KeyPoint
from keypoint_visualize import draw_pose
from benchmark_utils import PaddleInferBenchmark
from utils import Timer

from tracker import JDETracker
from mot_preprocess import LetterBoxResize
from mot_infer import MOT_Detector, PredictConfig_MOT, write_mot_results
from infer import print_arguments
from ppdet.modeling.mot import visualization as mot_vis
from ppdet.modeling.mot.utils import Timer as FPSTimer


def mot_keypoint_unite_predict_video(mot_model, keypoint_model, camera_id):
    if camera_id != -1:
        capture = cv2.VideoCapture(camera_id)
        video_name = 'output.mp4'
    else:
        capture = cv2.VideoCapture(FLAGS.video_file)
        video_name = os.path.split(FLAGS.video_file)[-1]
    fps = 30
    frame_count = int(capture.get(cv2.CAP_PROP_FRAME_COUNT))
    print('frame_count', frame_count)
    width = int(capture.get(cv2.CAP_PROP_FRAME_WIDTH))
    height = int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT))
    # yapf: disable
    fourcc = cv2.VideoWriter_fourcc(*'mp4v')
    # yapf: enable
    if not os.path.exists(FLAGS.output_dir):
        os.makedirs(FLAGS.output_dir)
    out_path = os.path.join(FLAGS.output_dir, video_name)
    writer = cv2.VideoWriter(out_path, fourcc, fps, (width, height))
    frame_id = 0
    timer_mot = FPSTimer()
    timer_kp = FPSTimer()
    timer_mot_kp = FPSTimer()
    mot_results = []
    while (1):
        ret, frame = capture.read()
        if not ret:
            break
        timer_mot_kp.tic()
        timer_mot.tic()
        online_tlwhs, online_scores, online_ids = mot_model.predict(
            frame, FLAGS.mot_threshold)
        timer_mot.toc()

        mot_results.append(
            (frame_id + 1, online_tlwhs, online_scores, online_ids))
        mot_fps = 1. / timer_mot.average_time

        timer_kp.tic()
        keypoint_results = keypoint_model.predict([frame],
                                                  FLAGS.keypoint_threshold)
        timer_kp.toc()
        timer_mot_kp.toc()
        kp_fps = 1. / timer_kp.average_time
        mot_kp_fps = 1. / timer_mot_kp.average_time

        im = draw_pose(
            frame,
            keypoint_results,
            visual_thread=FLAGS.keypoint_threshold,
            returnimg=True)

        online_im = mot_vis.plot_tracking(
            im,
            online_tlwhs,
            online_ids,
            online_scores,
            frame_id=frame_id,
            fps=mot_kp_fps)

        im = np.array(online_im)

        frame_id += 1
        print('detect frame:%d' % (frame_id))

        if FLAGS.save_images:
            save_dir = os.path.join(FLAGS.output_dir, video_name.split('.')[-2])
            if not os.path.exists(save_dir):
                os.makedirs(save_dir)
            cv2.imwrite(
                os.path.join(save_dir, '{:05d}.jpg'.format(frame_id)), im)

        writer.write(im)
        if camera_id != -1:
            cv2.imshow('Tracking and keypoint results', im)
            if cv2.waitKey(1) & 0xFF == ord('q'):
                break
    if FLAGS.save_mot_txts:
        result_filename = os.path.join(FLAGS.output_dir,
                                       video_name.split('.')[-2] + '.txt')
        write_mot_results(result_filename, mot_results)
    writer.release()


def main():
    pred_config = PredictConfig_MOT(FLAGS.mot_model_dir)
    mot_model = MOT_Detector(
        pred_config,
        FLAGS.mot_model_dir,
        device=FLAGS.device,
        run_mode=FLAGS.run_mode,
        trt_min_shape=FLAGS.trt_min_shape,
        trt_max_shape=FLAGS.trt_max_shape,
        trt_opt_shape=FLAGS.trt_opt_shape,
        trt_calib_mode=FLAGS.trt_calib_mode,
        cpu_threads=FLAGS.cpu_threads,
        enable_mkldnn=FLAGS.enable_mkldnn)

    pred_config = PredictConfig_KeyPoint(FLAGS.keypoint_model_dir)
    keypoint_model = KeyPoint_Detector(
        pred_config,
        FLAGS.keypoint_model_dir,
        device=FLAGS.device,
        run_mode=FLAGS.run_mode,
        trt_min_shape=FLAGS.trt_min_shape,
        trt_max_shape=FLAGS.trt_max_shape,
        trt_opt_shape=FLAGS.trt_opt_shape,
        trt_calib_mode=FLAGS.trt_calib_mode,
        cpu_threads=FLAGS.cpu_threads,
        enable_mkldnn=FLAGS.enable_mkldnn,
        use_dark=FLAGS.use_dark)

    # predict from video file or camera video stream
    if FLAGS.video_file is not None or FLAGS.camera_id != -1:
        mot_keypoint_unite_predict_video(mot_model, keypoint_model,
                                         FLAGS.camera_id)
    else:
        print('Do not support unite predict single image.')


if __name__ == '__main__':
    paddle.enable_static()
    parser = argsparser()
    FLAGS = parser.parse_args()
    print_arguments(FLAGS)
    FLAGS.device = FLAGS.device.upper()
    assert FLAGS.device in ['CPU', 'GPU', 'XPU'
                            ], "device should be CPU, GPU or XPU"

    main()