# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import cv2 import math import numpy as np import paddle import copy from mot_keypoint_unite_utils import argsparser from keypoint_infer import KeyPoint_Detector, PredictConfig_KeyPoint from visualize import draw_pose from benchmark_utils import PaddleInferBenchmark from utils import Timer from tracker import JDETracker from mot_jde_infer import JDE_Detector, write_mot_results from infer import Detector, PredictConfig, print_arguments, get_test_images from ppdet.modeling.mot import visualization as mot_vis from ppdet.modeling.mot.utils import Timer as FPSTimer from utils import get_current_memory_mb from det_keypoint_unite_infer import predict_with_given_det, bench_log # Global dictionary KEYPOINT_SUPPORT_MODELS = { 'HigherHRNet': 'keypoint_bottomup', 'HRNet': 'keypoint_topdown' } def convert_mot_to_det(tlwhs, scores): results = {} num_mot = len(tlwhs) xyxys = copy.deepcopy(tlwhs) for xyxy in xyxys.copy(): xyxy[2:] = xyxy[2:] + xyxy[:2] # support single class now results['boxes'] = np.vstack( [np.hstack([0, scores[i], xyxys[i]]) for i in range(num_mot)]) return results def mot_keypoint_unite_predict_image(mot_model, keypoint_model, image_list, keypoint_batch_size=1): image_list.sort() for i, img_file in enumerate(image_list): frame = cv2.imread(img_file) if FLAGS.run_benchmark: online_tlwhs, online_scores, online_ids = mot_model.predict( [frame], FLAGS.mot_threshold, warmup=10, repeats=10) cm, gm, gu = get_current_memory_mb() mot_model.cpu_mem += cm mot_model.gpu_mem += gm mot_model.gpu_util += gu else: online_tlwhs, online_scores, online_ids = mot_model.predict( [frame], FLAGS.mot_threshold) keypoint_arch = keypoint_model.pred_config.arch if KEYPOINT_SUPPORT_MODELS[keypoint_arch] == 'keypoint_topdown': results = convert_mot_to_det(online_tlwhs, online_scores) keypoint_results = predict_with_given_det( frame, results, keypoint_model, keypoint_batch_size, FLAGS.mot_threshold, FLAGS.keypoint_threshold, FLAGS.run_benchmark) else: warmup = 10 if FLAGS.run_benchmark else 0 repeats = 10 if FLAGS.run_benchmark else 1 keypoint_results = keypoint_model.predict( [frame], FLAGS.keypoint_threshold, warmup=warmup, repeats=repeats) if FLAGS.run_benchmark: cm, gm, gu = get_current_memory_mb() keypoint_model.cpu_mem += cm keypoint_model.gpu_mem += gm keypoint_model.gpu_util += gu else: im = draw_pose( frame, keypoint_results, visual_thread=FLAGS.keypoint_threshold, returnimg=True, ids=online_ids if KEYPOINT_SUPPORT_MODELS[keypoint_arch] == 'keypoint_topdown' else None) online_im = mot_vis.plot_tracking( im, online_tlwhs, online_ids, online_scores, frame_id=i) if FLAGS.save_images: if not os.path.exists(FLAGS.output_dir): os.makedirs(FLAGS.output_dir) img_name = os.path.split(img_file)[-1] out_path = os.path.join(FLAGS.output_dir, img_name) cv2.imwrite(out_path, online_im) print("save result to: " + out_path) def mot_keypoint_unite_predict_video(mot_model, keypoint_model, camera_id, keypoint_batch_size=1): if camera_id != -1: capture = cv2.VideoCapture(camera_id) video_name = 'output.mp4' else: capture = cv2.VideoCapture(FLAGS.video_file) video_name = os.path.split(FLAGS.video_file)[-1] fps = 30 frame_count = int(capture.get(cv2.CAP_PROP_FRAME_COUNT)) print('frame_count', frame_count) width = int(capture.get(cv2.CAP_PROP_FRAME_WIDTH)) height = int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT)) # yapf: disable fourcc = cv2.VideoWriter_fourcc(*'mp4v') # yapf: enable if not os.path.exists(FLAGS.output_dir): os.makedirs(FLAGS.output_dir) out_path = os.path.join(FLAGS.output_dir, video_name) writer = cv2.VideoWriter(out_path, fourcc, fps, (width, height)) frame_id = 0 timer_mot = FPSTimer() timer_kp = FPSTimer() timer_mot_kp = FPSTimer() mot_results = [] while (1): ret, frame = capture.read() if not ret: break timer_mot_kp.tic() timer_mot.tic() online_tlwhs, online_scores, online_ids = mot_model.predict( [frame], FLAGS.mot_threshold) timer_mot.toc() mot_results.append( (frame_id + 1, online_tlwhs, online_scores, online_ids)) mot_fps = 1. / timer_mot.average_time timer_kp.tic() keypoint_arch = keypoint_model.pred_config.arch if KEYPOINT_SUPPORT_MODELS[keypoint_arch] == 'keypoint_topdown': results = convert_mot_to_det(online_tlwhs, online_scores) keypoint_results = predict_with_given_det( frame, results, keypoint_model, keypoint_batch_size, FLAGS.mot_threshold, FLAGS.keypoint_threshold, FLAGS.run_benchmark) else: keypoint_results = keypoint_model.predict([frame], FLAGS.keypoint_threshold) timer_kp.toc() timer_mot_kp.toc() kp_fps = 1. / timer_kp.average_time mot_kp_fps = 1. / timer_mot_kp.average_time im = draw_pose( frame, keypoint_results, visual_thread=FLAGS.keypoint_threshold, returnimg=True, ids=online_ids if KEYPOINT_SUPPORT_MODELS[keypoint_arch] == 'keypoint_topdown' else None) online_im = mot_vis.plot_tracking( im, online_tlwhs, online_ids, online_scores, frame_id=frame_id, fps=mot_kp_fps) im = np.array(online_im) frame_id += 1 print('detect frame:%d' % (frame_id)) if FLAGS.save_images: save_dir = os.path.join(FLAGS.output_dir, video_name.split('.')[-2]) if not os.path.exists(save_dir): os.makedirs(save_dir) cv2.imwrite( os.path.join(save_dir, '{:05d}.jpg'.format(frame_id)), im) writer.write(im) if camera_id != -1: cv2.imshow('Tracking and keypoint results', im) if cv2.waitKey(1) & 0xFF == ord('q'): break if FLAGS.save_mot_txts: result_filename = os.path.join(FLAGS.output_dir, video_name.split('.')[-2] + '.txt') write_mot_results(result_filename, mot_results) writer.release() def main(): pred_config = PredictConfig(FLAGS.mot_model_dir) mot_model = JDE_Detector( pred_config, FLAGS.mot_model_dir, device=FLAGS.device, run_mode=FLAGS.run_mode, trt_min_shape=FLAGS.trt_min_shape, trt_max_shape=FLAGS.trt_max_shape, trt_opt_shape=FLAGS.trt_opt_shape, trt_calib_mode=FLAGS.trt_calib_mode, cpu_threads=FLAGS.cpu_threads, enable_mkldnn=FLAGS.enable_mkldnn) pred_config = PredictConfig_KeyPoint(FLAGS.keypoint_model_dir) keypoint_model = KeyPoint_Detector( pred_config, FLAGS.keypoint_model_dir, device=FLAGS.device, run_mode=FLAGS.run_mode, batch_size=FLAGS.keypoint_batch_size, trt_min_shape=FLAGS.trt_min_shape, trt_max_shape=FLAGS.trt_max_shape, trt_opt_shape=FLAGS.trt_opt_shape, trt_calib_mode=FLAGS.trt_calib_mode, cpu_threads=FLAGS.cpu_threads, enable_mkldnn=FLAGS.enable_mkldnn, use_dark=FLAGS.use_dark) # predict from video file or camera video stream if FLAGS.video_file is not None or FLAGS.camera_id != -1: mot_keypoint_unite_predict_video(mot_model, keypoint_model, FLAGS.camera_id, FLAGS.keypoint_batch_size) else: # predict from image img_list = get_test_images(FLAGS.image_dir, FLAGS.image_file) mot_keypoint_unite_predict_image(mot_model, keypoint_model, img_list, FLAGS.keypoint_batch_size) if not FLAGS.run_benchmark: mot_model.det_times.info(average=True) keypoint_model.det_times.info(average=True) else: mode = FLAGS.run_mode mot_model_dir = FLAGS.mot_model_dir mot_model_info = { 'model_name': mot_model_dir.strip('/').split('/')[-1], 'precision': mode.split('_')[-1] } bench_log(mot_model, img_list, mot_model_info, name='MOT') keypoint_model_dir = FLAGS.keypoint_model_dir keypoint_model_info = { 'model_name': keypoint_model_dir.strip('/').split('/')[-1], 'precision': mode.split('_')[-1] } bench_log(keypoint_model, img_list, keypoint_model_info, 'KeyPoint') if __name__ == '__main__': paddle.enable_static() parser = argsparser() FLAGS = parser.parse_args() print_arguments(FLAGS) FLAGS.device = FLAGS.device.upper() assert FLAGS.device in ['CPU', 'GPU', 'XPU' ], "device should be CPU, GPU or XPU" main()