sequence_project.h 9.0 KB
Newer Older
C
chengduoZH 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include "paddle/framework/eigen.h"
#include "paddle/framework/lod_tensor.h"
#include "paddle/framework/tensor.h"
#include "paddle/operators/math/im2col.h"

namespace paddle {
namespace operators {
namespace math {

//    template <typename T, int MajorType = Eigen::RowMajor,
//            typename IndexType = Eigen::DenseIndex>
//    using EigenVector = framework::EigenVector<T, MajorType, IndexType>;

template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>;
/*
C
chengduoZH 已提交
34 35
 * \brief SequenceProject projects features of context_length time-steps of each
 * instance.
C
chengduoZH 已提交
36
 *
C
chengduoZH 已提交
37 38 39 40
 * \param in            Input data.
 * \param inShape       The shape of Input data,
 *                      [minibatch, number_of_input_features].
 * \param inShape       A float LoDTensor.
C
chengduoZH 已提交
41
 *
C
chengduoZH 已提交
42 43 44 45
 * \param padding_data  Padding data.
 * \param inShape       The shape of Padding data,
 *                      [up_pad + down_pad, number_of_input_features].
 * \param inShape       A float LoDTensor.
C
chengduoZH 已提交
46
 *
C
chengduoZH 已提交
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
 * \param col           Col data.
 * \param inShape       The shape of Col data,
 *                      [minibatch, 1].
 * \param inShape       A float LoDTensor.
 *
 * For a mini-batch of 2 variable lengths sentences, containing 3, and 1
 * time-steps:
 *
 * Assumed input (X) is a [4, M, N] float LoDTensor, and X->lod()[0] = [0, 3,
 * 4].
 * Besides, for the sake of simplicity, we assume M=1 and N=2.
 *
 * X = [[a1, a2;
 *       b1, b2;
 *       c1, c2]
 *      [d1, d2]]
 *
 * This is to say that input (X) has 4 words and the dimension of each word
 * representation is 2.
 *
 * - Case1:
 * If context_start is -1 and padding_trainable is false, we use zero to pad
 * instead of learned weight to pad,
 * and the context_lenth is 3, the output (Out) is:
 *
 * Out =[[0,  0,  a1, a2, b1, b2;
 *        a1, a2, b1, b2, c1, c2;
 *        b1, b2, c1, c2, 0,  0 ]
 *       [0,  0,  d1, d2, 0,  0 ]]
 *
 * - Case2:
 * If context_start is -1 and padding_trainable is true, we use learned weight
 * to pad,
 * and the context_lenth is 3, the output (Out) is:
 *
 * Out = [[w1, w2, a1, a2, b1, b2;
 *         a1, a2, b1, b2, c1, c2;
 *         b1, b2, c1, c2, w3, w4]
 *        [w1, w2, d1, d2, w3, w4]]
C
chengduoZH 已提交
86 87 88 89 90 91 92
 *
 */

template <typename Place, typename T>
class SequenceProjectFunctor {
 public:
  void operator()(const platform::DeviceContext& context,
C
chengduoZH 已提交
93 94
                  framework::LoDTensor& in, framework::LoDTensor& padding_data,
                  framework::LoDTensor& col, bool padding_trainable,
C
chengduoZH 已提交
95
                  int context_start, int context_length, int context_stride,
C
chengduoZH 已提交
96 97 98
                  int up_pad, int down_pad, bool gradient, bool input_grad,
                  bool pad_grad) {
    auto lod_level_0 = in.lod()[0];
C
chengduoZH 已提交
99 100 101 102

    paddle::operators::math::Im2ColFunctor<
        paddle::operators::math::ColFormat::kOCF, Place, float>
        im2col_ocf;
C
chengduoZH 已提交
103 104 105
    paddle::operators::math::Col2ImFunctor<
        paddle::operators::math::ColFormat::kOCF, Place, float>
        col2im_ocf;
C
chengduoZH 已提交
106 107 108

    int input_row_begin, input_row_end;
    int sequence_height, sequence_width;
C
chengduoZH 已提交
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
    sequence_width = in.dims()[1];
    input_grad = gradient && input_grad;
    pad_grad = gradient && pad_grad;

    if (!gradient || input_grad) {
      for (int i = 0; i < static_cast<int>(lod_level_0.size()) - 1; ++i) {
        input_row_begin = (context_start > 0)
                              ? static_cast<int>(lod_level_0[i]) + context_start
                              : static_cast<int>(lod_level_0[i]);
        input_row_end = static_cast<int>(lod_level_0[i + 1]);

        framework::Tensor out_t =
            col.Slice(static_cast<int>(lod_level_0[i]),
                      static_cast<int>(lod_level_0[i + 1]));

        sequence_height = static_cast<int>(out_t.dims()[0]);

        if (input_row_begin < input_row_end) {
          framework::Tensor in_t = in.Slice(input_row_begin, input_row_end);

          std::vector<int64_t> output_shape(
              {sequence_height, 1, 1, context_length,
               sequence_width});  // output_height, output_width,
          // input_channels, filter_height, filter_width

          out_t.Resize(framework::make_ddim(output_shape));

          std::vector<int64_t> input_shape(
              {1, input_row_end - input_row_begin,
               sequence_width});  // input_channels, input_height, input_width
          in_t.Resize(framework::make_ddim(input_shape));

          if (gradient) {
            col2im_ocf(context, in_t, out_t,
                       /*stride_height*/ context_stride, /*stride_width*/ 1,
                       up_pad, down_pad, 0, 0);
          } else {
            im2col_ocf(context, in_t, out_t,
                       /*stride_height*/ context_stride, /*stride_width*/ 1,
                       up_pad, down_pad, 0, 0);
          }
          out_t.Resize(framework::make_ddim(
              {sequence_height, context_length * sequence_width}));
        }
C
chengduoZH 已提交
153
      }
C
chengduoZH 已提交
154 155
    }
    if (!gradient || pad_grad) {
C
chengduoZH 已提交
156
      if (padding_trainable) {
C
chengduoZH 已提交
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
        for (int i = 0; i < static_cast<int>(lod_level_0.size()) - 1; ++i) {
          framework::Tensor out_t =
              col.Slice(static_cast<int>(lod_level_0[i]),
                        static_cast<int>(lod_level_0[i + 1]));

          sequence_height = static_cast<int>(out_t.dims()[0]);

          // add up trainable data
          out_t.Resize(framework::make_ddim(
              {sequence_height * context_length, sequence_width}));

          if (up_pad > 0) {  // add up pad
            int padding_rows = std::min(
                up_pad, static_cast<int>(lod_level_0[i + 1] - lod_level_0[i]));

            for (int k = 0; k < padding_rows; ++k) {
              int padding_size =
                  k + context_length < up_pad ? context_length : up_pad - k;
              framework::Tensor out_t_sub = out_t.Slice(
                  k * context_length, k * context_length + padding_size);
              framework::Tensor w_sub = padding_data.Slice(k, k + padding_size);
              // in this block, using EigenVector<T>::Flatten is ok too.
              auto out_t_sub_e = EigenMatrix<T>::From(out_t_sub);
              auto w_sub_e = EigenMatrix<T>::From(w_sub);
              if (gradient) {
                w_sub_e.device(*context.GetEigenDevice<Place>()) =
                    w_sub_e + out_t_sub_e;
              } else {
                out_t_sub_e.device(*context.GetEigenDevice<Place>()) = w_sub_e;
              }
            }
C
chengduoZH 已提交
188
          }
C
chengduoZH 已提交
189 190 191 192 193 194 195 196 197 198
          if (down_pad > 0) {  // add down pad
            int down_pad_begin_row =
                std::max(
                    0, (sequence_height - context_start - context_length) + 1) +
                1;
            int padding_begin = std::max(0, context_start - sequence_height);
            int padding_size =
                sequence_height - context_start >= context_length
                    ? 1
                    : context_length - (sequence_height - context_start);
C
chengduoZH 已提交
199
            if (context_start >= sequence_height) padding_size = context_length;
C
chengduoZH 已提交
200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
            int padding_idx = padding_begin;
            for (int t = 0; t + down_pad_begin_row <= sequence_height;
                 ++t, ++padding_size) {
              if (context_start >= sequence_height)
                padding_size = context_length;
              if (padding_size > context_length) {
                padding_size = context_length;
                padding_idx++;
              }
              if (padding_begin > 0 || sequence_height == context_start)
                padding_idx = padding_begin + t;
              framework::Tensor out_t_sub = out_t.Slice(
                  (down_pad_begin_row + t) * context_length - padding_size,
                  (down_pad_begin_row + t) * context_length);
              framework::Tensor w_sub = padding_data.Slice(
                  up_pad + padding_idx, up_pad + padding_idx + padding_size);
              auto out_t_sub_e = EigenMatrix<T>::From(out_t_sub);
              auto w_sub_e = EigenMatrix<T>::From(w_sub);
              if (gradient) {
                w_sub_e.device(*context.GetEigenDevice<Place>()) =
                    w_sub_e + out_t_sub_e;
              } else {
                out_t_sub_e.device(*context.GetEigenDevice<Place>()) = w_sub_e;
              }
C
chengduoZH 已提交
224 225
            }
          }
C
chengduoZH 已提交
226 227
          out_t.Resize(framework::make_ddim(
              {sequence_height, context_length * sequence_width}));
C
chengduoZH 已提交
228 229 230 231 232 233 234 235 236
        }
      }
    }
  }
};

}  // namespace math
}  // namespace operators
}  // namespace paddle