/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #pragma once #include "paddle/framework/eigen.h" #include "paddle/framework/lod_tensor.h" #include "paddle/framework/tensor.h" #include "paddle/operators/math/im2col.h" namespace paddle { namespace operators { namespace math { // template // using EigenVector = framework::EigenVector; template using EigenMatrix = framework::EigenMatrix; /* * \brief SequenceProject projects features of context_length time-steps of each * instance. * * \param in Input data. * \param inShape The shape of Input data, * [minibatch, number_of_input_features]. * \param inShape A float LoDTensor. * * \param padding_data Padding data. * \param inShape The shape of Padding data, * [up_pad + down_pad, number_of_input_features]. * \param inShape A float LoDTensor. * * \param col Col data. * \param inShape The shape of Col data, * [minibatch, 1]. * \param inShape A float LoDTensor. * * For a mini-batch of 2 variable lengths sentences, containing 3, and 1 * time-steps: * * Assumed input (X) is a [4, M, N] float LoDTensor, and X->lod()[0] = [0, 3, * 4]. * Besides, for the sake of simplicity, we assume M=1 and N=2. * * X = [[a1, a2; * b1, b2; * c1, c2] * [d1, d2]] * * This is to say that input (X) has 4 words and the dimension of each word * representation is 2. * * - Case1: * If context_start is -1 and padding_trainable is false, we use zero to pad * instead of learned weight to pad, * and the context_lenth is 3, the output (Out) is: * * Out =[[0, 0, a1, a2, b1, b2; * a1, a2, b1, b2, c1, c2; * b1, b2, c1, c2, 0, 0 ] * [0, 0, d1, d2, 0, 0 ]] * * - Case2: * If context_start is -1 and padding_trainable is true, we use learned weight * to pad, * and the context_lenth is 3, the output (Out) is: * * Out = [[w1, w2, a1, a2, b1, b2; * a1, a2, b1, b2, c1, c2; * b1, b2, c1, c2, w3, w4] * [w1, w2, d1, d2, w3, w4]] * */ template class SequenceProjectFunctor { public: void operator()(const platform::DeviceContext& context, framework::LoDTensor& in, framework::LoDTensor& padding_data, framework::LoDTensor& col, bool padding_trainable, int context_start, int context_length, int context_stride, int up_pad, int down_pad, bool gradient, bool input_grad, bool pad_grad) { auto lod_level_0 = in.lod()[0]; paddle::operators::math::Im2ColFunctor< paddle::operators::math::ColFormat::kOCF, Place, float> im2col_ocf; paddle::operators::math::Col2ImFunctor< paddle::operators::math::ColFormat::kOCF, Place, float> col2im_ocf; int input_row_begin, input_row_end; int sequence_height, sequence_width; sequence_width = in.dims()[1]; input_grad = gradient && input_grad; pad_grad = gradient && pad_grad; if (!gradient || input_grad) { for (int i = 0; i < static_cast(lod_level_0.size()) - 1; ++i) { input_row_begin = (context_start > 0) ? static_cast(lod_level_0[i]) + context_start : static_cast(lod_level_0[i]); input_row_end = static_cast(lod_level_0[i + 1]); framework::Tensor out_t = col.Slice(static_cast(lod_level_0[i]), static_cast(lod_level_0[i + 1])); sequence_height = static_cast(out_t.dims()[0]); if (input_row_begin < input_row_end) { framework::Tensor in_t = in.Slice(input_row_begin, input_row_end); std::vector output_shape( {sequence_height, 1, 1, context_length, sequence_width}); // output_height, output_width, // input_channels, filter_height, filter_width out_t.Resize(framework::make_ddim(output_shape)); std::vector input_shape( {1, input_row_end - input_row_begin, sequence_width}); // input_channels, input_height, input_width in_t.Resize(framework::make_ddim(input_shape)); if (gradient) { col2im_ocf(context, in_t, out_t, /*stride_height*/ context_stride, /*stride_width*/ 1, up_pad, down_pad, 0, 0); } else { im2col_ocf(context, in_t, out_t, /*stride_height*/ context_stride, /*stride_width*/ 1, up_pad, down_pad, 0, 0); } out_t.Resize(framework::make_ddim( {sequence_height, context_length * sequence_width})); } } } if (!gradient || pad_grad) { if (padding_trainable) { for (int i = 0; i < static_cast(lod_level_0.size()) - 1; ++i) { framework::Tensor out_t = col.Slice(static_cast(lod_level_0[i]), static_cast(lod_level_0[i + 1])); sequence_height = static_cast(out_t.dims()[0]); // add up trainable data out_t.Resize(framework::make_ddim( {sequence_height * context_length, sequence_width})); if (up_pad > 0) { // add up pad int padding_rows = std::min( up_pad, static_cast(lod_level_0[i + 1] - lod_level_0[i])); for (int k = 0; k < padding_rows; ++k) { int padding_size = k + context_length < up_pad ? context_length : up_pad - k; framework::Tensor out_t_sub = out_t.Slice( k * context_length, k * context_length + padding_size); framework::Tensor w_sub = padding_data.Slice(k, k + padding_size); // in this block, using EigenVector::Flatten is ok too. auto out_t_sub_e = EigenMatrix::From(out_t_sub); auto w_sub_e = EigenMatrix::From(w_sub); if (gradient) { w_sub_e.device(*context.GetEigenDevice()) = w_sub_e + out_t_sub_e; } else { out_t_sub_e.device(*context.GetEigenDevice()) = w_sub_e; } } } if (down_pad > 0) { // add down pad int down_pad_begin_row = std::max( 0, (sequence_height - context_start - context_length) + 1) + 1; int padding_begin = std::max(0, context_start - sequence_height); int padding_size = sequence_height - context_start >= context_length ? 1 : context_length - (sequence_height - context_start); if (context_start >= sequence_height) padding_size = context_length; int padding_idx = padding_begin; for (int t = 0; t + down_pad_begin_row <= sequence_height; ++t, ++padding_size) { if (context_start >= sequence_height) padding_size = context_length; if (padding_size > context_length) { padding_size = context_length; padding_idx++; } if (padding_begin > 0 || sequence_height == context_start) padding_idx = padding_begin + t; framework::Tensor out_t_sub = out_t.Slice( (down_pad_begin_row + t) * context_length - padding_size, (down_pad_begin_row + t) * context_length); framework::Tensor w_sub = padding_data.Slice( up_pad + padding_idx, up_pad + padding_idx + padding_size); auto out_t_sub_e = EigenMatrix::From(out_t_sub); auto w_sub_e = EigenMatrix::From(w_sub); if (gradient) { w_sub_e.device(*context.GetEigenDevice()) = w_sub_e + out_t_sub_e; } else { out_t_sub_e.device(*context.GetEigenDevice()) = w_sub_e; } } } out_t.Resize(framework::make_ddim( {sequence_height, context_length * sequence_width})); } } } } }; } // namespace math } // namespace operators } // namespace paddle