Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
4c6bccbe
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
4c6bccbe
编写于
10月 24, 2017
作者:
C
chengduoZH
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix doc and remove useless code
上级
154dbb46
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
71 addition
and
75 deletion
+71
-75
paddle/operators/math/CMakeLists.txt
paddle/operators/math/CMakeLists.txt
+2
-2
paddle/operators/math/sequence_project.h
paddle/operators/math/sequence_project.h
+57
-34
paddle/operators/sequence_conv_op.cc
paddle/operators/sequence_conv_op.cc
+12
-33
paddle/operators/sequence_conv_op.h
paddle/operators/sequence_conv_op.h
+0
-6
未找到文件。
paddle/operators/math/CMakeLists.txt
浏览文件 @
4c6bccbe
...
...
@@ -7,7 +7,7 @@ if(WITH_GPU)
nv_library
(
cross_entropy SRCS cross_entropy.cc cross_entropy.cu DEPS operator
)
nv_library
(
pooling SRCS pooling.cc pooling.cu DEPS device_context
)
nv_library
(
vol2col SRCS vol2col.cc vol2col.cu DEPS device_context
)
nv_library
(
sequence_project SRCS sequence_project.cc sequence_project.cu DEPS device_context
math_function
)
nv_library
(
sequence_project SRCS sequence_project.cc sequence_project.cu DEPS device_context
)
else
()
cc_library
(
math_function SRCS math_function.cc im2col.cc DEPS cblas device_context operator
)
cc_library
(
selected_rows_functor SRCS selected_rows_functor.cc DEPS selected_rows math_function
)
...
...
@@ -15,7 +15,7 @@ else()
cc_library
(
cross_entropy SRCS cross_entropy.cc DEPS operator
)
cc_library
(
pooling SRCS pooling.cc DEPS device_context
)
cc_library
(
vol2col SRCS vol2col.cc DEPS device_context
)
cc_library
(
sequence_project SRCS sequence_project.cc DEPS device_context
math_function
)
cc_library
(
sequence_project SRCS sequence_project.cc DEPS device_context
)
endif
()
cc_test
(
math_function_test SRCS math_function_test.cc DEPS math_function tensor
)
...
...
paddle/operators/math/sequence_project.h
浏览文件 @
4c6bccbe
...
...
@@ -18,7 +18,6 @@ limitations under the License. */
#include "paddle/framework/lod_tensor.h"
#include "paddle/framework/tensor.h"
#include "paddle/operators/math/im2col.h"
#include "paddle/operators/math/math_function.h"
namespace
paddle
{
namespace
operators
{
...
...
@@ -32,37 +31,59 @@ template <typename T, int MajorType = Eigen::RowMajor,
typename
IndexType
=
Eigen
::
DenseIndex
>
using
EigenMatrix
=
framework
::
EigenMatrix
<
T
,
MajorType
,
IndexType
>
;
/*
* \brief Converts the feature data of four dimensions(CDHW) into a colData of
* seven dimensions in the Vol2ColFunctor calculation,
* And in the Col2VolFunctor calculation, it is reversed.
* \brief SequenceProject projects features of context_length time-steps of each
* instance.
*
* \param volData Vol data.
* \param volShape The shape of volData,
* [input_channels, input_depth, input_height, input_width].
* \param colData Column data.
* \param colShape The shape of colData.
* \param in Input data.
* \param inShape The shape of Input data,
* [minibatch, number_of_input_features].
* \param inShape A float LoDTensor.
*
* The shape of colData is:
* [input_channels, filter_depth, filter_height, filter_width, output_depth,
* output_height, output_width]
* So, it is easy to reshape into a convolution matrix for convolution
* calculation based on matrix multiplication.
* The shape of convolution matrix is [height, width], where the height is equal
* input_channels * filter_depth * filter_height * filter_width, and the width
* is equal output_depth * output_height * output_width.
* \param padding_data Padding data.
* \param inShape The shape of Padding data,
* [up_pad + down_pad, number_of_input_features].
* \param inShape A float LoDTensor.
*
* Reshape:
* shape of colData shape of convolution matrix
* [input_channels,
* filter_depth,
* filter_height,
* filter_width, ======> [height, width]
* output_depth,
* output_height,
* output_width]
* \param col Col data.
* \param inShape The shape of Col data,
* [minibatch, 1].
* \param inShape A float LoDTensor.
*
* For a mini-batch of 2 variable lengths sentences, containing 3, and 1
* time-steps:
*
* Assumed input (X) is a [4, M, N] float LoDTensor, and X->lod()[0] = [0, 3,
* 4].
* Besides, for the sake of simplicity, we assume M=1 and N=2.
*
* X = [[a1, a2;
* b1, b2;
* c1, c2]
* [d1, d2]]
*
* This is to say that input (X) has 4 words and the dimension of each word
* representation is 2.
*
* - Case1:
* If context_start is -1 and padding_trainable is false, we use zero to pad
* instead of learned weight to pad,
* and the context_lenth is 3, the output (Out) is:
*
* Out =[[0, 0, a1, a2, b1, b2;
* a1, a2, b1, b2, c1, c2;
* b1, b2, c1, c2, 0, 0 ]
* [0, 0, d1, d2, 0, 0 ]]
*
* - Case2:
* If context_start is -1 and padding_trainable is true, we use learned weight
* to pad,
* and the context_lenth is 3, the output (Out) is:
*
* Out = [[w1, w2, a1, a2, b1, b2;
* a1, a2, b1, b2, c1, c2;
* b1, b2, c1, c2, w3, w4]
* [w1, w2, d1, d2, w3, w4]]
*
* \note The caller needs to ensure that volShape.inputChannels is equal to
* colShape.inputChannels.
*/
template
<
typename
Place
,
typename
T
>
...
...
@@ -96,14 +117,16 @@ class SequenceProjectFunctor {
sequence_height
=
static_cast
<
int
>
(
out_t
.
dims
()[
0
]);
std
::
vector
<
int64_t
>
output_shape
(
{
sequence_height
,
1
,
1
,
context_length
,
sequence_width
});
// output_height, output_width,
// input_channels, filter_height, filter_width
out_t
.
Resize
(
framework
::
make_ddim
(
output_shape
));
if
(
input_row_begin
<
input_row_end
)
{
framework
::
Tensor
in_t
=
in
->
Slice
(
input_row_begin
,
input_row_end
);
std
::
vector
<
int64_t
>
output_shape
(
{
sequence_height
,
1
,
1
,
context_length
,
sequence_width
});
// output_height, output_width,
// input_channels, filter_height, filter_width
out_t
.
Resize
(
framework
::
make_ddim
(
output_shape
));
std
::
vector
<
int64_t
>
input_shape
(
{
1
,
input_row_end
-
input_row_begin
,
sequence_width
});
// input_channels, input_height, input_width
...
...
paddle/operators/sequence_conv_op.cc
浏览文件 @
4c6bccbe
...
...
@@ -135,39 +135,18 @@ class SequenceConvOpMaker : public framework::OpProtoAndCheckerMaker {
.
GreaterThan
(
0
);
AddComment
(
R"DOC(
SequenceConvOp projects features of context_length time-steps of each instance.
For a mini-batch of 2 variable lengths sentences, containing 3, and 1 time-steps:
Assumed input (X) is a [4, M, N] float LoDTensor, and X->lod()[0] = [0, 3, 4].
Besides, for the sake of simplicity, we assume M=1 and N=2.
X = [[a1, a2;
b1, b2;
c1, c2]
[d1, d2]]
This is to say that input (X) has 4 words and the dimension of each word
representation is 2.
- Case1:
If context_start is -1 and padding_trainable is false, we use zero to pad instead of learned weight to pad,
and the context_lenth is 3, the output (Out) is:
Out =[[0, 0, a1, a2, b1, b2;
a1, a2, b1, b2, c1, c2;
b1, b2, c1, c2, 0, 0 ]
[0, 0, d1, d2, 0, 0 ]]
- Case2:
If context_start is -1 and padding_trainable is true, we use learned weight to pad,
and the context_lenth is 3, the output (Out) is:
Out = [[w1, w2, a1, a2, b1, b2;
a1, a2, b1, b2, c1, c2;
b1, b2, c1, c2, w3, w4]
[w1, w2, d1, d2, w3, w4]]
SequenceConvOp performs convolution operation on features of
context_length time-steps of each instance.
The convolution operation calculates the output based on the input, filter
and strides, paddings parameters. The size of each dimension of the
parameters is checked in the infer-shape.
Example:
Input:
X shape: (minibatch, number_of_input_features)
Filter shape: (context_length, number_of_input_features)
Output:
Out shape: (minibatch, 1)
)DOC"
);
}
};
...
...
paddle/operators/sequence_conv_op.h
浏览文件 @
4c6bccbe
...
...
@@ -182,12 +182,6 @@ class SequenceConvGradKernel : public framework::OpKernel<T> {
functor
(
context
.
device_context
(),
padding_data_g
,
0
);
for
(
int
i
=
0
;
i
<
static_cast
<
int
>
(
lod_g_level_0
.
size
())
-
1
;
++
i
)
{
input_row_begin
=
(
context_start
>
0
)
?
static_cast
<
int
>
(
lod_g_level_0
[
i
])
+
context_start
:
static_cast
<
int
>
(
lod_g_level_0
[
i
]);
input_row_end
=
static_cast
<
int
>
(
lod_g_level_0
[
i
+
1
]);
Tensor
col_t
=
col
.
Slice
(
static_cast
<
int
>
(
lod_g_level_0
[
i
]),
static_cast
<
int
>
(
lod_g_level_0
[
i
+
1
]));
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录