pose3d_cmb.py 13.7 KB
Newer Older
Z
zhiboniu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. 
#   
# Licensed under the Apache License, Version 2.0 (the "License");   
# you may not use this file except in compliance with the License.  
# You may obtain a copy of the License at   
#   
#     http://www.apache.org/licenses/LICENSE-2.0    
#   
# Unless required by applicable law or agreed to in writing, software   
# distributed under the License is distributed on an "AS IS" BASIS, 
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.  
# See the License for the specific language governing permissions and   
# limitations under the License.
Z
zhiboniu 已提交
14

Z
zhiboniu 已提交
15 16 17 18 19 20 21 22 23
import os
import cv2
import numpy as np
import json
import copy
import pycocotools
from pycocotools.coco import COCO
from .dataset import DetDataset
from ppdet.core.workspace import register, serializable
XYZ_916's avatar
XYZ_916 已提交
24
from paddle.io import Dataset
Z
zhiboniu 已提交
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69


@serializable
class Pose3DDataset(DetDataset):
    """Pose3D Dataset class. 

    Args:
        dataset_dir (str): Root path to the dataset.
        anno_list (list of str): each of the element is a relative path to the annotation file.
        image_dirs (list of str): each of path is a relative path where images are held.
        transform (composed(operators)): A sequence of data transforms.
        test_mode (bool): Store True when building test or
            validation dataset. Default: False.
        24 joints order:
        0-2: 'R_Ankle', 'R_Knee', 'R_Hip', 
        3-5:'L_Hip', 'L_Knee', 'L_Ankle', 
        6-8:'R_Wrist', 'R_Elbow', 'R_Shoulder', 
        9-11:'L_Shoulder','L_Elbow','L_Wrist',
        12-14:'Neck','Top_of_Head','Pelvis',
        15-18:'Thorax','Spine','Jaw','Head',
        19-23:'Nose','L_Eye','R_Eye','L_Ear','R_Ear'
    """

    def __init__(self,
                 dataset_dir,
                 image_dirs,
                 anno_list,
                 transform=[],
                 num_joints=24,
                 test_mode=False):
        super().__init__(dataset_dir, image_dirs, anno_list)
        self.image_info = {}
        self.ann_info = {}
        self.num_joints = num_joints

        self.transform = transform
        self.test_mode = test_mode

        self.img_ids = []
        self.dataset_dir = dataset_dir
        self.image_dirs = image_dirs
        self.anno_list = anno_list

    def get_mask(self, mvm_percent=0.3):
        num_joints = self.num_joints
W
wangguanzhong 已提交
70
        mjm_mask = np.ones((num_joints, 1)).astype(np.float32)
Z
zhiboniu 已提交
71 72 73 74 75 76 77 78
        if self.test_mode == False:
            pb = np.random.random_sample()
            masked_num = int(
                pb * mvm_percent *
                num_joints)  # at most x% of the joints could be masked
            indices = np.random.choice(
                np.arange(num_joints), replace=False, size=masked_num)
            mjm_mask[indices, :] = 0.0
Z
zhiboniu 已提交
79
        # return mjm_mask
Z
zhiboniu 已提交
80

Z
zhiboniu 已提交
81
        num_joints = 10
Z
zhiboniu 已提交
82
        mvm_mask = np.ones((num_joints, 1)).astype(np.float)
Z
zhiboniu 已提交
83
        if self.test_mode == False:
Z
zhiboniu 已提交
84
            num_vertices = num_joints
Z
zhiboniu 已提交
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
            pb = np.random.random_sample()
            masked_num = int(
                pb * mvm_percent *
                num_vertices)  # at most x% of the vertices could be masked
            indices = np.random.choice(
                np.arange(num_vertices), replace=False, size=masked_num)
            mvm_mask[indices, :] = 0.0

        mjm_mask = np.concatenate([mjm_mask, mvm_mask], axis=0)
        return mjm_mask

    def filterjoints(self, x):
        if self.num_joints == 24:
            return x
        elif self.num_joints == 14:
            return x[[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 18], :]
        elif self.num_joints == 17:
            return x[
                [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 18, 19], :]
        else:
            raise ValueError(
                "unsupported joint numbers, only [24 or 17 or 14] is supported!")

    def parse_dataset(self):
        print("Loading annotations..., please wait")
        self.annos = []
        im_id = 0
Z
zhiboniu 已提交
112
        self.human36m_num = 0
Z
zhiboniu 已提交
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
        for idx, annof in enumerate(self.anno_list):
            img_prefix = os.path.join(self.dataset_dir, self.image_dirs[idx])
            dataf = os.path.join(self.dataset_dir, annof)
            with open(dataf, 'r') as rf:
                anno_data = json.load(rf)
                annos = anno_data['data']
                new_annos = []
                print("{} has annos numbers: {}".format(dataf, len(annos)))
                for anno in annos:
                    new_anno = {}
                    new_anno['im_id'] = im_id
                    im_id += 1
                    imagename = anno['imageName']
                    if imagename.startswith("COCO_train2014_"):
                        imagename = imagename[len("COCO_train2014_"):]
                    elif imagename.startswith("COCO_val2014_"):
                        imagename = imagename[len("COCO_val2014_"):]
                    imagename = os.path.join(img_prefix, imagename)
                    if not os.path.exists(imagename):
                        if "train2017" in imagename:
                            imagename = imagename.replace("train2017",
                                                          "val2017")
                            if not os.path.exists(imagename):
                                print("cannot find imagepath:{}".format(
                                    imagename))
                                continue
                        else:
                            print("cannot find imagepath:{}".format(imagename))
                            continue
                    new_anno['imageName'] = imagename
Z
zhiboniu 已提交
143 144
                    if 'human3.6m' in imagename:
                        self.human36m_num += 1
Z
zhiboniu 已提交
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
                    new_anno['bbox_center'] = anno['bbox_center']
                    new_anno['bbox_scale'] = anno['bbox_scale']
                    new_anno['joints_2d'] = np.array(anno[
                        'gt_keypoint_2d']).astype(np.float32)
                    if new_anno['joints_2d'].shape[0] == 49:
                        #if the joints_2d is in SPIN format(which generated by eft), choose the last 24 public joints
                        #for detail please refer: https://github.com/nkolot/SPIN/blob/master/constants.py
                        new_anno['joints_2d'] = new_anno['joints_2d'][25:]
                    new_anno['joints_3d'] = np.array(anno[
                        'pose3d'])[:, :3].astype(np.float32)
                    new_anno['mjm_mask'] = self.get_mask()
                    if not 'has_3d_joints' in anno:
                        new_anno['has_3d_joints'] = int(1)
                        new_anno['has_2d_joints'] = int(1)
                    else:
                        new_anno['has_3d_joints'] = int(anno['has_3d_joints'])
                        new_anno['has_2d_joints'] = int(anno['has_2d_joints'])
                    new_anno['joints_2d'] = self.filterjoints(new_anno[
                        'joints_2d'])
                    self.annos.append(new_anno)
                del annos

Z
zhiboniu 已提交
167 168 169 170
    def get_temp_num(self):
        """get temporal data number, like human3.6m"""
        return self.human36m_num

Z
zhiboniu 已提交
171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
    def __len__(self):
        """Get dataset length."""
        return len(self.annos)

    def _get_imganno(self, idx):
        """Get anno for a single image."""
        return self.annos[idx]

    def __getitem__(self, idx):
        """Prepare image for training given the index."""
        records = copy.deepcopy(self._get_imganno(idx))
        imgpath = records['imageName']
        assert os.path.exists(imgpath), "cannot find image {}".format(imgpath)
        records['image'] = cv2.imread(imgpath)
        records['image'] = cv2.cvtColor(records['image'], cv2.COLOR_BGR2RGB)
        records = self.transform(records)
        return records

    def check_or_download_dataset(self):
        alldatafind = True
        for image_dir in self.image_dirs:
            image_dir = os.path.join(self.dataset_dir, image_dir)
            if not os.path.isdir(image_dir):
                print("dataset [{}] is not found".format(image_dir))
                alldatafind = False
        if not alldatafind:
            raise ValueError(
                "Some dataset is not valid and cannot download automatically now, please prepare the dataset first"
            )
XYZ_916's avatar
XYZ_916 已提交
200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380


@register
@serializable
class Keypoint3DMultiFramesDataset(Dataset):
    """24 keypoints 3D dataset for pose estimation. 

    each item is a list of images

    The dataset loads raw features and apply specified transforms
    to return a dict containing the image tensors and other information.

    Args:
        dataset_dir (str): Root path to the dataset.
        image_dir (str): Path to a directory where images are held.
    """

    def __init__(
            self,
            dataset_dir,  # 数据集根目录
            image_dir,  # 图像文件夹
            p3d_dir,  # 3D关键点文件夹
            json_path,
            img_size,  #图像resize大小
            num_frames,  # 帧序列长度
            anno_path=None, ):

        self.dataset_dir = dataset_dir
        self.image_dir = image_dir
        self.p3d_dir = p3d_dir
        self.json_path = json_path
        self.img_size = img_size
        self.num_frames = num_frames
        self.anno_path = anno_path

        self.data_labels, self.mf_inds = self._generate_multi_frames_list()

    def _generate_multi_frames_list(self):
        act_list = os.listdir(self.dataset_dir)  # 动作列表
        count = 0
        mf_list = []
        annos_dict = {'images': [], 'annotations': [], 'act_inds': []}
        for act in act_list:  #对每个动作,生成帧序列
            if '.' in act:
                continue

            json_path = os.path.join(self.dataset_dir, act, self.json_path)
            with open(json_path, 'r') as j:
                annos = json.load(j)
            length = len(annos['images'])
            for k, v in annos.items():
                if k in annos_dict:
                    annos_dict[k].extend(v)
            annos_dict['act_inds'].extend([act] * length)

            mf = [[i + j + count for j in range(self.num_frames)]
                  for i in range(0, length - self.num_frames + 1)]
            mf_list.extend(mf)
            count += length

        print("total data number:", len(mf_list))
        return annos_dict, mf_list

    def __call__(self, *args, **kwargs):
        return self

    def __getitem__(self, index):  # 拿一个连续的序列
        inds = self.mf_inds[
            index]  # 如[568, 569, 570, 571, 572, 573],长度为num_frames

        images = self.data_labels['images']  # all images
        annots = self.data_labels['annotations']  # all annots

        act = self.data_labels['act_inds'][inds[0]]  # 动作名(文件夹名)

        kps3d_list = []
        kps3d_vis_list = []
        names = []

        h, w = 0, 0
        for ind in inds:  # one image
            height = float(images[ind]['height'])
            width = float(images[ind]['width'])
            name = images[ind]['file_name']  # 图像名称,带有后缀

            kps3d_name = name.split('.')[0] + '.obj'
            kps3d_path = os.path.join(self.dataset_dir, act, self.p3d_dir,
                                      kps3d_name)

            joints, joints_vis = self.kps3d_process(kps3d_path)
            joints_vis = np.array(joints_vis, dtype=np.float32)

            kps3d_list.append(joints)
            kps3d_vis_list.append(joints_vis)
            names.append(name)

        kps3d = np.array(kps3d_list)  # (6, 24, 3),(num_frames, joints_num, 3)
        kps3d_vis = np.array(kps3d_vis_list)

        # read image
        imgs = []
        for name in names:
            img_path = os.path.join(self.dataset_dir, act, self.image_dir, name)

            image = cv2.imread(img_path, cv2.IMREAD_COLOR |
                               cv2.IMREAD_IGNORE_ORIENTATION)
            image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)

            imgs.append(np.expand_dims(image, axis=0))

        imgs = np.concatenate(imgs, axis=0)
        imgs = imgs.astype(
            np.float32)  # (6, 1080, 1920, 3),(num_frames, h, w, c)

        # attention: 此时图像和标注是镜像的
        records = {
            'kps3d': kps3d,
            'kps3d_vis': kps3d_vis,
            "image": imgs,
            'act': act,
            'names': names,
            'im_id': index
        }

        return self.transform(records)

    def kps3d_process(self, kps3d_path):
        count = 0
        kps = []
        kps_vis = []

        with open(kps3d_path, 'r') as f:
            lines = f.readlines()
            for line in lines:
                if line[0] == 'v':
                    kps.append([])
                    line = line.strip('\n').split(' ')[1:]
                    for kp in line:
                        kps[-1].append(float(kp))
                    count += 1

                    kps_vis.append([1, 1, 1])

        kps = np.array(kps)  # 52,3
        kps_vis = np.array(kps_vis)

        kps *= 10  # scale points
        kps -= kps[[0], :]  # set root point to zero

        kps = np.concatenate((kps[0:23], kps[[37]]), axis=0)  # 24,3

        kps *= 10

        kps_vis = np.concatenate((kps_vis[0:23], kps_vis[[37]]), axis=0)  # 24,3

        return kps, kps_vis

    def __len__(self):
        return len(self.mf_inds)

    def get_anno(self):
        if self.anno_path is None:
            return
        return os.path.join(self.dataset_dir, self.anno_path)

    def check_or_download_dataset(self):
        return

    def parse_dataset(self, ):
        return

    def set_transform(self, transform):
        self.transform = transform

    def set_epoch(self, epoch_id):
        self._epoch = epoch_id

    def set_kwargs(self, **kwargs):
        self.mixup_epoch = kwargs.get('mixup_epoch', -1)
        self.cutmix_epoch = kwargs.get('cutmix_epoch', -1)
        self.mosaic_epoch = kwargs.get('mosaic_epoch', -1)