pose3d_cmb.py 8.2 KB
Newer Older
Z
zhiboniu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. 
#   
# Licensed under the Apache License, Version 2.0 (the "License");   
# you may not use this file except in compliance with the License.  
# You may obtain a copy of the License at   
#   
#     http://www.apache.org/licenses/LICENSE-2.0    
#   
# Unless required by applicable law or agreed to in writing, software   
# distributed under the License is distributed on an "AS IS" BASIS, 
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.  
# See the License for the specific language governing permissions and   
# limitations under the License.
"""
this code is base on https://github.com/open-mmlab/mmpose
"""
import os
import cv2
import numpy as np
import json
import copy
import pycocotools
from pycocotools.coco import COCO
from .dataset import DetDataset
from ppdet.core.workspace import register, serializable


@serializable
class Pose3DDataset(DetDataset):
    """Pose3D Dataset class. 

    Args:
        dataset_dir (str): Root path to the dataset.
        anno_list (list of str): each of the element is a relative path to the annotation file.
        image_dirs (list of str): each of path is a relative path where images are held.
        transform (composed(operators)): A sequence of data transforms.
        test_mode (bool): Store True when building test or
            validation dataset. Default: False.
        24 joints order:
        0-2: 'R_Ankle', 'R_Knee', 'R_Hip', 
        3-5:'L_Hip', 'L_Knee', 'L_Ankle', 
        6-8:'R_Wrist', 'R_Elbow', 'R_Shoulder', 
        9-11:'L_Shoulder','L_Elbow','L_Wrist',
        12-14:'Neck','Top_of_Head','Pelvis',
        15-18:'Thorax','Spine','Jaw','Head',
        19-23:'Nose','L_Eye','R_Eye','L_Ear','R_Ear'
    """

    def __init__(self,
                 dataset_dir,
                 image_dirs,
                 anno_list,
                 transform=[],
                 num_joints=24,
                 test_mode=False):
        super().__init__(dataset_dir, image_dirs, anno_list)
        self.image_info = {}
        self.ann_info = {}
        self.num_joints = num_joints

        self.transform = transform
        self.test_mode = test_mode

        self.img_ids = []
        self.dataset_dir = dataset_dir
        self.image_dirs = image_dirs
        self.anno_list = anno_list

    def get_mask(self, mvm_percent=0.3):
        num_joints = self.num_joints
W
wangguanzhong 已提交
71
        mjm_mask = np.ones((num_joints, 1)).astype(np.float32)
Z
zhiboniu 已提交
72 73 74 75 76 77 78 79
        if self.test_mode == False:
            pb = np.random.random_sample()
            masked_num = int(
                pb * mvm_percent *
                num_joints)  # at most x% of the joints could be masked
            indices = np.random.choice(
                np.arange(num_joints), replace=False, size=masked_num)
            mjm_mask[indices, :] = 0.0
Z
zhiboniu 已提交
80
        # return mjm_mask
Z
zhiboniu 已提交
81

Z
zhiboniu 已提交
82 83
        num_joints = 1
        mvm_mask = np.ones((num_joints, 1)).astype(np.float)
Z
zhiboniu 已提交
84
        if self.test_mode == False:
Z
zhiboniu 已提交
85
            num_vertices = num_joints
Z
zhiboniu 已提交
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
            pb = np.random.random_sample()
            masked_num = int(
                pb * mvm_percent *
                num_vertices)  # at most x% of the vertices could be masked
            indices = np.random.choice(
                np.arange(num_vertices), replace=False, size=masked_num)
            mvm_mask[indices, :] = 0.0

        mjm_mask = np.concatenate([mjm_mask, mvm_mask], axis=0)
        return mjm_mask

    def filterjoints(self, x):
        if self.num_joints == 24:
            return x
        elif self.num_joints == 14:
            return x[[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 18], :]
        elif self.num_joints == 17:
            return x[
                [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 18, 19], :]
        else:
            raise ValueError(
                "unsupported joint numbers, only [24 or 17 or 14] is supported!")

    def parse_dataset(self):
        print("Loading annotations..., please wait")
        self.annos = []
        im_id = 0
Z
zhiboniu 已提交
113
        self.human36m_num = 0
Z
zhiboniu 已提交
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
        for idx, annof in enumerate(self.anno_list):
            img_prefix = os.path.join(self.dataset_dir, self.image_dirs[idx])
            dataf = os.path.join(self.dataset_dir, annof)
            with open(dataf, 'r') as rf:
                anno_data = json.load(rf)
                annos = anno_data['data']
                new_annos = []
                print("{} has annos numbers: {}".format(dataf, len(annos)))
                for anno in annos:
                    new_anno = {}
                    new_anno['im_id'] = im_id
                    im_id += 1
                    imagename = anno['imageName']
                    if imagename.startswith("COCO_train2014_"):
                        imagename = imagename[len("COCO_train2014_"):]
                    elif imagename.startswith("COCO_val2014_"):
                        imagename = imagename[len("COCO_val2014_"):]
                    imagename = os.path.join(img_prefix, imagename)
                    if not os.path.exists(imagename):
                        if "train2017" in imagename:
                            imagename = imagename.replace("train2017",
                                                          "val2017")
                            if not os.path.exists(imagename):
                                print("cannot find imagepath:{}".format(
                                    imagename))
                                continue
                        else:
                            print("cannot find imagepath:{}".format(imagename))
                            continue
                    new_anno['imageName'] = imagename
Z
zhiboniu 已提交
144 145
                    if 'human3.6m' in imagename:
                        self.human36m_num += 1
Z
zhiboniu 已提交
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
                    new_anno['bbox_center'] = anno['bbox_center']
                    new_anno['bbox_scale'] = anno['bbox_scale']
                    new_anno['joints_2d'] = np.array(anno[
                        'gt_keypoint_2d']).astype(np.float32)
                    if new_anno['joints_2d'].shape[0] == 49:
                        #if the joints_2d is in SPIN format(which generated by eft), choose the last 24 public joints
                        #for detail please refer: https://github.com/nkolot/SPIN/blob/master/constants.py
                        new_anno['joints_2d'] = new_anno['joints_2d'][25:]
                    new_anno['joints_3d'] = np.array(anno[
                        'pose3d'])[:, :3].astype(np.float32)
                    new_anno['mjm_mask'] = self.get_mask()
                    if not 'has_3d_joints' in anno:
                        new_anno['has_3d_joints'] = int(1)
                        new_anno['has_2d_joints'] = int(1)
                    else:
                        new_anno['has_3d_joints'] = int(anno['has_3d_joints'])
                        new_anno['has_2d_joints'] = int(anno['has_2d_joints'])
                    new_anno['joints_2d'] = self.filterjoints(new_anno[
                        'joints_2d'])
                    self.annos.append(new_anno)
                del annos

Z
zhiboniu 已提交
168 169 170 171
    def get_temp_num(self):
        """get temporal data number, like human3.6m"""
        return self.human36m_num

Z
zhiboniu 已提交
172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
    def __len__(self):
        """Get dataset length."""
        return len(self.annos)

    def _get_imganno(self, idx):
        """Get anno for a single image."""
        return self.annos[idx]

    def __getitem__(self, idx):
        """Prepare image for training given the index."""
        records = copy.deepcopy(self._get_imganno(idx))
        imgpath = records['imageName']
        assert os.path.exists(imgpath), "cannot find image {}".format(imgpath)
        records['image'] = cv2.imread(imgpath)
        records['image'] = cv2.cvtColor(records['image'], cv2.COLOR_BGR2RGB)
        records = self.transform(records)
        return records

    def check_or_download_dataset(self):
        alldatafind = True
        for image_dir in self.image_dirs:
            image_dir = os.path.join(self.dataset_dir, image_dir)
            if not os.path.isdir(image_dir):
                print("dataset [{}] is not found".format(image_dir))
                alldatafind = False
        if not alldatafind:
            raise ValueError(
                "Some dataset is not valid and cannot download automatically now, please prepare the dataset first"
            )