pose3d_cmb.py 7.9 KB
Newer Older
Z
zhiboniu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. 
#   
# Licensed under the Apache License, Version 2.0 (the "License");   
# you may not use this file except in compliance with the License.  
# You may obtain a copy of the License at   
#   
#     http://www.apache.org/licenses/LICENSE-2.0    
#   
# Unless required by applicable law or agreed to in writing, software   
# distributed under the License is distributed on an "AS IS" BASIS, 
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.  
# See the License for the specific language governing permissions and   
# limitations under the License.
"""
this code is base on https://github.com/open-mmlab/mmpose
"""
import os
import cv2
import numpy as np
import json
import copy
import pycocotools
from pycocotools.coco import COCO
from .dataset import DetDataset
from ppdet.core.workspace import register, serializable


@serializable
class Pose3DDataset(DetDataset):
    """Pose3D Dataset class. 

    Args:
        dataset_dir (str): Root path to the dataset.
        anno_list (list of str): each of the element is a relative path to the annotation file.
        image_dirs (list of str): each of path is a relative path where images are held.
        transform (composed(operators)): A sequence of data transforms.
        test_mode (bool): Store True when building test or
            validation dataset. Default: False.
        24 joints order:
        0-2: 'R_Ankle', 'R_Knee', 'R_Hip', 
        3-5:'L_Hip', 'L_Knee', 'L_Ankle', 
        6-8:'R_Wrist', 'R_Elbow', 'R_Shoulder', 
        9-11:'L_Shoulder','L_Elbow','L_Wrist',
        12-14:'Neck','Top_of_Head','Pelvis',
        15-18:'Thorax','Spine','Jaw','Head',
        19-23:'Nose','L_Eye','R_Eye','L_Ear','R_Ear'
    """

    def __init__(self,
                 dataset_dir,
                 image_dirs,
                 anno_list,
                 transform=[],
                 num_joints=24,
                 test_mode=False):
        super().__init__(dataset_dir, image_dirs, anno_list)
        self.image_info = {}
        self.ann_info = {}
        self.num_joints = num_joints

        self.transform = transform
        self.test_mode = test_mode

        self.img_ids = []
        self.dataset_dir = dataset_dir
        self.image_dirs = image_dirs
        self.anno_list = anno_list

    def get_mask(self, mvm_percent=0.3):
        num_joints = self.num_joints
        mjm_mask = np.ones((num_joints, 1)).astype(np.float)
        if self.test_mode == False:
            pb = np.random.random_sample()
            masked_num = int(
                pb * mvm_percent *
                num_joints)  # at most x% of the joints could be masked
            indices = np.random.choice(
                np.arange(num_joints), replace=False, size=masked_num)
            mjm_mask[indices, :] = 0.0

        mvm_mask = np.ones((10, 1)).astype(np.float)
        if self.test_mode == False:
            num_vertices = 10
            pb = np.random.random_sample()
            masked_num = int(
                pb * mvm_percent *
                num_vertices)  # at most x% of the vertices could be masked
            indices = np.random.choice(
                np.arange(num_vertices), replace=False, size=masked_num)
            mvm_mask[indices, :] = 0.0

        mjm_mask = np.concatenate([mjm_mask, mvm_mask], axis=0)
        return mjm_mask

    def filterjoints(self, x):
        if self.num_joints == 24:
            return x
        elif self.num_joints == 14:
            return x[[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 18], :]
        elif self.num_joints == 17:
            return x[
                [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 18, 19], :]
        else:
            raise ValueError(
                "unsupported joint numbers, only [24 or 17 or 14] is supported!")

    def parse_dataset(self):
        print("Loading annotations..., please wait")
        self.annos = []
        im_id = 0
        for idx, annof in enumerate(self.anno_list):
            img_prefix = os.path.join(self.dataset_dir, self.image_dirs[idx])
            dataf = os.path.join(self.dataset_dir, annof)
            with open(dataf, 'r') as rf:
                anno_data = json.load(rf)
                annos = anno_data['data']
                new_annos = []
                print("{} has annos numbers: {}".format(dataf, len(annos)))
                for anno in annos:
                    new_anno = {}
                    new_anno['im_id'] = im_id
                    im_id += 1
                    imagename = anno['imageName']
                    if imagename.startswith("COCO_train2014_"):
                        imagename = imagename[len("COCO_train2014_"):]
                    elif imagename.startswith("COCO_val2014_"):
                        imagename = imagename[len("COCO_val2014_"):]
                    imagename = os.path.join(img_prefix, imagename)
                    if not os.path.exists(imagename):
                        if "train2017" in imagename:
                            imagename = imagename.replace("train2017",
                                                          "val2017")
                            if not os.path.exists(imagename):
                                print("cannot find imagepath:{}".format(
                                    imagename))
                                continue
                        else:
                            print("cannot find imagepath:{}".format(imagename))
                            continue
                    new_anno['imageName'] = imagename
                    new_anno['bbox_center'] = anno['bbox_center']
                    new_anno['bbox_scale'] = anno['bbox_scale']
                    new_anno['joints_2d'] = np.array(anno[
                        'gt_keypoint_2d']).astype(np.float32)
                    if new_anno['joints_2d'].shape[0] == 49:
                        #if the joints_2d is in SPIN format(which generated by eft), choose the last 24 public joints
                        #for detail please refer: https://github.com/nkolot/SPIN/blob/master/constants.py
                        new_anno['joints_2d'] = new_anno['joints_2d'][25:]
                    new_anno['joints_3d'] = np.array(anno[
                        'pose3d'])[:, :3].astype(np.float32)
                    new_anno['mjm_mask'] = self.get_mask()
                    if not 'has_3d_joints' in anno:
                        new_anno['has_3d_joints'] = int(1)
                        new_anno['has_2d_joints'] = int(1)
                    else:
                        new_anno['has_3d_joints'] = int(anno['has_3d_joints'])
                        new_anno['has_2d_joints'] = int(anno['has_2d_joints'])
                    new_anno['joints_2d'] = self.filterjoints(new_anno[
                        'joints_2d'])
                    self.annos.append(new_anno)
                del annos

    def __len__(self):
        """Get dataset length."""
        return len(self.annos)

    def _get_imganno(self, idx):
        """Get anno for a single image."""
        return self.annos[idx]

    def __getitem__(self, idx):
        """Prepare image for training given the index."""
        records = copy.deepcopy(self._get_imganno(idx))
        imgpath = records['imageName']
        assert os.path.exists(imgpath), "cannot find image {}".format(imgpath)
        records['image'] = cv2.imread(imgpath)
        records['image'] = cv2.cvtColor(records['image'], cv2.COLOR_BGR2RGB)
        records = self.transform(records)
        return records

    def check_or_download_dataset(self):
        alldatafind = True
        for image_dir in self.image_dirs:
            image_dir = os.path.join(self.dataset_dir, image_dir)
            if not os.path.isdir(image_dir):
                print("dataset [{}] is not found".format(image_dir))
                alldatafind = False
        if not alldatafind:
            raise ValueError(
                "Some dataset is not valid and cannot download automatically now, please prepare the dataset first"
            )