Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleClas
提交
3c21282d
P
PaddleClas
项目概览
PaddlePaddle
/
PaddleClas
接近 2 年 前同步成功
通知
116
Star
4999
Fork
1114
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
19
列表
看板
标记
里程碑
合并请求
6
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleClas
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
19
Issue
19
列表
看板
标记
里程碑
合并请求
6
合并请求
6
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
3c21282d
编写于
2月 07, 2023
作者:
T
tianyi1997
提交者:
HydrogenSulfate
2月 28, 2023
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Create losses for MetaBIN
上级
c3fa6eca
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
202 addition
and
0 deletion
+202
-0
ppcls/loss/__init__.py
ppcls/loss/__init__.py
+5
-0
ppcls/loss/metabinloss.py
ppcls/loss/metabinloss.py
+197
-0
未找到文件。
ppcls/loss/__init__.py
浏览文件 @
3c21282d
...
@@ -42,6 +42,11 @@ from .deephashloss import DSHSDLoss
...
@@ -42,6 +42,11 @@ from .deephashloss import DSHSDLoss
from
.deephashloss
import
LCDSHLoss
from
.deephashloss
import
LCDSHLoss
from
.deephashloss
import
DCHLoss
from
.deephashloss
import
DCHLoss
from
.metabinloss
import
CELossForMetaBIN
from
.metabinloss
import
TripletLossForMetaBIN
from
.metabinloss
import
InterDomainShuffleLoss
from
.metabinloss
import
IntraDomainScatterLoss
class
CombinedLoss
(
nn
.
Layer
):
class
CombinedLoss
(
nn
.
Layer
):
def
__init__
(
self
,
config_list
):
def
__init__
(
self
,
config_list
):
...
...
ppcls/loss/metabinloss.py
0 → 100644
浏览文件 @
3c21282d
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# reference: https://arxiv.org/abs/2011.14670
import
copy
import
numpy
as
np
import
paddle
from
paddle
import
nn
from
paddle.nn
import
functional
as
F
from
.dist_loss
import
cosine_similarity
from
.celoss
import
CELoss
from
.triplet
import
TripletLoss
def
euclidean_dist
(
x
,
y
):
m
,
n
=
x
.
shape
[
0
],
y
.
shape
[
0
]
xx
=
paddle
.
pow
(
x
,
2
).
sum
(
1
,
keepdim
=
True
).
expand
([
m
,
n
])
yy
=
paddle
.
pow
(
y
,
2
).
sum
(
1
,
keepdim
=
True
).
expand
([
n
,
m
]).
t
()
dist
=
xx
+
yy
-
2
*
paddle
.
matmul
(
x
,
y
.
t
())
dist
=
dist
.
clip
(
min
=
1e-12
).
sqrt
()
# for numerical stability
return
dist
def
hard_example_mining
(
dist_mat
,
is_pos
,
is_neg
):
"""For each anchor, find the hardest positive and negative sample.
Args:
dist_mat: pairwise distance between samples, shape [N, M]
is_pos: positive index with shape [N, M]
is_neg: negative index with shape [N, M]
Returns:
dist_ap: distance(anchor, positive); shape [N]
dist_an: distance(anchor, negative); shape [N]
"""
assert
len
(
dist_mat
.
shape
)
==
2
dist_ap
=
list
()
for
i
in
range
(
dist_mat
.
shape
[
0
]):
dist_ap
.
append
(
paddle
.
max
(
dist_mat
[
i
][
is_pos
[
i
]]))
dist_ap
=
paddle
.
stack
(
dist_ap
)
dist_an
=
list
()
for
i
in
range
(
dist_mat
.
shape
[
0
]):
dist_an
.
append
(
paddle
.
min
(
dist_mat
[
i
][
is_neg
[
i
]]))
dist_an
=
paddle
.
stack
(
dist_an
)
return
dist_ap
,
dist_an
class
IntraDomainScatterLoss
(
nn
.
Layer
):
"""
IntraDomainScatterLoss
enhance intra-domain diversity and disarrange inter-domain distributions like confusing multiple styles.
reference: https://arxiv.org/abs/2011.14670
"""
def
__init__
(
self
,
normalize_feature
,
feature_from
):
super
(
IntraDomainScatterLoss
,
self
).
__init__
()
self
.
normalize_feature
=
normalize_feature
self
.
feature_from
=
feature_from
def
forward
(
self
,
input
,
batch
):
domains
=
batch
[
"domain"
]
inputs
=
input
[
self
.
feature_from
]
if
self
.
normalize_feature
:
inputs
=
1.
*
inputs
/
(
paddle
.
expand_as
(
paddle
.
norm
(
inputs
,
p
=
2
,
axis
=-
1
,
keepdim
=
True
),
inputs
)
+
1e-12
)
unique_label
=
paddle
.
unique
(
domains
)
features_per_domain
=
list
()
for
i
,
x
in
enumerate
(
unique_label
):
features_per_domain
.
append
(
inputs
[
x
==
domains
])
num_domain
=
len
(
features_per_domain
)
losses
=
[]
for
i
in
range
(
num_domain
):
features_in_same_domain
=
features_per_domain
[
i
]
center
=
paddle
.
mean
(
features_in_same_domain
,
0
)
cos_sim
=
cosine_similarity
(
center
.
unsqueeze
(
0
),
features_in_same_domain
)
losses
.
append
(
paddle
.
mean
(
cos_sim
))
loss
=
paddle
.
mean
(
paddle
.
stack
(
losses
))
return
{
"IntraDomainScatterLoss"
:
loss
}
class
InterDomainShuffleLoss
(
nn
.
Layer
):
"""
InterDomainShuffleLoss
pull the negative sample of the interdomain and push the negative sample of the intra-domain,
so that the inter-domain distributions are shuffled.
reference: https://arxiv.org/abs/2011.14670
"""
def
__init__
(
self
,
normalize_feature
=
True
,
feature_from
=
"features"
):
super
(
InterDomainShuffleLoss
,
self
).
__init__
()
self
.
feature_from
=
feature_from
self
.
normalize_feature
=
normalize_feature
def
forward
(
self
,
input
,
batch
):
target
=
batch
[
"label"
]
domains
=
batch
[
"domain"
]
inputs
=
input
[
self
.
feature_from
]
bs
=
inputs
.
shape
[
0
]
if
self
.
normalize_feature
:
inputs
=
1.
*
inputs
/
(
paddle
.
expand_as
(
paddle
.
norm
(
inputs
,
p
=
2
,
axis
=-
1
,
keepdim
=
True
),
inputs
)
+
1e-12
)
# compute distance
dist_mat
=
euclidean_dist
(
inputs
,
inputs
)
is_same_img
=
np
.
zeros
(
shape
=
[
bs
,
bs
],
dtype
=
bool
)
np
.
fill_diagonal
(
is_same_img
,
True
)
is_same_img
=
paddle
.
to_tensor
(
is_same_img
)
is_diff_instance
=
target
.
reshape
([
bs
,
1
]).
expand
([
bs
,
bs
])
\
.
not_equal
(
target
.
reshape
([
bs
,
1
]).
expand
([
bs
,
bs
]).
t
())
is_same_domain
=
domains
.
reshape
([
bs
,
1
]).
expand
([
bs
,
bs
])
\
.
equal
(
domains
.
reshape
([
bs
,
1
]).
expand
([
bs
,
bs
]).
t
())
is_diff_domain
=
is_same_domain
==
False
is_pos
=
paddle
.
logical_or
(
is_same_img
,
is_diff_domain
)
is_neg
=
paddle
.
logical_and
(
is_diff_instance
,
is_same_domain
)
dist_ap
,
dist_an
=
hard_example_mining
(
dist_mat
,
is_pos
,
is_neg
)
y
=
paddle
.
ones_like
(
dist_an
)
loss
=
F
.
soft_margin_loss
(
dist_an
-
dist_ap
,
y
)
if
loss
==
float
(
'Inf'
):
loss
=
F
.
margin_ranking_loss
(
dist_an
,
dist_ap
,
y
,
margin
=
0.3
)
return
{
"InterDomainShuffleLoss"
:
loss
}
class
CELossForMetaBIN
(
CELoss
):
def
_labelsmoothing
(
self
,
target
,
class_num
):
if
len
(
target
.
shape
)
==
1
or
target
.
shape
[
-
1
]
!=
class_num
:
one_hot_target
=
F
.
one_hot
(
target
,
class_num
)
else
:
one_hot_target
=
target
# epsilon is different from the one in original CELoss
epsilon
=
class_num
/
(
class_num
-
1
)
*
self
.
epsilon
soft_target
=
F
.
label_smooth
(
one_hot_target
,
epsilon
=
epsilon
)
soft_target
=
paddle
.
reshape
(
soft_target
,
shape
=
[
-
1
,
class_num
])
return
soft_target
def
forward
(
self
,
x
,
batch
):
label
=
batch
[
"label"
]
return
super
().
forward
(
x
,
label
)
class
TripletLossForMetaBIN
(
nn
.
Layer
):
def
__init__
(
self
,
margin
=
1
,
normalize_feature
=
False
,
feature_from
=
"feature"
):
super
(
TripletLossForMetaBIN
,
self
).
__init__
()
self
.
margin
=
margin
self
.
feature_from
=
feature_from
self
.
normalize_feature
=
normalize_feature
def
forward
(
self
,
input
,
batch
):
inputs
=
input
[
self
.
feature_from
]
targets
=
batch
[
"label"
]
bs
=
inputs
.
shape
[
0
]
all_targets
=
targets
if
self
.
normalize_feature
:
inputs
=
1.
*
inputs
/
(
paddle
.
expand_as
(
paddle
.
norm
(
inputs
,
p
=
2
,
axis
=-
1
,
keepdim
=
True
),
inputs
)
+
1e-12
)
dist_mat
=
euclidean_dist
(
inputs
,
inputs
)
is_pos
=
all_targets
.
reshape
([
bs
,
1
]).
expand
([
bs
,
bs
]).
equal
(
all_targets
.
reshape
([
bs
,
1
]).
expand
([
bs
,
bs
]).
t
())
is_neg
=
all_targets
.
reshape
([
bs
,
1
]).
expand
([
bs
,
bs
]).
not_equal
(
all_targets
.
reshape
([
bs
,
1
]).
expand
([
bs
,
bs
]).
t
())
dist_ap
,
dist_an
=
hard_example_mining
(
dist_mat
,
is_pos
,
is_neg
)
y
=
paddle
.
ones_like
(
dist_an
)
loss
=
F
.
margin_ranking_loss
(
dist_an
,
dist_ap
,
y
,
margin
=
self
.
margin
)
return
{
"TripletLoss"
:
loss
}
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录