提交 c3fa6eca 编写于 作者: T tianyi1997 提交者: HydrogenSulfate

Create backbone for MetaBIN

上级 1070d9be
......@@ -78,6 +78,7 @@ from .model_zoo.cae import cae_base_patch16_224, cae_large_patch16_224
from .variant_models.resnet_variant import ResNet50_last_stage_stride1
from .variant_models.resnet_variant import ResNet50_adaptive_max_pool2d
from .variant_models.resnet_variant import ResNet50_metabin
from .variant_models.vgg_variant import VGG19Sigmoid
from .variant_models.pp_lcnet_variant import PPLCNet_x2_5_Tanh
from .variant_models.pp_lcnetv2_variant import PPLCNetV2_base_ShiTu
......
from .resnet_variant import ResNet50_last_stage_stride1
from .resnet_variant import ResNet50_last_stage_stride1, ResNet50_metabin
from .vgg_variant import VGG19Sigmoid
from .pp_lcnet_variant import PPLCNet_x2_5_Tanh
from .pp_lcnetv2_variant import PPLCNetV2_base_ShiTu
from collections import defaultdict
import copy
import paddle
from paddle import nn
from paddle.nn import functional as F
from ..legendary_models.resnet import ResNet50, MODEL_URLS, _load_pretrained
__all__ = ["ResNet50_last_stage_stride1", "ResNet50_adaptive_max_pool2d"]
__all__ = [
"ResNet50_last_stage_stride1", "ResNet50_adaptive_max_pool2d",
'ResNet50_metabin'
]
def ResNet50_last_stage_stride1(pretrained=False, use_ssld=False, **kwargs):
......@@ -33,3 +40,158 @@ def ResNet50_adaptive_max_pool2d(pretrained=False, use_ssld=False, **kwargs):
model.upgrade_sublayer(pattern, replace_function)
_load_pretrained(pretrained, model, MODEL_URLS["ResNet50"], use_ssld)
return model
class BINGate(nn.Layer):
def __init__(self, num_features):
super().__init__()
self.gate = self.create_parameter(
shape=[num_features],
default_initializer=nn.initializer.Constant(1.0))
self.add_parameter("gate", self.gate)
def forward(self, opt={}):
flag_update = 'lr_gate' in opt and \
opt.get('enable_inside_update', False)
if flag_update and self.gate.grad is not None: # update gate
lr = opt['lr_gate'] * self.gate.optimize_attr.get('learning_rate',
1.0)
gate = self.gate - lr * self.gate.grad
gate.clip_(min=0, max=1)
else:
gate = self.gate
return gate
def clip_gate(self):
self.gate.set_value(self.gate.clip(0, 1))
class MetaBN(nn.BatchNorm2D):
def forward(self, inputs, opt={}):
mode = opt.get("bn_mode", "general") if self.training else "eval"
if mode == "general": # update, but not apply running_mean/var
result = F.batch_norm(inputs, self._mean, self._variance,
self.weight, self.bias, self.training,
self._momentum, self._epsilon)
elif mode == "hold": # not update, not apply running_mean/var
result = F.batch_norm(
inputs,
paddle.mean(
inputs, axis=(0, 2, 3)),
paddle.var(inputs, axis=(0, 2, 3)),
self.weight,
self.bias,
self.training,
self._momentum,
self._epsilon)
elif mode == "eval": # fix and apply running_mean/var,
if self._mean is None:
result = F.batch_norm(
inputs,
paddle.mean(
inputs, axis=(0, 2, 3)),
paddle.var(inputs, axis=(0, 2, 3)),
self.weight,
self.bias,
True,
self._momentum,
self._epsilon)
else:
result = F.batch_norm(inputs, self._mean, self._variance,
self.weight, self.bias, False,
self._momentum, self._epsilon)
return result
class MetaBIN(nn.Layer):
"""
MetaBIN (Meta Batch-Instance Normalization)
reference: https://arxiv.org/abs/2011.14670
"""
def __init__(self, num_features):
super().__init__()
self.batch_norm = MetaBN(
num_features=num_features, use_global_stats=True)
self.instance_norm = nn.InstanceNorm2D(num_features=num_features)
self.gate = BINGate(num_features=num_features)
self.opt = defaultdict()
def forward(self, inputs):
out_bn = self.batch_norm(inputs, self.opt)
out_in = self.instance_norm(inputs)
gate = self.gate(self.opt)
gate = gate.unsqueeze([0, -1, -1])
out = out_bn * gate + out_in * (1 - gate)
return out
def reset_opt(self):
self.opt = defaultdict()
def setup_opt(self, opt):
"""
enable_inside_update: enable inside updating for `gate` in MetaBIN
lr_gate: learning rate of `gate` during meta-train phase
bn_mode: control the running stats & updating of BN
"""
self.check_opt(opt)
self.opt = copy.deepcopy(opt)
@classmethod
def check_opt(cls, opt):
assert isinstance(opt, dict), \
TypeError('Got the wrong type of `opt`. Please use `dict` type.')
if opt.get('enable_inside_update', False) and 'lr_gate' not in opt:
raise RuntimeError('Missing `lr_gate` in opt.')
assert isinstance(opt.get('lr_gate', 1.0), float), \
TypeError('Got the wrong type of `lr_gate`. Please use `float` type.')
assert isinstance(opt.get('enable_inside_update', True), bool), \
TypeError('Got the wrong type of `enable_inside_update`. Please use `bool` type.')
assert opt.get('bn_mode', "general") in ["general", "hold", "eval"], \
TypeError('Got the wrong value of `bn_mode`.')
def ResNet50_metabin(pretrained=False,
use_ssld=False,
bias_lr_factor=1.0,
gate_lr_factor=1.0,
**kwargs):
"""
ResNet50 which replaces all `bn` layer with MetaBIN
reference: https://arxiv.org/abs/2011.14670
"""
def bn2metabin(bn, pattern):
metabin = MetaBIN(bn.weight.shape[0])
return metabin
def setup_optimize_attr(model, bias_lr_factor, gate_lr_factor):
for name, params in model.named_parameters():
if params.stop_gradient:
continue
if "bias" in name:
params.optimize_attr['learning_rate'] = bias_lr_factor
elif "gate" in name:
params.optimize_attr['learning_rate'] = gate_lr_factor
stride_list = [2, 2, 2, 2, 1]
pattern = []
pattern.extend(["blocks[{}].conv{}.bn".format(i, j) \
for i in range(16) for j in range(3)])
pattern.extend(["blocks[{}].short.bn".format(i) for i in [0, 3, 7, 13]])
pattern.append("stem[0].bn")
model = ResNet50(
pretrained=False, use_ssld=use_ssld, stride_list=stride_list, **kwargs)
model.upgrade_sublayer(pattern, bn2metabin)
setup_optimize_attr(
model=model,
bias_lr_factor=bias_lr_factor,
gate_lr_factor=gate_lr_factor)
_load_pretrained(pretrained, model, MODEL_URLS["ResNet50"], use_ssld)
return model
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册