loss.py 4.0 KB
Newer Older
1
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
W
WuHaobo 已提交
2
#
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
W
WuHaobo 已提交
6 7 8
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
W
WuHaobo 已提交
14

littletomatodonkey's avatar
littletomatodonkey 已提交
15 16
import paddle
import paddle.nn.functional as F
W
WuHaobo 已提交
17

littletomatodonkey's avatar
littletomatodonkey 已提交
18
__all__ = ['CELoss', 'MixCELoss', 'GoogLeNetLoss', 'JSDivLoss']
W
WuHaobo 已提交
19 20 21 22 23 24 25 26 27 28


class Loss(object):
    """
    Loss
    """

    def __init__(self, class_dim=1000, epsilon=None):
        assert class_dim > 1, "class_dim=%d is not larger than 1" % (class_dim)
        self._class_dim = class_dim
littletomatodonkey's avatar
littletomatodonkey 已提交
29
        if epsilon is not None and epsilon >= 0.0 and epsilon <= 1.0:
W
WuHaobo 已提交
30 31 32 33 34 35 36
            self._epsilon = epsilon
            self._label_smoothing = True
        else:
            self._epsilon = None
            self._label_smoothing = False

    def _labelsmoothing(self, target):
littletomatodonkey's avatar
littletomatodonkey 已提交
37
        if target.shape[-1] != self._class_dim:
littletomatodonkey's avatar
littletomatodonkey 已提交
38
            one_hot_target = F.one_hot(target, self._class_dim)
littletomatodonkey's avatar
littletomatodonkey 已提交
39 40
        else:
            one_hot_target = target
littletomatodonkey's avatar
littletomatodonkey 已提交
41 42 43
        soft_target = F.label_smooth(
            one_hot_target, epsilon=self._epsilon, dtype="float32")
        soft_target = paddle.reshape(soft_target, shape=[-1, self._class_dim])
W
WuHaobo 已提交
44 45 46 47 48
        return soft_target

    def _crossentropy(self, input, target):
        if self._label_smoothing:
            target = self._labelsmoothing(target)
littletomatodonkey's avatar
littletomatodonkey 已提交
49 50 51 52 53 54 55
            input = -F.log_softmax(input, axis=-1)
            log_probs = -F.log_softmax(input, axis=-1)
            cost = paddle.reduce_sum(target * log_probs, dim=-1)
        else:
            #             softmax_out = F.softmax(input)
            cost = F.cross_entropy(input=input, label=target)
        avg_cost = paddle.mean(cost)
W
WuHaobo 已提交
56 57
        return avg_cost

littletomatodonkey's avatar
littletomatodonkey 已提交
58
    def _kldiv(self, input, target):
littletomatodonkey's avatar
littletomatodonkey 已提交
59 60
        cost = target * F.log(target / input) * self._class_dim
        cost = paddle.sum(cost)
littletomatodonkey's avatar
littletomatodonkey 已提交
61 62 63
        return cost

    def _jsdiv(self, input, target):
littletomatodonkey's avatar
littletomatodonkey 已提交
64 65
        input = F.softmax(input)
        target = F.softmax(target)
littletomatodonkey's avatar
littletomatodonkey 已提交
66 67
        cost = self._kldiv(input, target) + self._kldiv(target, input)
        cost = cost / 2
littletomatodonkey's avatar
littletomatodonkey 已提交
68
        avg_cost = paddle.mean(cost)
littletomatodonkey's avatar
littletomatodonkey 已提交
69 70
        return avg_cost

W
WuHaobo 已提交
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
    def __call__(self, input, target):
        pass


class CELoss(Loss):
    """
    Cross entropy loss
    """

    def __init__(self, class_dim=1000, epsilon=None):
        super(CELoss, self).__init__(class_dim, epsilon)

    def __call__(self, input, target):
        cost = self._crossentropy(input, target)
        return cost


class MixCELoss(Loss):
    """
    Cross entropy loss with mix(mixup, cutmix, fixmix)
    """

    def __init__(self, class_dim=1000, epsilon=None):
        super(MixCELoss, self).__init__(class_dim, epsilon)

    def __call__(self, input, target0, target1, lam):
        cost0 = self._crossentropy(input, target0)
        cost1 = self._crossentropy(input, target1)
        cost = lam * cost0 + (1.0 - lam) * cost1
littletomatodonkey's avatar
littletomatodonkey 已提交
100
        avg_cost = paddle.mean(cost)
W
WuHaobo 已提交
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
        return avg_cost


class GoogLeNetLoss(Loss):
    """
    Cross entropy loss used after googlenet
    """

    def __init__(self, class_dim=1000, epsilon=None):
        super(GoogLeNetLoss, self).__init__(class_dim, epsilon)

    def __call__(self, input0, input1, input2, target):
        cost0 = self._crossentropy(input0, target)
        cost1 = self._crossentropy(input1, target)
        cost2 = self._crossentropy(input2, target)
        cost = cost0 + 0.3 * cost1 + 0.3 * cost2
littletomatodonkey's avatar
littletomatodonkey 已提交
117
        avg_cost = paddle.mean(cost)
W
WuHaobo 已提交
118
        return avg_cost
littletomatodonkey's avatar
littletomatodonkey 已提交
119 120 121 122 123 124 125 126 127 128 129 130 131


class JSDivLoss(Loss):
    """
    JSDiv loss
    """

    def __init__(self, class_dim=1000, epsilon=None):
        super(JSDivLoss, self).__init__(class_dim, epsilon)

    def __call__(self, input, target):
        cost = self._jsdiv(input, target)
        return cost