loss.py 3.1 KB
Newer Older
W
WuHaobo 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
#copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.

import paddle
import paddle.fluid as fluid

__all__ = ['CELoss', 'MixCELoss', 'GoogLeNetLoss']


class Loss(object):
    """
    Loss
    """

    def __init__(self, class_dim=1000, epsilon=None):
        assert class_dim > 1, "class_dim=%d is not larger than 1" % (class_dim)
        self._class_dim = class_dim
        if epsilon and epsilon >= 0.0 and epsilon <= 1.0:
            self._epsilon = epsilon
            self._label_smoothing = True
        else:
            self._epsilon = None
            self._label_smoothing = False

    def _labelsmoothing(self, target):
        one_hot_target = fluid.layers.one_hot(
            input=target, depth=self._class_dim)
        soft_target = fluid.layers.label_smooth(
            label=one_hot_target, epsilon=self._epsilon, dtype="float32")
        return soft_target

    def _crossentropy(self, input, target):
        if self._label_smoothing:
            target = self._labelsmoothing(target)
        softmax_out = fluid.layers.softmax(input, use_cudnn=False)
        cost = fluid.layers.cross_entropy(
            input=softmax_out, label=target, soft_label=self._label_smoothing)
        avg_cost = fluid.layers.mean(cost)
        return avg_cost

    def __call__(self, input, target):
        pass


class CELoss(Loss):
    """
    Cross entropy loss
    """

    def __init__(self, class_dim=1000, epsilon=None):
        super(CELoss, self).__init__(class_dim, epsilon)

    def __call__(self, input, target):
        cost = self._crossentropy(input, target)
        return cost


class MixCELoss(Loss):
    """
    Cross entropy loss with mix(mixup, cutmix, fixmix)
    """

    def __init__(self, class_dim=1000, epsilon=None):
        super(MixCELoss, self).__init__(class_dim, epsilon)

    def __call__(self, input, target0, target1, lam):
        cost0 = self._crossentropy(input, target0)
        cost1 = self._crossentropy(input, target1)
        cost = lam * cost0 + (1.0 - lam) * cost1
        avg_cost = fluid.layers.mean(cost)
        return avg_cost


class GoogLeNetLoss(Loss):
    """
    Cross entropy loss used after googlenet
    """

    def __init__(self, class_dim=1000, epsilon=None):
        super(GoogLeNetLoss, self).__init__(class_dim, epsilon)

    def __call__(self, input0, input1, input2, target):
        cost0 = self._crossentropy(input0, target)
        cost1 = self._crossentropy(input1, target)
        cost2 = self._crossentropy(input2, target)
        cost = cost0 + 0.3 * cost1 + 0.3 * cost2
        avg_cost = fluid.layers.mean(cost)
        return avg_cost