loss.py 4.0 KB
Newer Older
W
WuHaobo 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
#copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.

import paddle
import paddle.fluid as fluid

littletomatodonkey's avatar
littletomatodonkey 已提交
18
__all__ = ['CELoss', 'MixCELoss', 'GoogLeNetLoss', 'JSDivLoss']
W
WuHaobo 已提交
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36


class Loss(object):
    """
    Loss
    """

    def __init__(self, class_dim=1000, epsilon=None):
        assert class_dim > 1, "class_dim=%d is not larger than 1" % (class_dim)
        self._class_dim = class_dim
        if epsilon and epsilon >= 0.0 and epsilon <= 1.0:
            self._epsilon = epsilon
            self._label_smoothing = True
        else:
            self._epsilon = None
            self._label_smoothing = False

    def _labelsmoothing(self, target):
littletomatodonkey's avatar
littletomatodonkey 已提交
37 38 39 40 41
        if target.shape[-1] != self._class_dim:
            one_hot_target = fluid.layers.one_hot(
                input=target, depth=self._class_dim)
        else:
            one_hot_target = target
W
WuHaobo 已提交
42 43 44 45 46 47 48 49 50 51 52 53 54
        soft_target = fluid.layers.label_smooth(
            label=one_hot_target, epsilon=self._epsilon, dtype="float32")
        return soft_target

    def _crossentropy(self, input, target):
        if self._label_smoothing:
            target = self._labelsmoothing(target)
        softmax_out = fluid.layers.softmax(input, use_cudnn=False)
        cost = fluid.layers.cross_entropy(
            input=softmax_out, label=target, soft_label=self._label_smoothing)
        avg_cost = fluid.layers.mean(cost)
        return avg_cost

littletomatodonkey's avatar
littletomatodonkey 已提交
55 56 57 58 59 60 61 62 63 64 65 66 67
    def _kldiv(self, input, target):
        cost = target * fluid.layers.log(target / input) * self._class_dim
        cost = fluid.layers.sum(cost)
        return cost

    def _jsdiv(self, input, target):
        input = fluid.layers.softmax(input, use_cudnn=False)
        target = fluid.layers.softmax(target, use_cudnn=False)
        cost = self._kldiv(input, target) + self._kldiv(target, input)
        cost = cost / 2
        avg_cost = fluid.layers.mean(cost)
        return avg_cost

W
WuHaobo 已提交
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
    def __call__(self, input, target):
        pass


class CELoss(Loss):
    """
    Cross entropy loss
    """

    def __init__(self, class_dim=1000, epsilon=None):
        super(CELoss, self).__init__(class_dim, epsilon)

    def __call__(self, input, target):
        cost = self._crossentropy(input, target)
        return cost


class MixCELoss(Loss):
    """
    Cross entropy loss with mix(mixup, cutmix, fixmix)
    """

    def __init__(self, class_dim=1000, epsilon=None):
        super(MixCELoss, self).__init__(class_dim, epsilon)

    def __call__(self, input, target0, target1, lam):
        cost0 = self._crossentropy(input, target0)
        cost1 = self._crossentropy(input, target1)
        cost = lam * cost0 + (1.0 - lam) * cost1
        avg_cost = fluid.layers.mean(cost)
        return avg_cost


class GoogLeNetLoss(Loss):
    """
    Cross entropy loss used after googlenet
    """

    def __init__(self, class_dim=1000, epsilon=None):
        super(GoogLeNetLoss, self).__init__(class_dim, epsilon)

    def __call__(self, input0, input1, input2, target):
        cost0 = self._crossentropy(input0, target)
        cost1 = self._crossentropy(input1, target)
        cost2 = self._crossentropy(input2, target)
        cost = cost0 + 0.3 * cost1 + 0.3 * cost2
        avg_cost = fluid.layers.mean(cost)
        return avg_cost
littletomatodonkey's avatar
littletomatodonkey 已提交
116 117 118 119 120 121 122 123 124 125 126 127 128


class JSDivLoss(Loss):
    """
    JSDiv loss
    """

    def __init__(self, class_dim=1000, epsilon=None):
        super(JSDivLoss, self).__init__(class_dim, epsilon)

    def __call__(self, input, target):
        cost = self._jsdiv(input, target)
        return cost