operators.py 12.3 KB
Newer Older
F
Felix 已提交
1
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved
F
Felix 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals

G
gaotingquan 已提交
20
from functools import partial
F
Felix 已提交
21 22 23 24 25 26
import six
import math
import random
import cv2
import numpy as np
from PIL import Image
G
gaotingquan 已提交
27
from paddle.vision.transforms import ColorJitter as RawColorJitter
F
Felix 已提交
28 29 30

from .autoaugment import ImageNetPolicy
from .functional import augmentations
G
gaotingquan 已提交
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
from ppcls.utils import logger


class UnifiedResize(object):
    def __init__(self, interpolation=None, backend="cv2"):
        _cv2_interp_from_str = {
            'nearest': cv2.INTER_NEAREST,
            'bilinear': cv2.INTER_LINEAR,
            'area': cv2.INTER_AREA,
            'bicubic': cv2.INTER_CUBIC,
            'lanczos': cv2.INTER_LANCZOS4
        }
        _pil_interp_from_str = {
            'nearest': Image.NEAREST,
            'bilinear': Image.BILINEAR,
            'bicubic': Image.BICUBIC,
            'box': Image.BOX,
            'lanczos': Image.LANCZOS,
            'hamming': Image.HAMMING
        }

        def _pil_resize(src, size, resample):
S
sibo2rr 已提交
53
            # to be accordance with opencv, the input size is (h,w)
G
gaotingquan 已提交
54 55 56 57
            pil_img = Image.fromarray(src)
            pil_img = pil_img.resize(size, resample)
            return np.asarray(pil_img)

S
sibo2rr 已提交
58 59 60 61
        def _cv2_resize(src, size, interpolation):
            cv_img = cv2.resize(src, size[::-1], interpolation)
            return cv_img
            
G
gaotingquan 已提交
62 63 64
        if backend.lower() == "cv2":
            if isinstance(interpolation, str):
                interpolation = _cv2_interp_from_str[interpolation.lower()]
65
            # compatible with opencv < version 4.4.0
G
gaotingquan 已提交
66
            elif interpolation is None:
67
                interpolation = cv2.INTER_LINEAR
S
sibo2rr 已提交
68
            self.resize_func = partial(_cv2_resize, interpolation=interpolation)
G
gaotingquan 已提交
69 70 71 72 73 74 75 76 77 78 79 80
        elif backend.lower() == "pil":
            if isinstance(interpolation, str):
                interpolation = _pil_interp_from_str[interpolation.lower()]
            self.resize_func = partial(_pil_resize, resample=interpolation)
        else:
            logger.warning(
                f"The backend of Resize only support \"cv2\" or \"PIL\". \"f{backend}\" is unavailable. Use \"cv2\" instead."
            )
            self.resize_func = cv2.resize

    def __call__(self, src, size):
        return self.resize_func(src, size)
F
Felix 已提交
81

D
dongshuilong 已提交
82

F
Felix 已提交
83 84 85 86 87
class OperatorParamError(ValueError):
    """ OperatorParamError
    """
    pass

D
dongshuilong 已提交
88

F
Felix 已提交
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
class DecodeImage(object):
    """ decode image """

    def __init__(self, to_rgb=True, to_np=False, channel_first=False):
        self.to_rgb = to_rgb
        self.to_np = to_np  # to numpy
        self.channel_first = channel_first  # only enabled when to_np is True

    def __call__(self, img):
        if six.PY2:
            assert type(img) is str and len(
                img) > 0, "invalid input 'img' in DecodeImage"
        else:
            assert type(img) is bytes and len(
                img) > 0, "invalid input 'img' in DecodeImage"
        data = np.frombuffer(img, dtype='uint8')
        img = cv2.imdecode(data, 1)
        if self.to_rgb:
            assert img.shape[2] == 3, 'invalid shape of image[%s]' % (
                img.shape)
            img = img[:, :, ::-1]

        if self.channel_first:
            img = img.transpose((2, 0, 1))

        return img


class ResizeImage(object):
    """ resize image """

G
gaotingquan 已提交
120 121 122 123 124
    def __init__(self,
                 size=None,
                 resize_short=None,
                 interpolation=None,
                 backend="cv2"):
F
Felix 已提交
125 126 127 128 129 130
        if resize_short is not None and resize_short > 0:
            self.resize_short = resize_short
            self.w = None
            self.h = None
        elif size is not None:
            self.resize_short = None
S
sibo2rr 已提交
131 132
            self.h = size if type(size) is int else size[0]
            self.w = size if type(size) is int else size[1]
F
Felix 已提交
133 134 135 136
        else:
            raise OperatorParamError("invalid params for ReisizeImage for '\
                'both 'size' and 'resize_short' are None")

G
gaotingquan 已提交
137 138 139
        self._resize_func = UnifiedResize(
            interpolation=interpolation, backend=backend)

F
Felix 已提交
140 141 142 143 144 145 146 147 148
    def __call__(self, img):
        img_h, img_w = img.shape[:2]
        if self.resize_short is not None:
            percent = float(self.resize_short) / min(img_w, img_h)
            w = int(round(img_w * percent))
            h = int(round(img_h * percent))
        else:
            w = self.w
            h = self.h
S
sibo2rr 已提交
149
        return self._resize_func(img, (h, w))
F
Felix 已提交
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174


class CropImage(object):
    """ crop image """

    def __init__(self, size):
        if type(size) is int:
            self.size = (size, size)
        else:
            self.size = size  # (h, w)

    def __call__(self, img):
        w, h = self.size
        img_h, img_w = img.shape[:2]
        w_start = (img_w - w) // 2
        h_start = (img_h - h) // 2

        w_end = w_start + w
        h_end = h_start + h
        return img[h_start:h_end, w_start:w_end, :]


class RandCropImage(object):
    """ random crop image """

G
gaotingquan 已提交
175 176 177 178 179 180
    def __init__(self,
                 size,
                 scale=None,
                 ratio=None,
                 interpolation=None,
                 backend="cv2"):
F
Felix 已提交
181 182 183 184 185 186 187 188
        if type(size) is int:
            self.size = (size, size)  # (h, w)
        else:
            self.size = size

        self.scale = [0.08, 1.0] if scale is None else scale
        self.ratio = [3. / 4., 4. / 3.] if ratio is None else ratio

G
gaotingquan 已提交
189 190 191
        self._resize_func = UnifiedResize(
            interpolation=interpolation, backend=backend)

F
Felix 已提交
192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
    def __call__(self, img):
        size = self.size
        scale = self.scale
        ratio = self.ratio

        aspect_ratio = math.sqrt(random.uniform(*ratio))
        w = 1. * aspect_ratio
        h = 1. / aspect_ratio

        img_h, img_w = img.shape[:2]

        bound = min((float(img_w) / img_h) / (w**2),
                    (float(img_h) / img_w) / (h**2))
        scale_max = min(scale[1], bound)
        scale_min = min(scale[0], bound)

        target_area = img_w * img_h * random.uniform(scale_min, scale_max)
        target_size = math.sqrt(target_area)
        w = int(target_size * w)
        h = int(target_size * h)

        i = random.randint(0, img_w - w)
        j = random.randint(0, img_h - h)

        img = img[j:j + h, i:i + w, :]
G
gaotingquan 已提交
217 218

        return self._resize_func(img, size)
F
Felix 已提交
219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256


class RandFlipImage(object):
    """ random flip image
        flip_code:
            1: Flipped Horizontally
            0: Flipped Vertically
            -1: Flipped Horizontally & Vertically
    """

    def __init__(self, flip_code=1):
        assert flip_code in [-1, 0, 1
                             ], "flip_code should be a value in [-1, 0, 1]"
        self.flip_code = flip_code

    def __call__(self, img):
        if random.randint(0, 1) == 1:
            return cv2.flip(img, self.flip_code)
        else:
            return img


class AutoAugment(object):
    def __init__(self):
        self.policy = ImageNetPolicy()

    def __call__(self, img):
        from PIL import Image
        img = np.ascontiguousarray(img)
        img = Image.fromarray(img)
        img = self.policy(img)
        img = np.asarray(img)


class NormalizeImage(object):
    """ normalize image such as substract mean, divide std
    """

littletomatodonkey's avatar
littletomatodonkey 已提交
257 258 259 260 261 262 263
    def __init__(self,
                 scale=None,
                 mean=None,
                 std=None,
                 order='chw',
                 output_fp16=False,
                 channel_num=3):
F
Felix 已提交
264 265
        if isinstance(scale, str):
            scale = eval(scale)
littletomatodonkey's avatar
littletomatodonkey 已提交
266 267 268 269 270
        assert channel_num in [
            3, 4
        ], "channel number of input image should be set to 3 or 4."
        self.channel_num = channel_num
        self.output_dtype = 'float16' if output_fp16 else 'float32'
F
Felix 已提交
271
        self.scale = np.float32(scale if scale is not None else 1.0 / 255.0)
littletomatodonkey's avatar
littletomatodonkey 已提交
272
        self.order = order
F
Felix 已提交
273 274 275
        mean = mean if mean is not None else [0.485, 0.456, 0.406]
        std = std if std is not None else [0.229, 0.224, 0.225]

littletomatodonkey's avatar
littletomatodonkey 已提交
276
        shape = (3, 1, 1) if self.order == 'chw' else (1, 1, 3)
F
Felix 已提交
277 278 279 280 281 282 283 284 285 286
        self.mean = np.array(mean).reshape(shape).astype('float32')
        self.std = np.array(std).reshape(shape).astype('float32')

    def __call__(self, img):
        from PIL import Image
        if isinstance(img, Image.Image):
            img = np.array(img)

        assert isinstance(img,
                          np.ndarray), "invalid input 'img' in NormalizeImage"
littletomatodonkey's avatar
littletomatodonkey 已提交
287 288 289 290 291 292 293 294 295 296 297 298 299 300

        img = (img.astype('float32') * self.scale - self.mean) / self.std

        if self.channel_num == 4:
            img_h = img.shape[1] if self.order == 'chw' else img.shape[0]
            img_w = img.shape[2] if self.order == 'chw' else img.shape[1]
            pad_zeros = np.zeros(
                (1, img_h, img_w)) if self.order == 'chw' else np.zeros(
                    (img_h, img_w, 1))
            img = (np.concatenate(
                (img, pad_zeros), axis=0)
                   if self.order == 'chw' else np.concatenate(
                       (img, pad_zeros), axis=2))
        return img.astype(self.output_dtype)
F
Felix 已提交
301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321


class ToCHWImage(object):
    """ convert hwc image to chw image
    """

    def __init__(self):
        pass

    def __call__(self, img):
        from PIL import Image
        if isinstance(img, Image.Image):
            img = np.array(img)

        return img.transpose((2, 0, 1))


class AugMix(object):
    """ Perform AugMix augmentation and compute mixture.
    """

D
dongshuilong 已提交
322 323 324 325 326 327
    def __init__(self,
                 prob=0.5,
                 aug_prob_coeff=0.1,
                 mixture_width=3,
                 mixture_depth=1,
                 aug_severity=1):
F
Felix 已提交
328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
        """
        Args:
            prob: Probability of taking augmix
            aug_prob_coeff: Probability distribution coefficients.
            mixture_width: Number of augmentation chains to mix per augmented example.
            mixture_depth: Depth of augmentation chains. -1 denotes stochastic depth in [1, 3]'
            aug_severity: Severity of underlying augmentation operators (between 1 to 10).
        """
        # fmt: off
        self.prob = prob
        self.aug_prob_coeff = aug_prob_coeff
        self.mixture_width = mixture_width
        self.mixture_depth = mixture_depth
        self.aug_severity = aug_severity
        self.augmentations = augmentations
        # fmt: on

    def __call__(self, image):
        """Perform AugMix augmentations and compute mixture.
        Returns:
          mixed: Augmented and mixed image.
        """
        if random.random() > self.prob:
            # Avoid the warning: the given NumPy array is not writeable
            return np.asarray(image).copy()

        ws = np.float32(
            np.random.dirichlet([self.aug_prob_coeff] * self.mixture_width))
D
dongshuilong 已提交
356 357
        m = np.float32(
            np.random.beta(self.aug_prob_coeff, self.aug_prob_coeff))
F
Felix 已提交
358 359

        # image = Image.fromarray(image)
D
dongshuilong 已提交
360
        mix = np.zeros(image.shape)
F
Felix 已提交
361 362 363
        for i in range(self.mixture_width):
            image_aug = image.copy()
            image_aug = Image.fromarray(image_aug)
D
dongshuilong 已提交
364 365
            depth = self.mixture_depth if self.mixture_depth > 0 else np.random.randint(
                1, 4)
F
Felix 已提交
366 367 368 369 370 371 372
            for _ in range(depth):
                op = np.random.choice(self.augmentations)
                image_aug = op(image_aug, self.aug_severity)
            mix += ws[i] * np.asarray(image_aug)

        mixed = (1 - m) * image + m * mix
        return mixed.astype(np.uint8)
G
gaotingquan 已提交
373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389


class ColorJitter(RawColorJitter):
    """ColorJitter.
    """

    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)

    def __call__(self, img):
        if not isinstance(img, Image.Image):
            img = np.ascontiguousarray(img)
            img = Image.fromarray(img)
        img = super()._apply_image(img)
        if isinstance(img, Image.Image):
            img = np.asarray(img)
        return img