hrnet.py 23.1 KB
Newer Older
littletomatodonkey's avatar
littletomatodonkey 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

19
import numpy as np
W
WuHaobo 已提交
20 21 22
import paddle
import paddle.fluid as fluid
from paddle.fluid.param_attr import ParamAttr
23 24 25
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, BatchNorm, Linear

import math
W
WuHaobo 已提交
26 27

__all__ = [
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
    "HRNet_W18_C",
    "HRNet_W30_C",
    "HRNet_W32_C",
    "HRNet_W40_C",
    "HRNet_W44_C",
    "HRNet_W48_C",
    "HRNet_W60_C",
    "HRNet_W64_C",
    "SE_HRNet_W18_C",
    "SE_HRNet_W30_C",
    "SE_HRNet_W32_C",
    "SE_HRNet_W40_C",
    "SE_HRNet_W44_C",
    "SE_HRNet_W48_C",
    "SE_HRNet_W60_C",
    "SE_HRNet_W64_C",
W
WuHaobo 已提交
44 45 46
]


47 48 49 50 51 52 53 54 55 56
class ConvBNLayer(fluid.dygraph.Layer):
    def __init__(self,
                 num_channels,
                 num_filters,
                 filter_size,
                 stride=1,
                 groups=1,
                 act="relu",
                 name=None):
        super(ConvBNLayer, self).__init__()
W
WuHaobo 已提交
57

58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
        self._conv = Conv2D(
            num_channels=num_channels,
            num_filters=num_filters,
            filter_size=filter_size,
            stride=stride,
            padding=(filter_size - 1) // 2,
            groups=groups,
            act=None,
            param_attr=ParamAttr(name=name + "_weights"),
            bias_attr=False)
        bn_name = name + '_bn'
        self._batch_norm = BatchNorm(
            num_filters,
            act=act,
            param_attr=ParamAttr(name=bn_name + '_scale'),
            bias_attr=ParamAttr(bn_name + '_offset'),
            moving_mean_name=bn_name + '_mean',
            moving_variance_name=bn_name + '_variance')
W
WuHaobo 已提交
76

77 78 79 80 81 82 83 84 85 86 87
    def forward(self, input):
        y = self._conv(input)
        y = self._batch_norm(y)
        return y


class Layer1(fluid.dygraph.Layer):
    def __init__(self, num_channels, has_se=False, name=None):
        super(Layer1, self).__init__()

        self.bottleneck_block_list = []
W
WuHaobo 已提交
88 89

        for i in range(4):
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
            bottleneck_block = self.add_sublayer(
                "bb_{}_{}".format(name, i + 1),
                BottleneckBlock(
                    num_channels=num_channels if i == 0 else 256,
                    num_filters=64,
                    has_se=has_se,
                    stride=1,
                    downsample=True if i == 0 else False,
                    name=name + '_' + str(i + 1)))
            self.bottleneck_block_list.append(bottleneck_block)

    def forward(self, input):
        conv = input
        for block_func in self.bottleneck_block_list:
            conv = block_func(conv)
W
WuHaobo 已提交
105 106
        return conv

107 108 109 110 111

class TransitionLayer(fluid.dygraph.Layer):
    def __init__(self, in_channels, out_channels, name=None):
        super(TransitionLayer, self).__init__()

W
WuHaobo 已提交
112 113 114
        num_in = len(in_channels)
        num_out = len(out_channels)
        out = []
115
        self.conv_bn_func_list = []
W
WuHaobo 已提交
116
        for i in range(num_out):
117
            residual = None
W
WuHaobo 已提交
118 119
            if i < num_in:
                if in_channels[i] != out_channels[i]:
120 121 122 123 124 125 126 127 128 129 130 131
                    residual = self.add_sublayer(
                        "transition_{}_layer_{}".format(name, i + 1),
                        ConvBNLayer(
                            num_channels=in_channels[i],
                            num_filters=out_channels[i],
                            filter_size=3,
                            name=name + '_layer_' + str(i + 1)))
            else:
                residual = self.add_sublayer(
                    "transition_{}_layer_{}".format(name, i + 1),
                    ConvBNLayer(
                        num_channels=in_channels[-1],
W
WuHaobo 已提交
132
                        num_filters=out_channels[i],
133 134 135 136 137 138 139 140 141 142
                        filter_size=3,
                        stride=2,
                        name=name + '_layer_' + str(i + 1)))
            self.conv_bn_func_list.append(residual)

    def forward(self, input):
        outs = []
        for idx, conv_bn_func in enumerate(self.conv_bn_func_list):
            if conv_bn_func is None:
                outs.append(input[idx])
W
WuHaobo 已提交
143
            else:
144 145 146 147 148
                if idx < len(input):
                    outs.append(conv_bn_func(input[idx]))
                else:
                    outs.append(conv_bn_func(input[-1]))
        return outs
W
WuHaobo 已提交
149 150


151 152 153 154 155 156 157 158
class Branches(fluid.dygraph.Layer):
    def __init__(self,
                 block_num,
                 in_channels,
                 out_channels,
                 has_se=False,
                 name=None):
        super(Branches, self).__init__()
W
WuHaobo 已提交
159

160
        self.basic_block_list = []
W
WuHaobo 已提交
161

162 163 164 165 166 167 168 169 170 171 172 173 174
        for i in range(len(out_channels)):
            self.basic_block_list.append([])
            for j in range(block_num):
                in_ch = in_channels[i] if j == 0 else out_channels[i]
                basic_block_func = self.add_sublayer(
                    "bb_{}_branch_layer_{}_{}".format(name, i + 1, j + 1),
                    BasicBlock(
                        num_channels=in_ch,
                        num_filters=out_channels[i],
                        has_se=has_se,
                        name=name + '_branch_layer_' + str(i + 1) + '_' +
                        str(j + 1)))
                self.basic_block_list[i].append(basic_block_func)
W
WuHaobo 已提交
175

176 177 178 179 180 181 182 183
    def forward(self, inputs):
        outs = []
        for idx, input in enumerate(inputs):
            conv = input
            for basic_block_func in self.basic_block_list[idx]:
                conv = basic_block_func(conv)
            outs.append(conv)
        return outs
W
WuHaobo 已提交
184 185


186 187 188 189 190 191 192 193 194
class BottleneckBlock(fluid.dygraph.Layer):
    def __init__(self,
                 num_channels,
                 num_filters,
                 has_se,
                 stride=1,
                 downsample=False,
                 name=None):
        super(BottleneckBlock, self).__init__()
W
WuHaobo 已提交
195

196 197
        self.has_se = has_se
        self.downsample = downsample
W
WuHaobo 已提交
198

199 200
        self.conv1 = ConvBNLayer(
            num_channels=num_channels,
W
WuHaobo 已提交
201
            num_filters=num_filters,
202 203 204 205 206
            filter_size=1,
            act="relu",
            name=name + "_conv1", )
        self.conv2 = ConvBNLayer(
            num_channels=num_filters,
W
WuHaobo 已提交
207
            num_filters=num_filters,
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
            filter_size=3,
            stride=stride,
            act="relu",
            name=name + "_conv2")
        self.conv3 = ConvBNLayer(
            num_channels=num_filters,
            num_filters=num_filters * 4,
            filter_size=1,
            act=None,
            name=name + "_conv3")

        if self.downsample:
            self.conv_down = ConvBNLayer(
                num_channels=num_channels,
                num_filters=num_filters * 4,
W
WuHaobo 已提交
223
                filter_size=1,
224 225 226
                act=None,
                name=name + "_downsample")

W
WuHaobo 已提交
227
        if self.has_se:
228 229 230
            self.se = SELayer(
                num_channels=num_filters * 4,
                num_filters=num_filters * 4,
W
WuHaobo 已提交
231
                reduction_ratio=16,
232 233 234
                name='fc' + name)

    def forward(self, input):
W
WuHaobo 已提交
235
        residual = input
236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
        conv1 = self.conv1(input)
        conv2 = self.conv2(conv1)
        conv3 = self.conv3(conv2)

        if self.downsample:
            residual = self.conv_down(input)

        if self.has_se:
            conv3 = self.se(conv3)

        y = fluid.layers.elementwise_add(x=conv3, y=residual, act="relu")
        return y


class BasicBlock(fluid.dygraph.Layer):
    def __init__(self,
                 num_channels,
                 num_filters,
                 stride=1,
                 has_se=False,
                 downsample=False,
                 name=None):
        super(BasicBlock, self).__init__()

        self.has_se = has_se
        self.downsample = downsample

        self.conv1 = ConvBNLayer(
            num_channels=num_channels,
W
WuHaobo 已提交
265 266 267
            num_filters=num_filters,
            filter_size=3,
            stride=stride,
268 269 270 271 272 273 274 275 276 277 278 279 280
            act="relu",
            name=name + "_conv1")
        self.conv2 = ConvBNLayer(
            num_channels=num_filters,
            num_filters=num_filters,
            filter_size=3,
            stride=1,
            act=None,
            name=name + "_conv2")

        if self.downsample:
            self.conv_down = ConvBNLayer(
                num_channels=num_channels,
W
WuHaobo 已提交
281
                num_filters=num_filters * 4,
282 283 284 285
                filter_size=1,
                act="relu",
                name=name + "_downsample")

W
WuHaobo 已提交
286
        if self.has_se:
287 288 289
            self.se = SELayer(
                num_channels=num_filters,
                num_filters=num_filters,
W
WuHaobo 已提交
290
                reduction_ratio=16,
291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
                name='fc' + name)

    def forward(self, input):
        residual = input
        conv1 = self.conv1(input)
        conv2 = self.conv2(conv1)

        if self.downsample:
            residual = self.conv_down(input)

        if self.has_se:
            conv2 = self.se(conv2)

        y = fluid.layers.elementwise_add(x=conv2, y=residual, act="relu")
        return y


class SELayer(fluid.dygraph.Layer):
    def __init__(self, num_channels, num_filters, reduction_ratio, name=None):
        super(SELayer, self).__init__()

        self.pool2d_gap = Pool2D(pool_type='avg', global_pooling=True)

        self._num_channels = num_channels

        med_ch = int(num_channels / reduction_ratio)
        stdv = 1.0 / math.sqrt(num_channels * 1.0)
        self.squeeze = Linear(
            num_channels,
            med_ch,
            act="relu",
            param_attr=ParamAttr(
W
WuHaobo 已提交
323
                initializer=fluid.initializer.Uniform(-stdv, stdv),
324
                name=name + "_sqz_weights"),
W
WuHaobo 已提交
325
            bias_attr=ParamAttr(name=name + '_sqz_offset'))
326 327 328 329 330 331 332

        stdv = 1.0 / math.sqrt(med_ch * 1.0)
        self.excitation = Linear(
            med_ch,
            num_filters,
            act="sigmoid",
            param_attr=ParamAttr(
W
WuHaobo 已提交
333
                initializer=fluid.initializer.Uniform(-stdv, stdv),
334
                name=name + "_exc_weights"),
W
WuHaobo 已提交
335
            bias_attr=ParamAttr(name=name + '_exc_offset'))
336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496

    def forward(self, input):
        pool = self.pool2d_gap(input)
        pool = fluid.layers.reshape(pool, shape=[-1, self._num_channels])
        squeeze = self.squeeze(pool)
        excitation = self.excitation(squeeze)
        excitation = fluid.layers.reshape(
            excitation, shape=[-1, self._num_channels, 1, 1])
        out = input * excitation
        return out


class Stage(fluid.dygraph.Layer):
    def __init__(self,
                 num_channels,
                 num_modules,
                 num_filters,
                 has_se=False,
                 multi_scale_output=True,
                 name=None):
        super(Stage, self).__init__()

        self._num_modules = num_modules

        self.stage_func_list = []
        for i in range(num_modules):
            if i == num_modules - 1 and not multi_scale_output:
                stage_func = self.add_sublayer(
                    "stage_{}_{}".format(name, i + 1),
                    HighResolutionModule(
                        num_channels=num_channels,
                        num_filters=num_filters,
                        has_se=has_se,
                        multi_scale_output=False,
                        name=name + '_' + str(i + 1)))
            else:
                stage_func = self.add_sublayer(
                    "stage_{}_{}".format(name, i + 1),
                    HighResolutionModule(
                        num_channels=num_channels,
                        num_filters=num_filters,
                        has_se=has_se,
                        name=name + '_' + str(i + 1)))

            self.stage_func_list.append(stage_func)

    def forward(self, input):
        out = input
        for idx in range(self._num_modules):
            out = self.stage_func_list[idx](out)
        return out


class HighResolutionModule(fluid.dygraph.Layer):
    def __init__(self,
                 num_channels,
                 num_filters,
                 has_se=False,
                 multi_scale_output=True,
                 name=None):
        super(HighResolutionModule, self).__init__()

        self.branches_func = Branches(
            block_num=4,
            in_channels=num_channels,
            out_channels=num_filters,
            has_se=has_se,
            name=name)

        self.fuse_func = FuseLayers(
            in_channels=num_filters,
            out_channels=num_filters,
            multi_scale_output=multi_scale_output,
            name=name)

    def forward(self, input):
        out = self.branches_func(input)
        out = self.fuse_func(out)
        return out


class FuseLayers(fluid.dygraph.Layer):
    def __init__(self,
                 in_channels,
                 out_channels,
                 multi_scale_output=True,
                 name=None):
        super(FuseLayers, self).__init__()

        self._actual_ch = len(in_channels) if multi_scale_output else 1
        self._in_channels = in_channels

        self.residual_func_list = []
        for i in range(self._actual_ch):
            for j in range(len(in_channels)):
                residual_func = None
                if j > i:
                    residual_func = self.add_sublayer(
                        "residual_{}_layer_{}_{}".format(name, i + 1, j + 1),
                        ConvBNLayer(
                            num_channels=in_channels[j],
                            num_filters=out_channels[i],
                            filter_size=1,
                            stride=1,
                            act=None,
                            name=name + '_layer_' + str(i + 1) + '_' +
                            str(j + 1)))
                    self.residual_func_list.append(residual_func)
                elif j < i:
                    pre_num_filters = in_channels[j]
                    for k in range(i - j):
                        if k == i - j - 1:
                            residual_func = self.add_sublayer(
                                "residual_{}_layer_{}_{}_{}".format(
                                    name, i + 1, j + 1, k + 1),
                                ConvBNLayer(
                                    num_channels=pre_num_filters,
                                    num_filters=out_channels[i],
                                    filter_size=3,
                                    stride=2,
                                    act=None,
                                    name=name + '_layer_' + str(i + 1) + '_' +
                                    str(j + 1) + '_' + str(k + 1)))
                            pre_num_filters = out_channels[i]
                        else:
                            residual_func = self.add_sublayer(
                                "residual_{}_layer_{}_{}_{}".format(
                                    name, i + 1, j + 1, k + 1),
                                ConvBNLayer(
                                    num_channels=pre_num_filters,
                                    num_filters=out_channels[j],
                                    filter_size=3,
                                    stride=2,
                                    act="relu",
                                    name=name + '_layer_' + str(i + 1) + '_' +
                                    str(j + 1) + '_' + str(k + 1)))
                            pre_num_filters = out_channels[j]
                        self.residual_func_list.append(residual_func)

    def forward(self, input):
        outs = []
        residual_func_idx = 0
        for i in range(self._actual_ch):
            residual = input[i]
            for j in range(len(self._in_channels)):
                if j > i:
                    y = self.residual_func_list[residual_func_idx](input[j])
                    residual_func_idx += 1

                    y = fluid.layers.resize_nearest(input=y, scale=2**(j - i))
                    residual = fluid.layers.elementwise_add(
                        x=residual, y=y, act=None)
                elif j < i:
                    y = input[j]
                    for k in range(i - j):
                        y = self.residual_func_list[residual_func_idx](y)
                        residual_func_idx += 1

                    residual = fluid.layers.elementwise_add(
                        x=residual, y=y, act=None)

littletomatodonkey's avatar
littletomatodonkey 已提交
497
            residual = fluid.layers.relu(residual)
498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632
            outs.append(residual)

        return outs


class LastClsOut(fluid.dygraph.Layer):
    def __init__(self,
                 num_channel_list,
                 has_se,
                 num_filters_list=[32, 64, 128, 256],
                 name=None):
        super(LastClsOut, self).__init__()

        self.func_list = []
        for idx in range(len(num_channel_list)):
            func = self.add_sublayer(
                "conv_{}_conv_{}".format(name, idx + 1),
                BottleneckBlock(
                    num_channels=num_channel_list[idx],
                    num_filters=num_filters_list[idx],
                    has_se=has_se,
                    downsample=True,
                    name=name + 'conv_' + str(idx + 1)))
            self.func_list.append(func)

    def forward(self, inputs):
        outs = []
        for idx, input in enumerate(inputs):
            out = self.func_list[idx](input)
            outs.append(out)
        return outs


class HRNet(fluid.dygraph.Layer):
    def __init__(self, width=18, has_se=False, class_dim=1000):
        super(HRNet, self).__init__()

        self.width = width
        self.has_se = has_se
        self.channels = {
            18: [[18, 36], [18, 36, 72], [18, 36, 72, 144]],
            30: [[30, 60], [30, 60, 120], [30, 60, 120, 240]],
            32: [[32, 64], [32, 64, 128], [32, 64, 128, 256]],
            40: [[40, 80], [40, 80, 160], [40, 80, 160, 320]],
            44: [[44, 88], [44, 88, 176], [44, 88, 176, 352]],
            48: [[48, 96], [48, 96, 192], [48, 96, 192, 384]],
            60: [[60, 120], [60, 120, 240], [60, 120, 240, 480]],
            64: [[64, 128], [64, 128, 256], [64, 128, 256, 512]]
        }
        self._class_dim = class_dim

        channels_2, channels_3, channels_4 = self.channels[width]
        num_modules_2, num_modules_3, num_modules_4 = 1, 4, 3

        self.conv_layer1_1 = ConvBNLayer(
            num_channels=3,
            num_filters=64,
            filter_size=3,
            stride=2,
            act='relu',
            name="layer1_1")

        self.conv_layer1_2 = ConvBNLayer(
            num_channels=64,
            num_filters=64,
            filter_size=3,
            stride=2,
            act='relu',
            name="layer1_2")

        self.la1 = Layer1(num_channels=64, has_se=has_se, name="layer2")

        self.tr1 = TransitionLayer(
            in_channels=[256], out_channels=channels_2, name="tr1")

        self.st2 = Stage(
            num_channels=channels_2,
            num_modules=num_modules_2,
            num_filters=channels_2,
            has_se=self.has_se,
            name="st2")

        self.tr2 = TransitionLayer(
            in_channels=channels_2, out_channels=channels_3, name="tr2")
        self.st3 = Stage(
            num_channels=channels_3,
            num_modules=num_modules_3,
            num_filters=channels_3,
            has_se=self.has_se,
            name="st3")

        self.tr3 = TransitionLayer(
            in_channels=channels_3, out_channels=channels_4, name="tr3")
        self.st4 = Stage(
            num_channels=channels_4,
            num_modules=num_modules_4,
            num_filters=channels_4,
            has_se=self.has_se,
            name="st4")

        # classification
        num_filters_list = [32, 64, 128, 256]
        self.last_cls = LastClsOut(
            num_channel_list=channels_4,
            has_se=self.has_se,
            num_filters_list=num_filters_list,
            name="cls_head", )

        last_num_filters = [256, 512, 1024]
        self.cls_head_conv_list = []
        for idx in range(3):
            self.cls_head_conv_list.append(
                self.add_sublayer(
                    "cls_head_add{}".format(idx + 1),
                    ConvBNLayer(
                        num_channels=num_filters_list[idx] * 4,
                        num_filters=last_num_filters[idx],
                        filter_size=3,
                        stride=2,
                        name="cls_head_add" + str(idx + 1))))

        self.conv_last = ConvBNLayer(
            num_channels=1024,
            num_filters=2048,
            filter_size=1,
            stride=1,
            name="cls_head_last_conv")

        self.pool2d_avg = Pool2D(pool_type='avg', global_pooling=True)

        stdv = 1.0 / math.sqrt(2048 * 1.0)

        self.out = Linear(
            2048,
            class_dim,
W
WuHaobo 已提交
633
            param_attr=ParamAttr(
634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663
                initializer=fluid.initializer.Uniform(-stdv, stdv),
                name="fc_weights"),
            bias_attr=ParamAttr(name="fc_offset"))

    def forward(self, input):
        conv1 = self.conv_layer1_1(input)
        conv2 = self.conv_layer1_2(conv1)

        la1 = self.la1(conv2)

        tr1 = self.tr1([la1])
        st2 = self.st2(tr1)

        tr2 = self.tr2(st2)
        st3 = self.st3(tr2)

        tr3 = self.tr3(st3)
        st4 = self.st4(tr3)

        last_cls = self.last_cls(st4)

        y = last_cls[0]
        for idx in range(3):
            y = last_cls[idx + 1] + self.cls_head_conv_list[idx](y)

        y = self.conv_last(y)
        y = self.pool2d_avg(y)
        y = fluid.layers.reshape(y, shape=[0, -1])
        y = self.out(y)
        return y
W
WuHaobo 已提交
664 665


littletomatodonkey's avatar
littletomatodonkey 已提交
666 667
def HRNet_W18_C(**args):
    model = HRNet(width=18, **args)
W
WuHaobo 已提交
668 669 670
    return model


littletomatodonkey's avatar
littletomatodonkey 已提交
671 672
def HRNet_W30_C(**args):
    model = HRNet(width=30, **args)
W
WuHaobo 已提交
673 674 675
    return model


littletomatodonkey's avatar
littletomatodonkey 已提交
676 677
def HRNet_W32_C(**args):
    model = HRNet(width=32, **args)
W
WuHaobo 已提交
678 679 680
    return model


littletomatodonkey's avatar
littletomatodonkey 已提交
681 682
def HRNet_W40_C(**args):
    model = HRNet(width=40, **args)
W
WuHaobo 已提交
683 684 685
    return model


littletomatodonkey's avatar
littletomatodonkey 已提交
686 687
def HRNet_W44_C(**args):
    model = HRNet(width=44, **args)
W
WuHaobo 已提交
688 689 690
    return model


littletomatodonkey's avatar
littletomatodonkey 已提交
691 692
def HRNet_W48_C(**args):
    model = HRNet(width=48, **args)
W
WuHaobo 已提交
693 694 695
    return model


littletomatodonkey's avatar
littletomatodonkey 已提交
696 697
def HRNet_W60_C(**args):
    model = HRNet(width=60, **args)
W
WuHaobo 已提交
698 699 700
    return model


littletomatodonkey's avatar
littletomatodonkey 已提交
701 702
def HRNet_W64_C(**args):
    model = HRNet(width=64, **args)
W
WuHaobo 已提交
703 704 705
    return model


littletomatodonkey's avatar
littletomatodonkey 已提交
706 707
def SE_HRNet_W18_C(**args):
    model = HRNet(width=18, has_se=True, **args)
W
WuHaobo 已提交
708 709 710
    return model


littletomatodonkey's avatar
littletomatodonkey 已提交
711 712
def SE_HRNet_W30_C(**args):
    model = HRNet(width=30, has_se=True, **args)
W
WuHaobo 已提交
713 714 715
    return model


littletomatodonkey's avatar
littletomatodonkey 已提交
716 717
def SE_HRNet_W32_C(**args):
    model = HRNet(width=32, has_se=True, **args)
W
WuHaobo 已提交
718 719 720
    return model


littletomatodonkey's avatar
littletomatodonkey 已提交
721 722
def SE_HRNet_W40_C(**args):
    model = HRNet(width=40, has_se=True, **args)
W
WuHaobo 已提交
723 724 725
    return model


littletomatodonkey's avatar
littletomatodonkey 已提交
726 727
def SE_HRNet_W44_C(**args):
    model = HRNet(width=44, has_se=True, **args)
W
WuHaobo 已提交
728 729 730
    return model


littletomatodonkey's avatar
littletomatodonkey 已提交
731 732
def SE_HRNet_W48_C(**args):
    model = HRNet(width=48, has_se=True, **args)
W
WuHaobo 已提交
733 734 735
    return model


littletomatodonkey's avatar
littletomatodonkey 已提交
736 737
def SE_HRNet_W60_C(**args):
    model = HRNet(width=60, has_se=True, **args)
W
WuHaobo 已提交
738 739 740
    return model


littletomatodonkey's avatar
littletomatodonkey 已提交
741 742
def SE_HRNet_W64_C(**args):
    model = HRNet(width=64, has_se=True, **args)
W
WuHaobo 已提交
743
    return model