hrnet.py 22.3 KB
Newer Older
1
import numpy as np
W
WuHaobo 已提交
2 3 4
import paddle
import paddle.fluid as fluid
from paddle.fluid.param_attr import ParamAttr
5 6 7 8
from paddle.fluid.layer_helper import LayerHelper
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, BatchNorm, Linear

import math
W
WuHaobo 已提交
9 10

__all__ = [
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
    "HRNet_W18_C",
    "HRNet_W30_C",
    "HRNet_W32_C",
    "HRNet_W40_C",
    "HRNet_W44_C",
    "HRNet_W48_C",
    "HRNet_W60_C",
    "HRNet_W64_C",
    "SE_HRNet_W18_C",
    "SE_HRNet_W30_C",
    "SE_HRNet_W32_C",
    "SE_HRNet_W40_C",
    "SE_HRNet_W44_C",
    "SE_HRNet_W48_C",
    "SE_HRNet_W60_C",
    "SE_HRNet_W64_C",
W
WuHaobo 已提交
27 28 29
]


30 31 32 33 34 35 36 37 38 39
class ConvBNLayer(fluid.dygraph.Layer):
    def __init__(self,
                 num_channels,
                 num_filters,
                 filter_size,
                 stride=1,
                 groups=1,
                 act="relu",
                 name=None):
        super(ConvBNLayer, self).__init__()
W
WuHaobo 已提交
40

41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
        self._conv = Conv2D(
            num_channels=num_channels,
            num_filters=num_filters,
            filter_size=filter_size,
            stride=stride,
            padding=(filter_size - 1) // 2,
            groups=groups,
            act=None,
            param_attr=ParamAttr(name=name + "_weights"),
            bias_attr=False)
        bn_name = name + '_bn'
        self._batch_norm = BatchNorm(
            num_filters,
            act=act,
            param_attr=ParamAttr(name=bn_name + '_scale'),
            bias_attr=ParamAttr(bn_name + '_offset'),
            moving_mean_name=bn_name + '_mean',
            moving_variance_name=bn_name + '_variance')
W
WuHaobo 已提交
59

60 61 62 63 64 65 66 67 68 69 70
    def forward(self, input):
        y = self._conv(input)
        y = self._batch_norm(y)
        return y


class Layer1(fluid.dygraph.Layer):
    def __init__(self, num_channels, has_se=False, name=None):
        super(Layer1, self).__init__()

        self.bottleneck_block_list = []
W
WuHaobo 已提交
71 72

        for i in range(4):
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
            bottleneck_block = self.add_sublayer(
                "bb_{}_{}".format(name, i + 1),
                BottleneckBlock(
                    num_channels=num_channels if i == 0 else 256,
                    num_filters=64,
                    has_se=has_se,
                    stride=1,
                    downsample=True if i == 0 else False,
                    name=name + '_' + str(i + 1)))
            self.bottleneck_block_list.append(bottleneck_block)

    def forward(self, input):
        conv = input
        for block_func in self.bottleneck_block_list:
            conv = block_func(conv)
W
WuHaobo 已提交
88 89
        return conv

90 91 92 93 94

class TransitionLayer(fluid.dygraph.Layer):
    def __init__(self, in_channels, out_channels, name=None):
        super(TransitionLayer, self).__init__()

W
WuHaobo 已提交
95 96 97
        num_in = len(in_channels)
        num_out = len(out_channels)
        out = []
98
        self.conv_bn_func_list = []
W
WuHaobo 已提交
99
        for i in range(num_out):
100
            residual = None
W
WuHaobo 已提交
101 102
            if i < num_in:
                if in_channels[i] != out_channels[i]:
103 104 105 106 107 108 109 110 111 112 113 114
                    residual = self.add_sublayer(
                        "transition_{}_layer_{}".format(name, i + 1),
                        ConvBNLayer(
                            num_channels=in_channels[i],
                            num_filters=out_channels[i],
                            filter_size=3,
                            name=name + '_layer_' + str(i + 1)))
            else:
                residual = self.add_sublayer(
                    "transition_{}_layer_{}".format(name, i + 1),
                    ConvBNLayer(
                        num_channels=in_channels[-1],
W
WuHaobo 已提交
115
                        num_filters=out_channels[i],
116 117 118 119 120 121 122 123 124 125
                        filter_size=3,
                        stride=2,
                        name=name + '_layer_' + str(i + 1)))
            self.conv_bn_func_list.append(residual)

    def forward(self, input):
        outs = []
        for idx, conv_bn_func in enumerate(self.conv_bn_func_list):
            if conv_bn_func is None:
                outs.append(input[idx])
W
WuHaobo 已提交
126
            else:
127 128 129 130 131
                if idx < len(input):
                    outs.append(conv_bn_func(input[idx]))
                else:
                    outs.append(conv_bn_func(input[-1]))
        return outs
W
WuHaobo 已提交
132 133


134 135 136 137 138 139 140 141
class Branches(fluid.dygraph.Layer):
    def __init__(self,
                 block_num,
                 in_channels,
                 out_channels,
                 has_se=False,
                 name=None):
        super(Branches, self).__init__()
W
WuHaobo 已提交
142

143
        self.basic_block_list = []
W
WuHaobo 已提交
144

145 146 147 148 149 150 151 152 153 154 155 156 157
        for i in range(len(out_channels)):
            self.basic_block_list.append([])
            for j in range(block_num):
                in_ch = in_channels[i] if j == 0 else out_channels[i]
                basic_block_func = self.add_sublayer(
                    "bb_{}_branch_layer_{}_{}".format(name, i + 1, j + 1),
                    BasicBlock(
                        num_channels=in_ch,
                        num_filters=out_channels[i],
                        has_se=has_se,
                        name=name + '_branch_layer_' + str(i + 1) + '_' +
                        str(j + 1)))
                self.basic_block_list[i].append(basic_block_func)
W
WuHaobo 已提交
158

159 160 161 162 163 164 165 166
    def forward(self, inputs):
        outs = []
        for idx, input in enumerate(inputs):
            conv = input
            for basic_block_func in self.basic_block_list[idx]:
                conv = basic_block_func(conv)
            outs.append(conv)
        return outs
W
WuHaobo 已提交
167 168


169 170 171 172 173 174 175 176 177
class BottleneckBlock(fluid.dygraph.Layer):
    def __init__(self,
                 num_channels,
                 num_filters,
                 has_se,
                 stride=1,
                 downsample=False,
                 name=None):
        super(BottleneckBlock, self).__init__()
W
WuHaobo 已提交
178

179 180
        self.has_se = has_se
        self.downsample = downsample
W
WuHaobo 已提交
181

182 183
        self.conv1 = ConvBNLayer(
            num_channels=num_channels,
W
WuHaobo 已提交
184
            num_filters=num_filters,
185 186 187 188 189
            filter_size=1,
            act="relu",
            name=name + "_conv1", )
        self.conv2 = ConvBNLayer(
            num_channels=num_filters,
W
WuHaobo 已提交
190
            num_filters=num_filters,
191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
            filter_size=3,
            stride=stride,
            act="relu",
            name=name + "_conv2")
        self.conv3 = ConvBNLayer(
            num_channels=num_filters,
            num_filters=num_filters * 4,
            filter_size=1,
            act=None,
            name=name + "_conv3")

        if self.downsample:
            self.conv_down = ConvBNLayer(
                num_channels=num_channels,
                num_filters=num_filters * 4,
W
WuHaobo 已提交
206
                filter_size=1,
207 208 209
                act=None,
                name=name + "_downsample")

W
WuHaobo 已提交
210
        if self.has_se:
211 212 213
            self.se = SELayer(
                num_channels=num_filters * 4,
                num_filters=num_filters * 4,
W
WuHaobo 已提交
214
                reduction_ratio=16,
215 216 217
                name='fc' + name)

    def forward(self, input):
W
WuHaobo 已提交
218
        residual = input
219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
        conv1 = self.conv1(input)
        conv2 = self.conv2(conv1)
        conv3 = self.conv3(conv2)

        if self.downsample:
            residual = self.conv_down(input)

        if self.has_se:
            conv3 = self.se(conv3)

        y = fluid.layers.elementwise_add(x=conv3, y=residual, act="relu")
        return y


class BasicBlock(fluid.dygraph.Layer):
    def __init__(self,
                 num_channels,
                 num_filters,
                 stride=1,
                 has_se=False,
                 downsample=False,
                 name=None):
        super(BasicBlock, self).__init__()

        self.has_se = has_se
        self.downsample = downsample

        self.conv1 = ConvBNLayer(
            num_channels=num_channels,
W
WuHaobo 已提交
248 249 250
            num_filters=num_filters,
            filter_size=3,
            stride=stride,
251 252 253 254 255 256 257 258 259 260 261 262 263
            act="relu",
            name=name + "_conv1")
        self.conv2 = ConvBNLayer(
            num_channels=num_filters,
            num_filters=num_filters,
            filter_size=3,
            stride=1,
            act=None,
            name=name + "_conv2")

        if self.downsample:
            self.conv_down = ConvBNLayer(
                num_channels=num_channels,
W
WuHaobo 已提交
264
                num_filters=num_filters * 4,
265 266 267 268
                filter_size=1,
                act="relu",
                name=name + "_downsample")

W
WuHaobo 已提交
269
        if self.has_se:
270 271 272
            self.se = SELayer(
                num_channels=num_filters,
                num_filters=num_filters,
W
WuHaobo 已提交
273
                reduction_ratio=16,
274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
                name='fc' + name)

    def forward(self, input):
        residual = input
        conv1 = self.conv1(input)
        conv2 = self.conv2(conv1)

        if self.downsample:
            residual = self.conv_down(input)

        if self.has_se:
            conv2 = self.se(conv2)

        y = fluid.layers.elementwise_add(x=conv2, y=residual, act="relu")
        return y


class SELayer(fluid.dygraph.Layer):
    def __init__(self, num_channels, num_filters, reduction_ratio, name=None):
        super(SELayer, self).__init__()

        self.pool2d_gap = Pool2D(pool_type='avg', global_pooling=True)

        self._num_channels = num_channels

        med_ch = int(num_channels / reduction_ratio)
        stdv = 1.0 / math.sqrt(num_channels * 1.0)
        self.squeeze = Linear(
            num_channels,
            med_ch,
            act="relu",
            param_attr=ParamAttr(
W
WuHaobo 已提交
306
                initializer=fluid.initializer.Uniform(-stdv, stdv),
307
                name=name + "_sqz_weights"),
W
WuHaobo 已提交
308
            bias_attr=ParamAttr(name=name + '_sqz_offset'))
309 310 311 312 313 314 315

        stdv = 1.0 / math.sqrt(med_ch * 1.0)
        self.excitation = Linear(
            med_ch,
            num_filters,
            act="sigmoid",
            param_attr=ParamAttr(
W
WuHaobo 已提交
316
                initializer=fluid.initializer.Uniform(-stdv, stdv),
317
                name=name + "_exc_weights"),
W
WuHaobo 已提交
318
            bias_attr=ParamAttr(name=name + '_exc_offset'))
319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616

    def forward(self, input):
        pool = self.pool2d_gap(input)
        pool = fluid.layers.reshape(pool, shape=[-1, self._num_channels])
        squeeze = self.squeeze(pool)
        excitation = self.excitation(squeeze)
        excitation = fluid.layers.reshape(
            excitation, shape=[-1, self._num_channels, 1, 1])
        out = input * excitation
        return out


class Stage(fluid.dygraph.Layer):
    def __init__(self,
                 num_channels,
                 num_modules,
                 num_filters,
                 has_se=False,
                 multi_scale_output=True,
                 name=None):
        super(Stage, self).__init__()

        self._num_modules = num_modules

        self.stage_func_list = []
        for i in range(num_modules):
            if i == num_modules - 1 and not multi_scale_output:
                stage_func = self.add_sublayer(
                    "stage_{}_{}".format(name, i + 1),
                    HighResolutionModule(
                        num_channels=num_channels,
                        num_filters=num_filters,
                        has_se=has_se,
                        multi_scale_output=False,
                        name=name + '_' + str(i + 1)))
            else:
                stage_func = self.add_sublayer(
                    "stage_{}_{}".format(name, i + 1),
                    HighResolutionModule(
                        num_channels=num_channels,
                        num_filters=num_filters,
                        has_se=has_se,
                        name=name + '_' + str(i + 1)))

            self.stage_func_list.append(stage_func)

    def forward(self, input):
        out = input
        for idx in range(self._num_modules):
            out = self.stage_func_list[idx](out)
        return out


class HighResolutionModule(fluid.dygraph.Layer):
    def __init__(self,
                 num_channels,
                 num_filters,
                 has_se=False,
                 multi_scale_output=True,
                 name=None):
        super(HighResolutionModule, self).__init__()

        self.branches_func = Branches(
            block_num=4,
            in_channels=num_channels,
            out_channels=num_filters,
            has_se=has_se,
            name=name)

        self.fuse_func = FuseLayers(
            in_channels=num_filters,
            out_channels=num_filters,
            multi_scale_output=multi_scale_output,
            name=name)

    def forward(self, input):
        out = self.branches_func(input)
        out = self.fuse_func(out)
        return out


class FuseLayers(fluid.dygraph.Layer):
    def __init__(self,
                 in_channels,
                 out_channels,
                 multi_scale_output=True,
                 name=None):
        super(FuseLayers, self).__init__()

        self._actual_ch = len(in_channels) if multi_scale_output else 1
        self._in_channels = in_channels

        self.residual_func_list = []
        for i in range(self._actual_ch):
            for j in range(len(in_channels)):
                residual_func = None
                if j > i:
                    residual_func = self.add_sublayer(
                        "residual_{}_layer_{}_{}".format(name, i + 1, j + 1),
                        ConvBNLayer(
                            num_channels=in_channels[j],
                            num_filters=out_channels[i],
                            filter_size=1,
                            stride=1,
                            act=None,
                            name=name + '_layer_' + str(i + 1) + '_' +
                            str(j + 1)))
                    self.residual_func_list.append(residual_func)
                elif j < i:
                    pre_num_filters = in_channels[j]
                    for k in range(i - j):
                        if k == i - j - 1:
                            residual_func = self.add_sublayer(
                                "residual_{}_layer_{}_{}_{}".format(
                                    name, i + 1, j + 1, k + 1),
                                ConvBNLayer(
                                    num_channels=pre_num_filters,
                                    num_filters=out_channels[i],
                                    filter_size=3,
                                    stride=2,
                                    act=None,
                                    name=name + '_layer_' + str(i + 1) + '_' +
                                    str(j + 1) + '_' + str(k + 1)))
                            pre_num_filters = out_channels[i]
                        else:
                            residual_func = self.add_sublayer(
                                "residual_{}_layer_{}_{}_{}".format(
                                    name, i + 1, j + 1, k + 1),
                                ConvBNLayer(
                                    num_channels=pre_num_filters,
                                    num_filters=out_channels[j],
                                    filter_size=3,
                                    stride=2,
                                    act="relu",
                                    name=name + '_layer_' + str(i + 1) + '_' +
                                    str(j + 1) + '_' + str(k + 1)))
                            pre_num_filters = out_channels[j]
                        self.residual_func_list.append(residual_func)

    def forward(self, input):
        outs = []
        residual_func_idx = 0
        for i in range(self._actual_ch):
            residual = input[i]
            for j in range(len(self._in_channels)):
                if j > i:
                    y = self.residual_func_list[residual_func_idx](input[j])
                    residual_func_idx += 1

                    y = fluid.layers.resize_nearest(input=y, scale=2**(j - i))
                    residual = fluid.layers.elementwise_add(
                        x=residual, y=y, act=None)
                elif j < i:
                    y = input[j]
                    for k in range(i - j):
                        y = self.residual_func_list[residual_func_idx](y)
                        residual_func_idx += 1

                    residual = fluid.layers.elementwise_add(
                        x=residual, y=y, act=None)

            layer_helper = LayerHelper(self.full_name(), act='relu')
            residual = layer_helper.append_activation(residual)
            outs.append(residual)

        return outs


class LastClsOut(fluid.dygraph.Layer):
    def __init__(self,
                 num_channel_list,
                 has_se,
                 num_filters_list=[32, 64, 128, 256],
                 name=None):
        super(LastClsOut, self).__init__()

        self.func_list = []
        for idx in range(len(num_channel_list)):
            func = self.add_sublayer(
                "conv_{}_conv_{}".format(name, idx + 1),
                BottleneckBlock(
                    num_channels=num_channel_list[idx],
                    num_filters=num_filters_list[idx],
                    has_se=has_se,
                    downsample=True,
                    name=name + 'conv_' + str(idx + 1)))
            self.func_list.append(func)

    def forward(self, inputs):
        outs = []
        for idx, input in enumerate(inputs):
            out = self.func_list[idx](input)
            outs.append(out)
        return outs


class HRNet(fluid.dygraph.Layer):
    def __init__(self, width=18, has_se=False, class_dim=1000):
        super(HRNet, self).__init__()

        self.width = width
        self.has_se = has_se
        self.channels = {
            18: [[18, 36], [18, 36, 72], [18, 36, 72, 144]],
            30: [[30, 60], [30, 60, 120], [30, 60, 120, 240]],
            32: [[32, 64], [32, 64, 128], [32, 64, 128, 256]],
            40: [[40, 80], [40, 80, 160], [40, 80, 160, 320]],
            44: [[44, 88], [44, 88, 176], [44, 88, 176, 352]],
            48: [[48, 96], [48, 96, 192], [48, 96, 192, 384]],
            60: [[60, 120], [60, 120, 240], [60, 120, 240, 480]],
            64: [[64, 128], [64, 128, 256], [64, 128, 256, 512]]
        }
        self._class_dim = class_dim

        channels_2, channels_3, channels_4 = self.channels[width]
        num_modules_2, num_modules_3, num_modules_4 = 1, 4, 3

        self.conv_layer1_1 = ConvBNLayer(
            num_channels=3,
            num_filters=64,
            filter_size=3,
            stride=2,
            act='relu',
            name="layer1_1")

        self.conv_layer1_2 = ConvBNLayer(
            num_channels=64,
            num_filters=64,
            filter_size=3,
            stride=2,
            act='relu',
            name="layer1_2")

        self.la1 = Layer1(num_channels=64, has_se=has_se, name="layer2")

        self.tr1 = TransitionLayer(
            in_channels=[256], out_channels=channels_2, name="tr1")

        self.st2 = Stage(
            num_channels=channels_2,
            num_modules=num_modules_2,
            num_filters=channels_2,
            has_se=self.has_se,
            name="st2")

        self.tr2 = TransitionLayer(
            in_channels=channels_2, out_channels=channels_3, name="tr2")
        self.st3 = Stage(
            num_channels=channels_3,
            num_modules=num_modules_3,
            num_filters=channels_3,
            has_se=self.has_se,
            name="st3")

        self.tr3 = TransitionLayer(
            in_channels=channels_3, out_channels=channels_4, name="tr3")
        self.st4 = Stage(
            num_channels=channels_4,
            num_modules=num_modules_4,
            num_filters=channels_4,
            has_se=self.has_se,
            name="st4")

        # classification
        num_filters_list = [32, 64, 128, 256]
        self.last_cls = LastClsOut(
            num_channel_list=channels_4,
            has_se=self.has_se,
            num_filters_list=num_filters_list,
            name="cls_head", )

        last_num_filters = [256, 512, 1024]
        self.cls_head_conv_list = []
        for idx in range(3):
            self.cls_head_conv_list.append(
                self.add_sublayer(
                    "cls_head_add{}".format(idx + 1),
                    ConvBNLayer(
                        num_channels=num_filters_list[idx] * 4,
                        num_filters=last_num_filters[idx],
                        filter_size=3,
                        stride=2,
                        name="cls_head_add" + str(idx + 1))))

        self.conv_last = ConvBNLayer(
            num_channels=1024,
            num_filters=2048,
            filter_size=1,
            stride=1,
            name="cls_head_last_conv")

        self.pool2d_avg = Pool2D(pool_type='avg', global_pooling=True)

        stdv = 1.0 / math.sqrt(2048 * 1.0)

        self.out = Linear(
            2048,
            class_dim,
W
WuHaobo 已提交
617
            param_attr=ParamAttr(
618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647
                initializer=fluid.initializer.Uniform(-stdv, stdv),
                name="fc_weights"),
            bias_attr=ParamAttr(name="fc_offset"))

    def forward(self, input):
        conv1 = self.conv_layer1_1(input)
        conv2 = self.conv_layer1_2(conv1)

        la1 = self.la1(conv2)

        tr1 = self.tr1([la1])
        st2 = self.st2(tr1)

        tr2 = self.tr2(st2)
        st3 = self.st3(tr2)

        tr3 = self.tr3(st3)
        st4 = self.st4(tr3)

        last_cls = self.last_cls(st4)

        y = last_cls[0]
        for idx in range(3):
            y = last_cls[idx + 1] + self.cls_head_conv_list[idx](y)

        y = self.conv_last(y)
        y = self.pool2d_avg(y)
        y = fluid.layers.reshape(y, shape=[0, -1])
        y = self.out(y)
        return y
W
WuHaobo 已提交
648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727


def HRNet_W18_C():
    model = HRNet(width=18)
    return model


def HRNet_W30_C():
    model = HRNet(width=30)
    return model


def HRNet_W32_C():
    model = HRNet(width=32)
    return model


def HRNet_W40_C():
    model = HRNet(width=40)
    return model


def HRNet_W44_C():
    model = HRNet(width=44)
    return model


def HRNet_W48_C():
    model = HRNet(width=48)
    return model


def HRNet_W60_C():
    model = HRNet(width=60)
    return model


def HRNet_W64_C():
    model = HRNet(width=64)
    return model


def SE_HRNet_W18_C():
    model = HRNet(width=18, has_se=True)
    return model


def SE_HRNet_W30_C():
    model = HRNet(width=30, has_se=True)
    return model


def SE_HRNet_W32_C():
    model = HRNet(width=32, has_se=True)
    return model


def SE_HRNet_W40_C():
    model = HRNet(width=40, has_se=True)
    return model


def SE_HRNet_W44_C():
    model = HRNet(width=44, has_se=True)
    return model


def SE_HRNet_W48_C():
    model = HRNet(width=48, has_se=True)
    return model


def SE_HRNet_W60_C():
    model = HRNet(width=60, has_se=True)
    return model


def SE_HRNet_W64_C():
    model = HRNet(width=64, has_se=True)
    return model