efficientnet.py 30.5 KB
Newer Older
1
import paddle
littletomatodonkey's avatar
littletomatodonkey 已提交
2 3 4
from paddle import ParamAttr
import paddle.nn as nn
import paddle.nn.functional as F
5 6
from paddle.nn import Conv2D, BatchNorm, Linear, Dropout
from paddle.nn import AdaptiveAvgPool2D, MaxPool2D, AvgPool2D
7
import math
W
WuHaobo 已提交
8 9 10 11
import collections
import re
import copy

C
cuicheng01 已提交
12 13 14 15 16 17 18 19 20 21 22 23 24 25
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url

MODEL_URLS = {"EfficientNetB0_small":  "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/EfficientNetB0_small_pretrained.pdparams",
              "EfficientNetB0": "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/EfficientNetB0_pretrained.pdparams",
              "EfficientNetB1": "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/EfficientNetB1_pretrained.pdparams",
              "EfficientNetB2": "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/EfficientNetB2_pretrained.pdparams",
              "EfficientNetB3": "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/EfficientNetB3_pretrained.pdparams",
              "EfficientNetB4": "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/EfficientNetB4_pretrained.pdparams",
              "EfficientNetB5": "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/EfficientNetB5_pretrained.pdparams",
              "EfficientNetB6": "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/EfficientNetB6_pretrained.pdparams",
              "EfficientNetB7": "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/EfficientNetB7_pretrained.pdparams",
             }

__all__ = list(MODEL_URLS.keys())
W
WuHaobo 已提交
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132

GlobalParams = collections.namedtuple('GlobalParams', [
    'batch_norm_momentum',
    'batch_norm_epsilon',
    'dropout_rate',
    'num_classes',
    'width_coefficient',
    'depth_coefficient',
    'depth_divisor',
    'min_depth',
    'drop_connect_rate',
])

BlockArgs = collections.namedtuple('BlockArgs', [
    'kernel_size', 'num_repeat', 'input_filters', 'output_filters',
    'expand_ratio', 'id_skip', 'stride', 'se_ratio'
])

GlobalParams.__new__.__defaults__ = (None, ) * len(GlobalParams._fields)
BlockArgs.__new__.__defaults__ = (None, ) * len(BlockArgs._fields)


def efficientnet_params(model_name):
    """ Map EfficientNet model name to parameter coefficients. """
    params_dict = {
        # Coefficients:   width,depth,resolution,dropout
        'efficientnet-b0': (1.0, 1.0, 224, 0.2),
        'efficientnet-b1': (1.0, 1.1, 240, 0.2),
        'efficientnet-b2': (1.1, 1.2, 260, 0.3),
        'efficientnet-b3': (1.2, 1.4, 300, 0.3),
        'efficientnet-b4': (1.4, 1.8, 380, 0.4),
        'efficientnet-b5': (1.6, 2.2, 456, 0.4),
        'efficientnet-b6': (1.8, 2.6, 528, 0.5),
        'efficientnet-b7': (2.0, 3.1, 600, 0.5),
    }
    return params_dict[model_name]


def efficientnet(width_coefficient=None,
                 depth_coefficient=None,
                 dropout_rate=0.2,
                 drop_connect_rate=0.2):
    """ Get block arguments according to parameter and coefficients. """
    blocks_args = [
        'r1_k3_s11_e1_i32_o16_se0.25',
        'r2_k3_s22_e6_i16_o24_se0.25',
        'r2_k5_s22_e6_i24_o40_se0.25',
        'r3_k3_s22_e6_i40_o80_se0.25',
        'r3_k5_s11_e6_i80_o112_se0.25',
        'r4_k5_s22_e6_i112_o192_se0.25',
        'r1_k3_s11_e6_i192_o320_se0.25',
    ]
    blocks_args = BlockDecoder.decode(blocks_args)

    global_params = GlobalParams(
        batch_norm_momentum=0.99,
        batch_norm_epsilon=1e-3,
        dropout_rate=dropout_rate,
        drop_connect_rate=drop_connect_rate,
        num_classes=1000,
        width_coefficient=width_coefficient,
        depth_coefficient=depth_coefficient,
        depth_divisor=8,
        min_depth=None)

    return blocks_args, global_params


def get_model_params(model_name, override_params):
    """ Get the block args and global params for a given model """
    if model_name.startswith('efficientnet'):
        w, d, _, p = efficientnet_params(model_name)
        blocks_args, global_params = efficientnet(
            width_coefficient=w, depth_coefficient=d, dropout_rate=p)
    else:
        raise NotImplementedError('model name is not pre-defined: %s' %
                                  model_name)
    if override_params:
        global_params = global_params._replace(**override_params)
    return blocks_args, global_params


def round_filters(filters, global_params):
    """ Calculate and round number of filters based on depth multiplier. """
    multiplier = global_params.width_coefficient
    if not multiplier:
        return filters
    divisor = global_params.depth_divisor
    min_depth = global_params.min_depth
    filters *= multiplier
    min_depth = min_depth or divisor
    new_filters = max(min_depth,
                      int(filters + divisor / 2) // divisor * divisor)
    if new_filters < 0.9 * filters:  # prevent rounding by more than 10%
        new_filters += divisor
    return int(new_filters)


def round_repeats(repeats, global_params):
    """ Round number of filters based on depth multiplier. """
    multiplier = global_params.depth_coefficient
    if not multiplier:
        return repeats
    return int(math.ceil(multiplier * repeats))


class BlockDecoder(object):
littletomatodonkey's avatar
littletomatodonkey 已提交
133 134 135
    """
    Block Decoder, straight from the official TensorFlow repository.
    """
W
WuHaobo 已提交
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150

    @staticmethod
    def _decode_block_string(block_string):
        """ Gets a block through a string notation of arguments. """
        assert isinstance(block_string, str)

        ops = block_string.split('_')
        options = {}
        for op in ops:
            splits = re.split(r'(\d.*)', op)
            if len(splits) >= 2:
                key, value = splits[:2]
                options[key] = value

        # Check stride
littletomatodonkey's avatar
littletomatodonkey 已提交
151
        cond_1 = ('s' in options and len(options['s']) == 1)
S
shippingwang 已提交
152 153
        cond_2 = ((len(options['s']) == 2) and
                  (options['s'][0] == options['s'][1]))
littletomatodonkey's avatar
littletomatodonkey 已提交
154
        assert (cond_1 or cond_2)
W
WuHaobo 已提交
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182

        return BlockArgs(
            kernel_size=int(options['k']),
            num_repeat=int(options['r']),
            input_filters=int(options['i']),
            output_filters=int(options['o']),
            expand_ratio=int(options['e']),
            id_skip=('noskip' not in block_string),
            se_ratio=float(options['se']) if 'se' in options else None,
            stride=[int(options['s'][0])])

    @staticmethod
    def _encode_block_string(block):
        """Encodes a block to a string."""
        args = [
            'r%d' % block.num_repeat, 'k%d' % block.kernel_size, 's%d%d' %
            (block.strides[0], block.strides[1]), 'e%s' % block.expand_ratio,
            'i%d' % block.input_filters, 'o%d' % block.output_filters
        ]
        if 0 < block.se_ratio <= 1:
            args.append('se%s' % block.se_ratio)
        if block.id_skip is False:
            args.append('noskip')
        return '_'.join(args)

    @staticmethod
    def decode(string_list):
        """
littletomatodonkey's avatar
littletomatodonkey 已提交
183
        Decode a list of string notations to specify blocks in the network.
W
WuHaobo 已提交
184

littletomatodonkey's avatar
littletomatodonkey 已提交
185 186 187
        string_list: list of strings, each string is a notation of block
        return
            list of BlockArgs namedtuples of block args
W
WuHaobo 已提交
188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
        """
        assert isinstance(string_list, list)
        blocks_args = []
        for block_string in string_list:
            blocks_args.append(BlockDecoder._decode_block_string(block_string))
        return blocks_args

    @staticmethod
    def encode(blocks_args):
        """
        Encodes a list of BlockArgs to a list of strings.

        :param blocks_args: a list of BlockArgs namedtuples of block args
        :return: a list of strings, each string is a notation of block
        """
        block_strings = []
        for block in blocks_args:
            block_strings.append(BlockDecoder._encode_block_string(block))
        return block_strings


209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
def initial_type(name, use_bias=False):
    param_attr = ParamAttr(name=name + "_weights")
    if use_bias:
        bias_attr = ParamAttr(name=name + "_offset")
    else:
        bias_attr = False
    return param_attr, bias_attr


def init_batch_norm_layer(name="batch_norm"):
    param_attr = ParamAttr(name=name + "_scale")
    bias_attr = ParamAttr(name=name + "_offset")
    return param_attr, bias_attr


def init_fc_layer(name="fc"):
    param_attr = ParamAttr(name=name + "_weights")
    bias_attr = ParamAttr(name=name + "_offset")
    return param_attr, bias_attr


def cal_padding(img_size, stride, filter_size, dilation=1):
    """Calculate padding size."""
    if img_size % stride == 0:
        out_size = max(filter_size - stride, 0)
    else:
        out_size = max(filter_size - (img_size % stride), 0)
    return out_size // 2, out_size - out_size // 2


inp_shape = {
    "b0_small": [224, 112, 112, 56, 28, 14, 14, 7],
    "b0": [224, 112, 112, 56, 28, 14, 14, 7],
    "b1": [240, 120, 120, 60, 30, 15, 15, 8],
    "b2": [260, 130, 130, 65, 33, 17, 17, 9],
    "b3": [300, 150, 150, 75, 38, 19, 19, 10],
    "b4": [380, 190, 190, 95, 48, 24, 24, 12],
    "b5": [456, 228, 228, 114, 57, 29, 29, 15],
    "b6": [528, 264, 264, 132, 66, 33, 33, 17],
    "b7": [600, 300, 300, 150, 75, 38, 38, 19]
}


def _drop_connect(inputs, prob, is_test):
    if is_test:
254 255 256 257 258 259 260 261
        output = inputs
    else:
        keep_prob = 1.0 - prob
        inputs_shape = paddle.shape(inputs)
        random_tensor = keep_prob + paddle.rand(
            shape=[inputs_shape[0], 1, 1, 1])
        binary_tensor = paddle.floor(random_tensor)
        output = paddle.multiply(inputs, binary_tensor) / keep_prob
262 263 264
    return output


littletomatodonkey's avatar
littletomatodonkey 已提交
265
class Conv2ds(nn.Layer):
266 267 268 269 270 271 272 273 274 275 276 277 278
    def __init__(self,
                 input_channels,
                 output_channels,
                 filter_size,
                 stride=1,
                 padding=0,
                 groups=None,
                 name="conv2d",
                 act=None,
                 use_bias=False,
                 padding_type=None,
                 model_name=None,
                 cur_stage=None):
W
fix  
wqz960 已提交
279
        super(Conv2ds, self).__init__()
littletomatodonkey's avatar
littletomatodonkey 已提交
280 281
        assert act in [None, "swish", "sigmoid"]
        self.act = act
282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312

        param_attr, bias_attr = initial_type(name=name, use_bias=use_bias)

        def get_padding(filter_size, stride=1, dilation=1):
            padding = ((stride - 1) + dilation * (filter_size - 1)) // 2
            return padding

        inps = 1 if model_name == None and cur_stage == None else inp_shape[
            model_name][cur_stage]
        self.need_crop = False
        if padding_type == "SAME":
            top_padding, bottom_padding = cal_padding(inps, stride,
                                                      filter_size)
            left_padding, right_padding = cal_padding(inps, stride,
                                                      filter_size)
            height_padding = bottom_padding
            width_padding = right_padding
            if top_padding != bottom_padding or left_padding != right_padding:
                height_padding = top_padding + stride
                width_padding = left_padding + stride
                self.need_crop = True
            padding = [height_padding, width_padding]
        elif padding_type == "VALID":
            height_padding = 0
            width_padding = 0
            padding = [height_padding, width_padding]
        elif padding_type == "DYNAMIC":
            padding = get_padding(filter_size, stride)
        else:
            padding = padding_type

littletomatodonkey's avatar
littletomatodonkey 已提交
313
        groups = 1 if groups is None else groups
314
        self._conv = Conv2D(
315 316 317 318 319
            input_channels,
            output_channels,
            filter_size,
            groups=groups,
            stride=stride,
littletomatodonkey's avatar
littletomatodonkey 已提交
320
            #             act=act,
321
            padding=padding,
littletomatodonkey's avatar
littletomatodonkey 已提交
322
            weight_attr=param_attr,
323 324 325 326
            bias_attr=bias_attr)

    def forward(self, inputs):
        x = self._conv(inputs)
littletomatodonkey's avatar
littletomatodonkey 已提交
327 328 329 330 331
        if self.act == "swish":
            x = F.swish(x)
        elif self.act == "sigmoid":
            x = F.sigmoid(x)

332 333 334 335 336
        if self.need_crop:
            x = x[:, :, 1:, 1:]
        return x


littletomatodonkey's avatar
littletomatodonkey 已提交
337
class ConvBNLayer(nn.Layer):
338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
    def __init__(self,
                 input_channels,
                 filter_size,
                 output_channels,
                 stride=1,
                 num_groups=1,
                 padding_type="SAME",
                 conv_act=None,
                 bn_act="swish",
                 use_bn=True,
                 use_bias=False,
                 name=None,
                 conv_name=None,
                 bn_name=None,
                 model_name=None,
                 cur_stage=None):
        super(ConvBNLayer, self).__init__()

W
fix  
wqz960 已提交
356
        self._conv = Conv2ds(
357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
            input_channels=input_channels,
            output_channels=output_channels,
            filter_size=filter_size,
            stride=stride,
            groups=num_groups,
            act=conv_act,
            padding_type=padding_type,
            name=conv_name,
            use_bias=use_bias,
            model_name=model_name,
            cur_stage=cur_stage)
        self.use_bn = use_bn
        if use_bn is True:
            bn_name = name + bn_name
            param_attr, bias_attr = init_batch_norm_layer(bn_name)

            self._bn = BatchNorm(
                num_channels=output_channels,
                act=bn_act,
                momentum=0.99,
                epsilon=0.001,
                moving_mean_name=bn_name + "_mean",
                moving_variance_name=bn_name + "_variance",
                param_attr=param_attr,
                bias_attr=bias_attr)

    def forward(self, inputs):
        if self.use_bn:
            x = self._conv(inputs)
            x = self._bn(x)
            return x
        else:
            return self._conv(inputs)


littletomatodonkey's avatar
littletomatodonkey 已提交
392
class ExpandConvNorm(nn.Layer):
393 394 395 396 397 398 399
    def __init__(self,
                 input_channels,
                 block_args,
                 padding_type,
                 name=None,
                 model_name=None,
                 cur_stage=None):
W
fix  
wqz960 已提交
400
        super(ExpandConvNorm, self).__init__()
401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424

        self.oup = block_args.input_filters * block_args.expand_ratio
        self.expand_ratio = block_args.expand_ratio

        if self.expand_ratio != 1:
            self._conv = ConvBNLayer(
                input_channels,
                1,
                self.oup,
                bn_act=None,
                padding_type=padding_type,
                name=name,
                conv_name=name + "_expand_conv",
                bn_name="_bn0",
                model_name=model_name,
                cur_stage=cur_stage)

    def forward(self, inputs):
        if self.expand_ratio != 1:
            return self._conv(inputs)
        else:
            return inputs


littletomatodonkey's avatar
littletomatodonkey 已提交
425
class DepthwiseConvNorm(nn.Layer):
426 427 428 429 430 431 432
    def __init__(self,
                 input_channels,
                 block_args,
                 padding_type,
                 name=None,
                 model_name=None,
                 cur_stage=None):
W
wqz960 已提交
433
        super(DepthwiseConvNorm, self).__init__()
434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458

        self.k = block_args.kernel_size
        self.s = block_args.stride
        if isinstance(self.s, list) or isinstance(self.s, tuple):
            self.s = self.s[0]
        oup = block_args.input_filters * block_args.expand_ratio

        self._conv = ConvBNLayer(
            input_channels,
            self.k,
            oup,
            self.s,
            num_groups=input_channels,
            bn_act=None,
            padding_type=padding_type,
            name=name,
            conv_name=name + "_depthwise_conv",
            bn_name="_bn1",
            model_name=model_name,
            cur_stage=cur_stage)

    def forward(self, inputs):
        return self._conv(inputs)


littletomatodonkey's avatar
littletomatodonkey 已提交
459
class ProjectConvNorm(nn.Layer):
460 461 462 463 464 465 466
    def __init__(self,
                 input_channels,
                 block_args,
                 padding_type,
                 name=None,
                 model_name=None,
                 cur_stage=None):
W
wqz960 已提交
467
        super(ProjectConvNorm, self).__init__()
468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486

        final_oup = block_args.output_filters

        self._conv = ConvBNLayer(
            input_channels,
            1,
            final_oup,
            bn_act=None,
            padding_type=padding_type,
            name=name,
            conv_name=name + "_project_conv",
            bn_name="_bn2",
            model_name=model_name,
            cur_stage=cur_stage)

    def forward(self, inputs):
        return self._conv(inputs)


littletomatodonkey's avatar
littletomatodonkey 已提交
487
class SEBlock(nn.Layer):
488 489 490 491 492 493 494 495
    def __init__(self,
                 input_channels,
                 num_squeezed_channels,
                 oup,
                 padding_type,
                 name=None,
                 model_name=None,
                 cur_stage=None):
W
fix  
wqz960 已提交
496
        super(SEBlock, self).__init__()
497

498
        self._pool = AdaptiveAvgPool2D(1)
W
fix  
wqz960 已提交
499
        self._conv1 = Conv2ds(
500 501 502 503 504 505 506 507
            input_channels,
            num_squeezed_channels,
            1,
            use_bias=True,
            padding_type=padding_type,
            act="swish",
            name=name + "_se_reduce")

W
fix  
wqz960 已提交
508
        self._conv2 = Conv2ds(
509 510 511
            num_squeezed_channels,
            oup,
            1,
littletomatodonkey's avatar
littletomatodonkey 已提交
512
            act="sigmoid",
513 514 515 516 517 518 519 520
            use_bias=True,
            padding_type=padding_type,
            name=name + "_se_expand")

    def forward(self, inputs):
        x = self._pool(inputs)
        x = self._conv1(x)
        x = self._conv2(x)
L
littletomatodonkey 已提交
521 522
        out = paddle.multiply(inputs, x)
        return out
523 524


littletomatodonkey's avatar
littletomatodonkey 已提交
525
class MbConvBlock(nn.Layer):
526 527 528 529 530 531 532 533 534
    def __init__(self,
                 input_channels,
                 block_args,
                 padding_type,
                 use_se,
                 name=None,
                 drop_connect_rate=None,
                 model_name=None,
                 cur_stage=None):
W
fix  
wqz960 已提交
535
        super(MbConvBlock, self).__init__()
536 537 538 539 540 541 542 543 544 545

        oup = block_args.input_filters * block_args.expand_ratio
        self.block_args = block_args
        self.has_se = use_se and (block_args.se_ratio is not None) and (
            0 < block_args.se_ratio <= 1)
        self.id_skip = block_args.id_skip
        self.expand_ratio = block_args.expand_ratio
        self.drop_connect_rate = drop_connect_rate

        if self.expand_ratio != 1:
W
fix  
wqz960 已提交
546
            self._ecn = ExpandConvNorm(
547 548 549 550 551 552 553
                input_channels,
                block_args,
                padding_type=padding_type,
                name=name,
                model_name=model_name,
                cur_stage=cur_stage)

W
wqz960 已提交
554
        self._dcn = DepthwiseConvNorm(
555 556 557 558 559 560 561 562 563 564
            input_channels * block_args.expand_ratio,
            block_args,
            padding_type=padding_type,
            name=name,
            model_name=model_name,
            cur_stage=cur_stage)

        if self.has_se:
            num_squeezed_channels = max(
                1, int(block_args.input_filters * block_args.se_ratio))
W
fix  
wqz960 已提交
565
            self._se = SEBlock(
566 567 568 569 570 571 572 573
                input_channels * block_args.expand_ratio,
                num_squeezed_channels,
                oup,
                padding_type=padding_type,
                name=name,
                model_name=model_name,
                cur_stage=cur_stage)

W
wqz960 已提交
574
        self._pcn = ProjectConvNorm(
575 576 577 578 579 580 581 582 583 584 585
            input_channels * block_args.expand_ratio,
            block_args,
            padding_type=padding_type,
            name=name,
            model_name=model_name,
            cur_stage=cur_stage)

    def forward(self, inputs):
        x = inputs
        if self.expand_ratio != 1:
            x = self._ecn(x)
littletomatodonkey's avatar
littletomatodonkey 已提交
586
            x = F.swish(x)
L
littletomatodonkey 已提交
587

588
        x = self._dcn(x)
littletomatodonkey's avatar
littletomatodonkey 已提交
589
        x = F.swish(x)
590 591 592
        if self.has_se:
            x = self._se(x)
        x = self._pcn(x)
L
littletomatodonkey 已提交
593

W
fix  
wqz960 已提交
594
        if self.id_skip and \
littletomatodonkey's avatar
littletomatodonkey 已提交
595 596
                self.block_args.stride == 1 and \
                self.block_args.input_filters == self.block_args.output_filters:
597
            if self.drop_connect_rate:
littletomatodonkey's avatar
littletomatodonkey 已提交
598
                x = _drop_connect(x, self.drop_connect_rate, not self.training)
599
            x = paddle.add(x, inputs)
600 601 602
        return x


littletomatodonkey's avatar
littletomatodonkey 已提交
603
class ConvStemNorm(nn.Layer):
604 605 606 607 608 609 610
    def __init__(self,
                 input_channels,
                 padding_type,
                 _global_params,
                 name=None,
                 model_name=None,
                 cur_stage=None):
W
fix  
wqz960 已提交
611
        super(ConvStemNorm, self).__init__()
612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630

        output_channels = round_filters(32, _global_params)
        self._conv = ConvBNLayer(
            input_channels,
            filter_size=3,
            output_channels=output_channels,
            stride=2,
            bn_act=None,
            padding_type=padding_type,
            name="",
            conv_name="_conv_stem",
            bn_name="_bn0",
            model_name=model_name,
            cur_stage=cur_stage)

    def forward(self, inputs):
        return self._conv(inputs)


littletomatodonkey's avatar
littletomatodonkey 已提交
631
class ExtractFeatures(nn.Layer):
632 633 634 635 636 637 638
    def __init__(self,
                 input_channels,
                 _block_args,
                 _global_params,
                 padding_type,
                 use_se,
                 model_name=None):
W
fix  
wqz960 已提交
639
        super(ExtractFeatures, self).__init__()
640 641 642

        self._global_params = _global_params

W
fix  
wqz960 已提交
643
        self._conv_stem = ConvStemNorm(
644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674
            input_channels,
            padding_type=padding_type,
            _global_params=_global_params,
            model_name=model_name,
            cur_stage=0)

        self.block_args_copy = copy.deepcopy(_block_args)
        idx = 0
        block_size = 0
        for block_arg in self.block_args_copy:
            block_arg = block_arg._replace(
                input_filters=round_filters(block_arg.input_filters,
                                            _global_params),
                output_filters=round_filters(block_arg.output_filters,
                                             _global_params),
                num_repeat=round_repeats(block_arg.num_repeat, _global_params))
            block_size += 1
            for _ in range(block_arg.num_repeat - 1):
                block_size += 1

        self.conv_seq = []
        cur_stage = 1
        for block_args in _block_args:
            block_args = block_args._replace(
                input_filters=round_filters(block_args.input_filters,
                                            _global_params),
                output_filters=round_filters(block_args.output_filters,
                                             _global_params),
                num_repeat=round_repeats(block_args.num_repeat,
                                         _global_params))

littletomatodonkey's avatar
littletomatodonkey 已提交
675
            drop_connect_rate = self._global_params.drop_connect_rate
676 677 678 679 680
            if drop_connect_rate:
                drop_connect_rate *= float(idx) / block_size

            _mc_block = self.add_sublayer(
                "_blocks." + str(idx) + ".",
W
fix  
wqz960 已提交
681
                MbConvBlock(
682 683 684 685 686 687 688 689 690 691 692 693 694 695
                    block_args.input_filters,
                    block_args=block_args,
                    padding_type=padding_type,
                    use_se=use_se,
                    name="_blocks." + str(idx) + ".",
                    drop_connect_rate=drop_connect_rate,
                    model_name=model_name,
                    cur_stage=cur_stage))
            self.conv_seq.append(_mc_block)
            idx += 1
            if block_args.num_repeat > 1:
                block_args = block_args._replace(
                    input_filters=block_args.output_filters, stride=1)
            for _ in range(block_args.num_repeat - 1):
littletomatodonkey's avatar
littletomatodonkey 已提交
696
                drop_connect_rate = self._global_params.drop_connect_rate
697 698 699 700
                if drop_connect_rate:
                    drop_connect_rate *= float(idx) / block_size
                _mc_block = self.add_sublayer(
                    "block." + str(idx) + ".",
W
fix  
wqz960 已提交
701
                    MbConvBlock(
702 703 704 705 706 707 708 709 710 711 712 713 714 715
                        block_args.input_filters,
                        block_args,
                        padding_type=padding_type,
                        use_se=use_se,
                        name="_blocks." + str(idx) + ".",
                        drop_connect_rate=drop_connect_rate,
                        model_name=model_name,
                        cur_stage=cur_stage))
                self.conv_seq.append(_mc_block)
                idx += 1
            cur_stage += 1

    def forward(self, inputs):
        x = self._conv_stem(inputs)
littletomatodonkey's avatar
littletomatodonkey 已提交
716
        x = F.swish(x)
717 718 719 720 721
        for _mc_block in self.conv_seq:
            x = _mc_block(x)
        return x


littletomatodonkey's avatar
littletomatodonkey 已提交
722
class EfficientNet(nn.Layer):
723 724 725 726 727 728 729 730 731 732 733 734 735 736 737
    def __init__(self,
                 name="b0",
                 padding_type="SAME",
                 override_params=None,
                 use_se=True,
                 class_dim=1000):
        super(EfficientNet, self).__init__()

        model_name = 'efficientnet-' + name
        self.name = name
        self._block_args, self._global_params = get_model_params(
            model_name, override_params)
        self.padding_type = padding_type
        self.use_se = use_se

W
fix  
wqz960 已提交
738
        self._ef = ExtractFeatures(
739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771
            3,
            self._block_args,
            self._global_params,
            self.padding_type,
            self.use_se,
            model_name=self.name)

        output_channels = round_filters(1280, self._global_params)
        if name == "b0_small" or name == "b0" or name == "b1":
            oup = 320
        elif name == "b2":
            oup = 352
        elif name == "b3":
            oup = 384
        elif name == "b4":
            oup = 448
        elif name == "b5":
            oup = 512
        elif name == "b6":
            oup = 576
        elif name == "b7":
            oup = 640
        self._conv = ConvBNLayer(
            oup,
            1,
            output_channels,
            bn_act="swish",
            padding_type=self.padding_type,
            name="",
            conv_name="_conv_head",
            bn_name="_bn1",
            model_name=self.name,
            cur_stage=7)
772
        self._pool = AdaptiveAvgPool2D(1)
773 774 775

        if self._global_params.dropout_rate:
            self._drop = Dropout(
littletomatodonkey's avatar
littletomatodonkey 已提交
776
                p=self._global_params.dropout_rate, mode="upscale_in_train")
777 778 779 780 781

        param_attr, bias_attr = init_fc_layer("_fc")
        self._fc = Linear(
            output_channels,
            class_dim,
littletomatodonkey's avatar
littletomatodonkey 已提交
782
            weight_attr=param_attr,
783 784 785 786 787 788 789 790
            bias_attr=bias_attr)

    def forward(self, inputs):
        x = self._ef(inputs)
        x = self._conv(x)
        x = self._pool(x)
        if self._global_params.dropout_rate:
            x = self._drop(x)
littletomatodonkey's avatar
littletomatodonkey 已提交
791
        x = paddle.squeeze(x, axis=[2, 3])
792 793 794
        x = self._fc(x)
        return x

C
cuicheng01 已提交
795 796 797 798 799 800 801 802 803 804 805 806 807
    
def _load_pretrained(pretrained, model, model_url, use_ssld=False):
    if pretrained is False:
        pass
    elif pretrained is True:
        load_dygraph_pretrain_from_url(model, model_url, use_ssld=use_ssld)
    elif isinstance(pretrained, str):
        load_dygraph_pretrain(model, pretrained)
    else:
        raise RuntimeError(
            "pretrained type is not available. Please use `string` or `boolean` type."
        )  

808

littletomatodonkey's avatar
littletomatodonkey 已提交
809
def EfficientNetB0_small(padding_type='DYNAMIC',
810
                         override_params=None,
W
wqz960 已提交
811
                         use_se=False,
C
cuicheng01 已提交
812 813 814
                         pretrained=False, 
                         use_ssld=False, 
                         **kwargs):
W
WuHaobo 已提交
815 816 817 818
    model = EfficientNet(
        name='b0',
        padding_type=padding_type,
        override_params=override_params,
W
wqz960 已提交
819
        use_se=use_se,
C
cuicheng01 已提交
820 821
        **kwargs)
    _load_pretrained(pretrained, model, MODEL_URLS["EfficientNetB0_small"])
W
WuHaobo 已提交
822 823 824
    return model


littletomatodonkey's avatar
littletomatodonkey 已提交
825
def EfficientNetB0(padding_type='SAME',
826
                   override_params=None,
W
wqz960 已提交
827
                   use_se=True,
C
cuicheng01 已提交
828 829 830
                   pretrained=False, 
                   use_ssld=False, 
                   **kwargs):
littletomatodonkey's avatar
littletomatodonkey 已提交
831 832 833 834
    model = EfficientNet(
        name='b0',
        padding_type=padding_type,
        override_params=override_params,
W
wqz960 已提交
835
        use_se=use_se,
C
cuicheng01 已提交
836 837
        **kwargs)
    _load_pretrained(pretrained, model, MODEL_URLS["EfficientNetB0"])
littletomatodonkey's avatar
littletomatodonkey 已提交
838 839 840
    return model


littletomatodonkey's avatar
littletomatodonkey 已提交
841
def EfficientNetB1(padding_type='SAME',
W
WuHaobo 已提交
842
                   override_params=None,
W
wqz960 已提交
843
                   use_se=True,
C
cuicheng01 已提交
844 845 846
                   pretrained=False, 
                   use_ssld=False, 
                   **kwargs):
W
WuHaobo 已提交
847 848 849 850
    model = EfficientNet(
        name='b1',
        padding_type=padding_type,
        override_params=override_params,
W
wqz960 已提交
851
        use_se=use_se,
C
cuicheng01 已提交
852 853
        **kwargs)
    _load_pretrained(pretrained, model, MODEL_URLS["EfficientNetB1"])
W
WuHaobo 已提交
854 855 856
    return model


littletomatodonkey's avatar
littletomatodonkey 已提交
857
def EfficientNetB2(padding_type='SAME',
W
WuHaobo 已提交
858
                   override_params=None,
W
wqz960 已提交
859
                   use_se=True,
C
cuicheng01 已提交
860 861 862
                   pretrained=False, 
                   use_ssld=False, 
                   **kwargs):
W
WuHaobo 已提交
863 864 865 866
    model = EfficientNet(
        name='b2',
        padding_type=padding_type,
        override_params=override_params,
W
wqz960 已提交
867
        use_se=use_se,
C
cuicheng01 已提交
868 869
        **kwargs)
    _load_pretrained(pretrained, model, MODEL_URLS["EfficientNetB2"])
W
WuHaobo 已提交
870 871 872
    return model


littletomatodonkey's avatar
littletomatodonkey 已提交
873
def EfficientNetB3(padding_type='SAME',
W
WuHaobo 已提交
874
                   override_params=None,
W
wqz960 已提交
875
                   use_se=True,
C
cuicheng01 已提交
876 877 878
                   pretrained=False, 
                   use_ssld=False, 
                   **kwargs):
W
WuHaobo 已提交
879 880 881 882
    model = EfficientNet(
        name='b3',
        padding_type=padding_type,
        override_params=override_params,
W
wqz960 已提交
883
        use_se=use_se,
C
cuicheng01 已提交
884 885
        **kwargs)
    _load_pretrained(pretrained, model, MODEL_URLS["EfficientNetB3"])
W
WuHaobo 已提交
886 887 888
    return model


littletomatodonkey's avatar
littletomatodonkey 已提交
889
def EfficientNetB4(padding_type='SAME',
W
WuHaobo 已提交
890
                   override_params=None,
W
wqz960 已提交
891
                   use_se=True,
C
cuicheng01 已提交
892 893 894
                   pretrained=False, 
                   use_ssld=False, 
                   **kwargs):
W
WuHaobo 已提交
895 896 897 898
    model = EfficientNet(
        name='b4',
        padding_type=padding_type,
        override_params=override_params,
W
wqz960 已提交
899
        use_se=use_se,
C
cuicheng01 已提交
900 901
        **kwargs)
    _load_pretrained(pretrained, model, MODEL_URLS["EfficientNetB4"])
W
WuHaobo 已提交
902 903 904
    return model


littletomatodonkey's avatar
littletomatodonkey 已提交
905
def EfficientNetB5(padding_type='SAME',
W
WuHaobo 已提交
906
                   override_params=None,
W
wqz960 已提交
907
                   use_se=True,
C
cuicheng01 已提交
908 909 910
                   pretrained=False, 
                   use_ssld=False, 
                   **kwargs):
W
WuHaobo 已提交
911 912 913 914
    model = EfficientNet(
        name='b5',
        padding_type=padding_type,
        override_params=override_params,
W
wqz960 已提交
915
        use_se=use_se,
C
cuicheng01 已提交
916 917
        **kwargs)
    _load_pretrained(pretrained, model, MODEL_URLS["EfficientNetB5"])
W
WuHaobo 已提交
918 919 920
    return model


littletomatodonkey's avatar
littletomatodonkey 已提交
921
def EfficientNetB6(padding_type='SAME',
W
WuHaobo 已提交
922
                   override_params=None,
W
wqz960 已提交
923
                   use_se=True,
C
cuicheng01 已提交
924 925 926
                   pretrained=False, 
                   use_ssld=False, 
                   **kwargs):
W
WuHaobo 已提交
927 928 929 930
    model = EfficientNet(
        name='b6',
        padding_type=padding_type,
        override_params=override_params,
W
wqz960 已提交
931
        use_se=use_se,
C
cuicheng01 已提交
932 933
        **kwargs)
    _load_pretrained(pretrained, model, MODEL_URLS["EfficientNetB6"])
W
WuHaobo 已提交
934 935 936
    return model


littletomatodonkey's avatar
littletomatodonkey 已提交
937
def EfficientNetB7(padding_type='SAME',
W
WuHaobo 已提交
938
                   override_params=None,
W
wqz960 已提交
939
                   use_se=True,
C
cuicheng01 已提交
940 941 942
                   pretrained=False, 
                   use_ssld=False, 
                   **kwargs):
W
WuHaobo 已提交
943 944 945 946
    model = EfficientNet(
        name='b7',
        padding_type=padding_type,
        override_params=override_params,
W
wqz960 已提交
947
        use_se=use_se,
C
cuicheng01 已提交
948 949 950
        **kwargs)
    _load_pretrained(pretrained, model, MODEL_URLS["EfficientNetB7"])
    return model