efficientnet.py 27.7 KB
Newer Older
1
import paddle
littletomatodonkey's avatar
littletomatodonkey 已提交
2 3 4
from paddle import ParamAttr
import paddle.nn as nn
import paddle.nn.functional as F
5 6
from paddle.nn import Conv2D, BatchNorm, Linear, Dropout
from paddle.nn import AdaptiveAvgPool2D, MaxPool2D, AvgPool2D
7
import math
W
WuHaobo 已提交
8 9 10 11 12
import collections
import re
import copy

__all__ = [
13 14 15
    'EfficientNet', 'EfficientNetB0_small', 'EfficientNetB0', 'EfficientNetB1',
    'EfficientNetB2', 'EfficientNetB3', 'EfficientNetB4', 'EfficientNetB5',
    'EfficientNetB6', 'EfficientNetB7'
W
WuHaobo 已提交
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
]

GlobalParams = collections.namedtuple('GlobalParams', [
    'batch_norm_momentum',
    'batch_norm_epsilon',
    'dropout_rate',
    'num_classes',
    'width_coefficient',
    'depth_coefficient',
    'depth_divisor',
    'min_depth',
    'drop_connect_rate',
])

BlockArgs = collections.namedtuple('BlockArgs', [
    'kernel_size', 'num_repeat', 'input_filters', 'output_filters',
    'expand_ratio', 'id_skip', 'stride', 'se_ratio'
])

GlobalParams.__new__.__defaults__ = (None, ) * len(GlobalParams._fields)
BlockArgs.__new__.__defaults__ = (None, ) * len(BlockArgs._fields)


def efficientnet_params(model_name):
    """ Map EfficientNet model name to parameter coefficients. """
    params_dict = {
        # Coefficients:   width,depth,resolution,dropout
        'efficientnet-b0': (1.0, 1.0, 224, 0.2),
        'efficientnet-b1': (1.0, 1.1, 240, 0.2),
        'efficientnet-b2': (1.1, 1.2, 260, 0.3),
        'efficientnet-b3': (1.2, 1.4, 300, 0.3),
        'efficientnet-b4': (1.4, 1.8, 380, 0.4),
        'efficientnet-b5': (1.6, 2.2, 456, 0.4),
        'efficientnet-b6': (1.8, 2.6, 528, 0.5),
        'efficientnet-b7': (2.0, 3.1, 600, 0.5),
    }
    return params_dict[model_name]


def efficientnet(width_coefficient=None,
                 depth_coefficient=None,
                 dropout_rate=0.2,
                 drop_connect_rate=0.2):
    """ Get block arguments according to parameter and coefficients. """
    blocks_args = [
        'r1_k3_s11_e1_i32_o16_se0.25',
        'r2_k3_s22_e6_i16_o24_se0.25',
        'r2_k5_s22_e6_i24_o40_se0.25',
        'r3_k3_s22_e6_i40_o80_se0.25',
        'r3_k5_s11_e6_i80_o112_se0.25',
        'r4_k5_s22_e6_i112_o192_se0.25',
        'r1_k3_s11_e6_i192_o320_se0.25',
    ]
    blocks_args = BlockDecoder.decode(blocks_args)

    global_params = GlobalParams(
        batch_norm_momentum=0.99,
        batch_norm_epsilon=1e-3,
        dropout_rate=dropout_rate,
        drop_connect_rate=drop_connect_rate,
        num_classes=1000,
        width_coefficient=width_coefficient,
        depth_coefficient=depth_coefficient,
        depth_divisor=8,
        min_depth=None)

    return blocks_args, global_params


def get_model_params(model_name, override_params):
    """ Get the block args and global params for a given model """
    if model_name.startswith('efficientnet'):
        w, d, _, p = efficientnet_params(model_name)
        blocks_args, global_params = efficientnet(
            width_coefficient=w, depth_coefficient=d, dropout_rate=p)
    else:
        raise NotImplementedError('model name is not pre-defined: %s' %
                                  model_name)
    if override_params:
        global_params = global_params._replace(**override_params)
    return blocks_args, global_params


def round_filters(filters, global_params):
    """ Calculate and round number of filters based on depth multiplier. """
    multiplier = global_params.width_coefficient
    if not multiplier:
        return filters
    divisor = global_params.depth_divisor
    min_depth = global_params.min_depth
    filters *= multiplier
    min_depth = min_depth or divisor
    new_filters = max(min_depth,
                      int(filters + divisor / 2) // divisor * divisor)
    if new_filters < 0.9 * filters:  # prevent rounding by more than 10%
        new_filters += divisor
    return int(new_filters)


def round_repeats(repeats, global_params):
    """ Round number of filters based on depth multiplier. """
    multiplier = global_params.depth_coefficient
    if not multiplier:
        return repeats
    return int(math.ceil(multiplier * repeats))


class BlockDecoder(object):
littletomatodonkey's avatar
littletomatodonkey 已提交
124 125 126
    """
    Block Decoder, straight from the official TensorFlow repository.
    """
W
WuHaobo 已提交
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141

    @staticmethod
    def _decode_block_string(block_string):
        """ Gets a block through a string notation of arguments. """
        assert isinstance(block_string, str)

        ops = block_string.split('_')
        options = {}
        for op in ops:
            splits = re.split(r'(\d.*)', op)
            if len(splits) >= 2:
                key, value = splits[:2]
                options[key] = value

        # Check stride
littletomatodonkey's avatar
littletomatodonkey 已提交
142
        cond_1 = ('s' in options and len(options['s']) == 1)
S
shippingwang 已提交
143 144
        cond_2 = ((len(options['s']) == 2) and
                  (options['s'][0] == options['s'][1]))
littletomatodonkey's avatar
littletomatodonkey 已提交
145
        assert (cond_1 or cond_2)
W
WuHaobo 已提交
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173

        return BlockArgs(
            kernel_size=int(options['k']),
            num_repeat=int(options['r']),
            input_filters=int(options['i']),
            output_filters=int(options['o']),
            expand_ratio=int(options['e']),
            id_skip=('noskip' not in block_string),
            se_ratio=float(options['se']) if 'se' in options else None,
            stride=[int(options['s'][0])])

    @staticmethod
    def _encode_block_string(block):
        """Encodes a block to a string."""
        args = [
            'r%d' % block.num_repeat, 'k%d' % block.kernel_size, 's%d%d' %
            (block.strides[0], block.strides[1]), 'e%s' % block.expand_ratio,
            'i%d' % block.input_filters, 'o%d' % block.output_filters
        ]
        if 0 < block.se_ratio <= 1:
            args.append('se%s' % block.se_ratio)
        if block.id_skip is False:
            args.append('noskip')
        return '_'.join(args)

    @staticmethod
    def decode(string_list):
        """
littletomatodonkey's avatar
littletomatodonkey 已提交
174
        Decode a list of string notations to specify blocks in the network.
W
WuHaobo 已提交
175

littletomatodonkey's avatar
littletomatodonkey 已提交
176 177 178
        string_list: list of strings, each string is a notation of block
        return
            list of BlockArgs namedtuples of block args
W
WuHaobo 已提交
179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
        """
        assert isinstance(string_list, list)
        blocks_args = []
        for block_string in string_list:
            blocks_args.append(BlockDecoder._decode_block_string(block_string))
        return blocks_args

    @staticmethod
    def encode(blocks_args):
        """
        Encodes a list of BlockArgs to a list of strings.

        :param blocks_args: a list of BlockArgs namedtuples of block args
        :return: a list of strings, each string is a notation of block
        """
        block_strings = []
        for block in blocks_args:
            block_strings.append(BlockDecoder._encode_block_string(block))
        return block_strings


200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
def initial_type(name, use_bias=False):
    param_attr = ParamAttr(name=name + "_weights")
    if use_bias:
        bias_attr = ParamAttr(name=name + "_offset")
    else:
        bias_attr = False
    return param_attr, bias_attr


def init_batch_norm_layer(name="batch_norm"):
    param_attr = ParamAttr(name=name + "_scale")
    bias_attr = ParamAttr(name=name + "_offset")
    return param_attr, bias_attr


def init_fc_layer(name="fc"):
    param_attr = ParamAttr(name=name + "_weights")
    bias_attr = ParamAttr(name=name + "_offset")
    return param_attr, bias_attr


def cal_padding(img_size, stride, filter_size, dilation=1):
    """Calculate padding size."""
    if img_size % stride == 0:
        out_size = max(filter_size - stride, 0)
    else:
        out_size = max(filter_size - (img_size % stride), 0)
    return out_size // 2, out_size - out_size // 2


inp_shape = {
    "b0_small": [224, 112, 112, 56, 28, 14, 14, 7],
    "b0": [224, 112, 112, 56, 28, 14, 14, 7],
    "b1": [240, 120, 120, 60, 30, 15, 15, 8],
    "b2": [260, 130, 130, 65, 33, 17, 17, 9],
    "b3": [300, 150, 150, 75, 38, 19, 19, 10],
    "b4": [380, 190, 190, 95, 48, 24, 24, 12],
    "b5": [456, 228, 228, 114, 57, 29, 29, 15],
    "b6": [528, 264, 264, 132, 66, 33, 33, 17],
    "b7": [600, 300, 300, 150, 75, 38, 38, 19]
}


def _drop_connect(inputs, prob, is_test):
    if is_test:
245 246 247 248 249 250 251 252
        output = inputs
    else:
        keep_prob = 1.0 - prob
        inputs_shape = paddle.shape(inputs)
        random_tensor = keep_prob + paddle.rand(
            shape=[inputs_shape[0], 1, 1, 1])
        binary_tensor = paddle.floor(random_tensor)
        output = paddle.multiply(inputs, binary_tensor) / keep_prob
253 254 255
    return output


littletomatodonkey's avatar
littletomatodonkey 已提交
256
class Conv2ds(nn.Layer):
257 258 259 260 261 262 263 264 265 266 267 268 269
    def __init__(self,
                 input_channels,
                 output_channels,
                 filter_size,
                 stride=1,
                 padding=0,
                 groups=None,
                 name="conv2d",
                 act=None,
                 use_bias=False,
                 padding_type=None,
                 model_name=None,
                 cur_stage=None):
W
fix  
wqz960 已提交
270
        super(Conv2ds, self).__init__()
littletomatodonkey's avatar
littletomatodonkey 已提交
271 272
        assert act in [None, "swish", "sigmoid"]
        self.act = act
273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303

        param_attr, bias_attr = initial_type(name=name, use_bias=use_bias)

        def get_padding(filter_size, stride=1, dilation=1):
            padding = ((stride - 1) + dilation * (filter_size - 1)) // 2
            return padding

        inps = 1 if model_name == None and cur_stage == None else inp_shape[
            model_name][cur_stage]
        self.need_crop = False
        if padding_type == "SAME":
            top_padding, bottom_padding = cal_padding(inps, stride,
                                                      filter_size)
            left_padding, right_padding = cal_padding(inps, stride,
                                                      filter_size)
            height_padding = bottom_padding
            width_padding = right_padding
            if top_padding != bottom_padding or left_padding != right_padding:
                height_padding = top_padding + stride
                width_padding = left_padding + stride
                self.need_crop = True
            padding = [height_padding, width_padding]
        elif padding_type == "VALID":
            height_padding = 0
            width_padding = 0
            padding = [height_padding, width_padding]
        elif padding_type == "DYNAMIC":
            padding = get_padding(filter_size, stride)
        else:
            padding = padding_type

littletomatodonkey's avatar
littletomatodonkey 已提交
304
        groups = 1 if groups is None else groups
305
        self._conv = Conv2D(
306 307 308 309 310
            input_channels,
            output_channels,
            filter_size,
            groups=groups,
            stride=stride,
littletomatodonkey's avatar
littletomatodonkey 已提交
311
            #             act=act,
312
            padding=padding,
littletomatodonkey's avatar
littletomatodonkey 已提交
313
            weight_attr=param_attr,
314 315 316 317
            bias_attr=bias_attr)

    def forward(self, inputs):
        x = self._conv(inputs)
littletomatodonkey's avatar
littletomatodonkey 已提交
318 319 320 321 322
        if self.act == "swish":
            x = F.swish(x)
        elif self.act == "sigmoid":
            x = F.sigmoid(x)

323 324 325 326 327
        if self.need_crop:
            x = x[:, :, 1:, 1:]
        return x


littletomatodonkey's avatar
littletomatodonkey 已提交
328
class ConvBNLayer(nn.Layer):
329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346
    def __init__(self,
                 input_channels,
                 filter_size,
                 output_channels,
                 stride=1,
                 num_groups=1,
                 padding_type="SAME",
                 conv_act=None,
                 bn_act="swish",
                 use_bn=True,
                 use_bias=False,
                 name=None,
                 conv_name=None,
                 bn_name=None,
                 model_name=None,
                 cur_stage=None):
        super(ConvBNLayer, self).__init__()

W
fix  
wqz960 已提交
347
        self._conv = Conv2ds(
348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
            input_channels=input_channels,
            output_channels=output_channels,
            filter_size=filter_size,
            stride=stride,
            groups=num_groups,
            act=conv_act,
            padding_type=padding_type,
            name=conv_name,
            use_bias=use_bias,
            model_name=model_name,
            cur_stage=cur_stage)
        self.use_bn = use_bn
        if use_bn is True:
            bn_name = name + bn_name
            param_attr, bias_attr = init_batch_norm_layer(bn_name)

            self._bn = BatchNorm(
                num_channels=output_channels,
                act=bn_act,
                momentum=0.99,
                epsilon=0.001,
                moving_mean_name=bn_name + "_mean",
                moving_variance_name=bn_name + "_variance",
                param_attr=param_attr,
                bias_attr=bias_attr)

    def forward(self, inputs):
        if self.use_bn:
            x = self._conv(inputs)
            x = self._bn(x)
            return x
        else:
            return self._conv(inputs)


littletomatodonkey's avatar
littletomatodonkey 已提交
383
class ExpandConvNorm(nn.Layer):
384 385 386 387 388 389 390
    def __init__(self,
                 input_channels,
                 block_args,
                 padding_type,
                 name=None,
                 model_name=None,
                 cur_stage=None):
W
fix  
wqz960 已提交
391
        super(ExpandConvNorm, self).__init__()
392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415

        self.oup = block_args.input_filters * block_args.expand_ratio
        self.expand_ratio = block_args.expand_ratio

        if self.expand_ratio != 1:
            self._conv = ConvBNLayer(
                input_channels,
                1,
                self.oup,
                bn_act=None,
                padding_type=padding_type,
                name=name,
                conv_name=name + "_expand_conv",
                bn_name="_bn0",
                model_name=model_name,
                cur_stage=cur_stage)

    def forward(self, inputs):
        if self.expand_ratio != 1:
            return self._conv(inputs)
        else:
            return inputs


littletomatodonkey's avatar
littletomatodonkey 已提交
416
class DepthwiseConvNorm(nn.Layer):
417 418 419 420 421 422 423
    def __init__(self,
                 input_channels,
                 block_args,
                 padding_type,
                 name=None,
                 model_name=None,
                 cur_stage=None):
W
wqz960 已提交
424
        super(DepthwiseConvNorm, self).__init__()
425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449

        self.k = block_args.kernel_size
        self.s = block_args.stride
        if isinstance(self.s, list) or isinstance(self.s, tuple):
            self.s = self.s[0]
        oup = block_args.input_filters * block_args.expand_ratio

        self._conv = ConvBNLayer(
            input_channels,
            self.k,
            oup,
            self.s,
            num_groups=input_channels,
            bn_act=None,
            padding_type=padding_type,
            name=name,
            conv_name=name + "_depthwise_conv",
            bn_name="_bn1",
            model_name=model_name,
            cur_stage=cur_stage)

    def forward(self, inputs):
        return self._conv(inputs)


littletomatodonkey's avatar
littletomatodonkey 已提交
450
class ProjectConvNorm(nn.Layer):
451 452 453 454 455 456 457
    def __init__(self,
                 input_channels,
                 block_args,
                 padding_type,
                 name=None,
                 model_name=None,
                 cur_stage=None):
W
wqz960 已提交
458
        super(ProjectConvNorm, self).__init__()
459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477

        final_oup = block_args.output_filters

        self._conv = ConvBNLayer(
            input_channels,
            1,
            final_oup,
            bn_act=None,
            padding_type=padding_type,
            name=name,
            conv_name=name + "_project_conv",
            bn_name="_bn2",
            model_name=model_name,
            cur_stage=cur_stage)

    def forward(self, inputs):
        return self._conv(inputs)


littletomatodonkey's avatar
littletomatodonkey 已提交
478
class SEBlock(nn.Layer):
479 480 481 482 483 484 485 486
    def __init__(self,
                 input_channels,
                 num_squeezed_channels,
                 oup,
                 padding_type,
                 name=None,
                 model_name=None,
                 cur_stage=None):
W
fix  
wqz960 已提交
487
        super(SEBlock, self).__init__()
488

489
        self._pool = AdaptiveAvgPool2D(1)
W
fix  
wqz960 已提交
490
        self._conv1 = Conv2ds(
491 492 493 494 495 496 497 498
            input_channels,
            num_squeezed_channels,
            1,
            use_bias=True,
            padding_type=padding_type,
            act="swish",
            name=name + "_se_reduce")

W
fix  
wqz960 已提交
499
        self._conv2 = Conv2ds(
500 501 502
            num_squeezed_channels,
            oup,
            1,
littletomatodonkey's avatar
littletomatodonkey 已提交
503
            act="sigmoid",
504 505 506 507 508 509 510 511
            use_bias=True,
            padding_type=padding_type,
            name=name + "_se_expand")

    def forward(self, inputs):
        x = self._pool(inputs)
        x = self._conv1(x)
        x = self._conv2(x)
L
littletomatodonkey 已提交
512 513
        out = paddle.multiply(inputs, x)
        return out
514 515


littletomatodonkey's avatar
littletomatodonkey 已提交
516
class MbConvBlock(nn.Layer):
517 518 519 520 521 522 523 524 525
    def __init__(self,
                 input_channels,
                 block_args,
                 padding_type,
                 use_se,
                 name=None,
                 drop_connect_rate=None,
                 model_name=None,
                 cur_stage=None):
W
fix  
wqz960 已提交
526
        super(MbConvBlock, self).__init__()
527 528 529 530 531 532 533 534 535 536

        oup = block_args.input_filters * block_args.expand_ratio
        self.block_args = block_args
        self.has_se = use_se and (block_args.se_ratio is not None) and (
            0 < block_args.se_ratio <= 1)
        self.id_skip = block_args.id_skip
        self.expand_ratio = block_args.expand_ratio
        self.drop_connect_rate = drop_connect_rate

        if self.expand_ratio != 1:
W
fix  
wqz960 已提交
537
            self._ecn = ExpandConvNorm(
538 539 540 541 542 543 544
                input_channels,
                block_args,
                padding_type=padding_type,
                name=name,
                model_name=model_name,
                cur_stage=cur_stage)

W
wqz960 已提交
545
        self._dcn = DepthwiseConvNorm(
546 547 548 549 550 551 552 553 554 555
            input_channels * block_args.expand_ratio,
            block_args,
            padding_type=padding_type,
            name=name,
            model_name=model_name,
            cur_stage=cur_stage)

        if self.has_se:
            num_squeezed_channels = max(
                1, int(block_args.input_filters * block_args.se_ratio))
W
fix  
wqz960 已提交
556
            self._se = SEBlock(
557 558 559 560 561 562 563 564
                input_channels * block_args.expand_ratio,
                num_squeezed_channels,
                oup,
                padding_type=padding_type,
                name=name,
                model_name=model_name,
                cur_stage=cur_stage)

W
wqz960 已提交
565
        self._pcn = ProjectConvNorm(
566 567 568 569 570 571 572 573 574 575 576
            input_channels * block_args.expand_ratio,
            block_args,
            padding_type=padding_type,
            name=name,
            model_name=model_name,
            cur_stage=cur_stage)

    def forward(self, inputs):
        x = inputs
        if self.expand_ratio != 1:
            x = self._ecn(x)
littletomatodonkey's avatar
littletomatodonkey 已提交
577
            x = F.swish(x)
L
littletomatodonkey 已提交
578

579
        x = self._dcn(x)
littletomatodonkey's avatar
littletomatodonkey 已提交
580
        x = F.swish(x)
581 582 583
        if self.has_se:
            x = self._se(x)
        x = self._pcn(x)
L
littletomatodonkey 已提交
584

W
fix  
wqz960 已提交
585
        if self.id_skip and \
littletomatodonkey's avatar
littletomatodonkey 已提交
586 587
                self.block_args.stride == 1 and \
                self.block_args.input_filters == self.block_args.output_filters:
588
            if self.drop_connect_rate:
littletomatodonkey's avatar
littletomatodonkey 已提交
589
                x = _drop_connect(x, self.drop_connect_rate, not self.training)
590
            x = paddle.add(x, inputs)
591 592 593
        return x


littletomatodonkey's avatar
littletomatodonkey 已提交
594
class ConvStemNorm(nn.Layer):
595 596 597 598 599 600 601
    def __init__(self,
                 input_channels,
                 padding_type,
                 _global_params,
                 name=None,
                 model_name=None,
                 cur_stage=None):
W
fix  
wqz960 已提交
602
        super(ConvStemNorm, self).__init__()
603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621

        output_channels = round_filters(32, _global_params)
        self._conv = ConvBNLayer(
            input_channels,
            filter_size=3,
            output_channels=output_channels,
            stride=2,
            bn_act=None,
            padding_type=padding_type,
            name="",
            conv_name="_conv_stem",
            bn_name="_bn0",
            model_name=model_name,
            cur_stage=cur_stage)

    def forward(self, inputs):
        return self._conv(inputs)


littletomatodonkey's avatar
littletomatodonkey 已提交
622
class ExtractFeatures(nn.Layer):
623 624 625 626 627 628 629
    def __init__(self,
                 input_channels,
                 _block_args,
                 _global_params,
                 padding_type,
                 use_se,
                 model_name=None):
W
fix  
wqz960 已提交
630
        super(ExtractFeatures, self).__init__()
631 632 633

        self._global_params = _global_params

W
fix  
wqz960 已提交
634
        self._conv_stem = ConvStemNorm(
635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665
            input_channels,
            padding_type=padding_type,
            _global_params=_global_params,
            model_name=model_name,
            cur_stage=0)

        self.block_args_copy = copy.deepcopy(_block_args)
        idx = 0
        block_size = 0
        for block_arg in self.block_args_copy:
            block_arg = block_arg._replace(
                input_filters=round_filters(block_arg.input_filters,
                                            _global_params),
                output_filters=round_filters(block_arg.output_filters,
                                             _global_params),
                num_repeat=round_repeats(block_arg.num_repeat, _global_params))
            block_size += 1
            for _ in range(block_arg.num_repeat - 1):
                block_size += 1

        self.conv_seq = []
        cur_stage = 1
        for block_args in _block_args:
            block_args = block_args._replace(
                input_filters=round_filters(block_args.input_filters,
                                            _global_params),
                output_filters=round_filters(block_args.output_filters,
                                             _global_params),
                num_repeat=round_repeats(block_args.num_repeat,
                                         _global_params))

littletomatodonkey's avatar
littletomatodonkey 已提交
666
            drop_connect_rate = self._global_params.drop_connect_rate
667 668 669 670 671
            if drop_connect_rate:
                drop_connect_rate *= float(idx) / block_size

            _mc_block = self.add_sublayer(
                "_blocks." + str(idx) + ".",
W
fix  
wqz960 已提交
672
                MbConvBlock(
673 674 675 676 677 678 679 680 681 682 683 684 685 686
                    block_args.input_filters,
                    block_args=block_args,
                    padding_type=padding_type,
                    use_se=use_se,
                    name="_blocks." + str(idx) + ".",
                    drop_connect_rate=drop_connect_rate,
                    model_name=model_name,
                    cur_stage=cur_stage))
            self.conv_seq.append(_mc_block)
            idx += 1
            if block_args.num_repeat > 1:
                block_args = block_args._replace(
                    input_filters=block_args.output_filters, stride=1)
            for _ in range(block_args.num_repeat - 1):
littletomatodonkey's avatar
littletomatodonkey 已提交
687
                drop_connect_rate = self._global_params.drop_connect_rate
688 689 690 691
                if drop_connect_rate:
                    drop_connect_rate *= float(idx) / block_size
                _mc_block = self.add_sublayer(
                    "block." + str(idx) + ".",
W
fix  
wqz960 已提交
692
                    MbConvBlock(
693 694 695 696 697 698 699 700 701 702 703 704 705 706
                        block_args.input_filters,
                        block_args,
                        padding_type=padding_type,
                        use_se=use_se,
                        name="_blocks." + str(idx) + ".",
                        drop_connect_rate=drop_connect_rate,
                        model_name=model_name,
                        cur_stage=cur_stage))
                self.conv_seq.append(_mc_block)
                idx += 1
            cur_stage += 1

    def forward(self, inputs):
        x = self._conv_stem(inputs)
littletomatodonkey's avatar
littletomatodonkey 已提交
707
        x = F.swish(x)
708 709 710 711 712
        for _mc_block in self.conv_seq:
            x = _mc_block(x)
        return x


littletomatodonkey's avatar
littletomatodonkey 已提交
713
class EfficientNet(nn.Layer):
714 715 716 717 718 719 720 721 722 723 724 725 726 727 728
    def __init__(self,
                 name="b0",
                 padding_type="SAME",
                 override_params=None,
                 use_se=True,
                 class_dim=1000):
        super(EfficientNet, self).__init__()

        model_name = 'efficientnet-' + name
        self.name = name
        self._block_args, self._global_params = get_model_params(
            model_name, override_params)
        self.padding_type = padding_type
        self.use_se = use_se

W
fix  
wqz960 已提交
729
        self._ef = ExtractFeatures(
730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762
            3,
            self._block_args,
            self._global_params,
            self.padding_type,
            self.use_se,
            model_name=self.name)

        output_channels = round_filters(1280, self._global_params)
        if name == "b0_small" or name == "b0" or name == "b1":
            oup = 320
        elif name == "b2":
            oup = 352
        elif name == "b3":
            oup = 384
        elif name == "b4":
            oup = 448
        elif name == "b5":
            oup = 512
        elif name == "b6":
            oup = 576
        elif name == "b7":
            oup = 640
        self._conv = ConvBNLayer(
            oup,
            1,
            output_channels,
            bn_act="swish",
            padding_type=self.padding_type,
            name="",
            conv_name="_conv_head",
            bn_name="_bn1",
            model_name=self.name,
            cur_stage=7)
763
        self._pool = AdaptiveAvgPool2D(1)
764 765 766

        if self._global_params.dropout_rate:
            self._drop = Dropout(
littletomatodonkey's avatar
littletomatodonkey 已提交
767
                p=self._global_params.dropout_rate, mode="upscale_in_train")
768 769 770 771 772

        param_attr, bias_attr = init_fc_layer("_fc")
        self._fc = Linear(
            output_channels,
            class_dim,
littletomatodonkey's avatar
littletomatodonkey 已提交
773
            weight_attr=param_attr,
774 775 776 777 778 779 780 781
            bias_attr=bias_attr)

    def forward(self, inputs):
        x = self._ef(inputs)
        x = self._conv(x)
        x = self._pool(x)
        if self._global_params.dropout_rate:
            x = self._drop(x)
littletomatodonkey's avatar
littletomatodonkey 已提交
782
        x = paddle.squeeze(x, axis=[2, 3])
783 784 785 786
        x = self._fc(x)
        return x


littletomatodonkey's avatar
littletomatodonkey 已提交
787
def EfficientNetB0_small(padding_type='DYNAMIC',
788
                         override_params=None,
W
wqz960 已提交
789 790
                         use_se=False,
                         **args):
W
WuHaobo 已提交
791 792 793 794
    model = EfficientNet(
        name='b0',
        padding_type=padding_type,
        override_params=override_params,
W
wqz960 已提交
795 796
        use_se=use_se,
        **args)
W
WuHaobo 已提交
797 798 799
    return model


littletomatodonkey's avatar
littletomatodonkey 已提交
800
def EfficientNetB0(padding_type='SAME',
801
                   override_params=None,
W
wqz960 已提交
802 803
                   use_se=True,
                   **args):
littletomatodonkey's avatar
littletomatodonkey 已提交
804 805 806 807
    model = EfficientNet(
        name='b0',
        padding_type=padding_type,
        override_params=override_params,
W
wqz960 已提交
808 809
        use_se=use_se,
        **args)
littletomatodonkey's avatar
littletomatodonkey 已提交
810 811 812
    return model


littletomatodonkey's avatar
littletomatodonkey 已提交
813
def EfficientNetB1(padding_type='SAME',
W
WuHaobo 已提交
814
                   override_params=None,
W
wqz960 已提交
815 816
                   use_se=True,
                   **args):
W
WuHaobo 已提交
817 818 819 820
    model = EfficientNet(
        name='b1',
        padding_type=padding_type,
        override_params=override_params,
W
wqz960 已提交
821 822
        use_se=use_se,
        **args)
W
WuHaobo 已提交
823 824 825
    return model


littletomatodonkey's avatar
littletomatodonkey 已提交
826
def EfficientNetB2(padding_type='SAME',
W
WuHaobo 已提交
827
                   override_params=None,
W
wqz960 已提交
828 829
                   use_se=True,
                   **args):
W
WuHaobo 已提交
830 831 832 833
    model = EfficientNet(
        name='b2',
        padding_type=padding_type,
        override_params=override_params,
W
wqz960 已提交
834 835
        use_se=use_se,
        **args)
W
WuHaobo 已提交
836 837 838
    return model


littletomatodonkey's avatar
littletomatodonkey 已提交
839
def EfficientNetB3(padding_type='SAME',
W
WuHaobo 已提交
840
                   override_params=None,
W
wqz960 已提交
841 842
                   use_se=True,
                   **args):
W
WuHaobo 已提交
843 844 845 846
    model = EfficientNet(
        name='b3',
        padding_type=padding_type,
        override_params=override_params,
W
wqz960 已提交
847 848
        use_se=use_se,
        **args)
W
WuHaobo 已提交
849 850 851
    return model


littletomatodonkey's avatar
littletomatodonkey 已提交
852
def EfficientNetB4(padding_type='SAME',
W
WuHaobo 已提交
853
                   override_params=None,
W
wqz960 已提交
854 855
                   use_se=True,
                   **args):
W
WuHaobo 已提交
856 857 858 859
    model = EfficientNet(
        name='b4',
        padding_type=padding_type,
        override_params=override_params,
W
wqz960 已提交
860 861
        use_se=use_se,
        **args)
W
WuHaobo 已提交
862 863 864
    return model


littletomatodonkey's avatar
littletomatodonkey 已提交
865
def EfficientNetB5(padding_type='SAME',
W
WuHaobo 已提交
866
                   override_params=None,
W
wqz960 已提交
867 868
                   use_se=True,
                   **args):
W
WuHaobo 已提交
869 870 871 872
    model = EfficientNet(
        name='b5',
        padding_type=padding_type,
        override_params=override_params,
W
wqz960 已提交
873 874
        use_se=use_se,
        **args)
W
WuHaobo 已提交
875 876 877
    return model


littletomatodonkey's avatar
littletomatodonkey 已提交
878
def EfficientNetB6(padding_type='SAME',
W
WuHaobo 已提交
879
                   override_params=None,
W
wqz960 已提交
880 881
                   use_se=True,
                   **args):
W
WuHaobo 已提交
882 883 884 885
    model = EfficientNet(
        name='b6',
        padding_type=padding_type,
        override_params=override_params,
W
wqz960 已提交
886 887
        use_se=use_se,
        **args)
W
WuHaobo 已提交
888 889 890
    return model


littletomatodonkey's avatar
littletomatodonkey 已提交
891
def EfficientNetB7(padding_type='SAME',
W
WuHaobo 已提交
892
                   override_params=None,
W
wqz960 已提交
893 894
                   use_se=True,
                   **args):
W
WuHaobo 已提交
895 896 897 898
    model = EfficientNet(
        name='b7',
        padding_type=padding_type,
        override_params=override_params,
W
wqz960 已提交
899 900
        use_se=use_se,
        **args)
littletomatodonkey's avatar
littletomatodonkey 已提交
901
    return model