engine.py 26.9 KB
Newer Older
D
dongshuilong 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

D
dongshuilong 已提交
17
import os
18
import platform
D
dongshuilong 已提交
19 20 21
import paddle
import paddle.distributed as dist
from visualdl import LogWriter
D
dongshuilong 已提交
22
from paddle import nn
D
dongshuilong 已提交
23 24
import numpy as np
import random
D
dongshuilong 已提交
25

26
from ppcls.utils.misc import AverageMeter
D
dongshuilong 已提交
27 28 29
from ppcls.utils import logger
from ppcls.utils.logger import init_logger
from ppcls.utils.config import print_config
30
from ppcls.data import build_dataloader
W
dbg  
weishengyu 已提交
31
from ppcls.arch import build_model, RecModel, DistillationModel, TheseusLayer
32
from ppcls.arch import apply_to_static
33 34 35 36
from ppcls.loss import build_loss
from ppcls.metric import build_metrics
from ppcls.optimizer import build_optimizer
from ppcls.utils.ema import ExponentialMovingAverage
D
dongshuilong 已提交
37
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
38
from ppcls.utils.save_load import init_model
39
from ppcls.utils import save_load
D
dongshuilong 已提交
40 41 42 43

from ppcls.data.utils.get_image_list import get_image_list
from ppcls.data.postprocess import build_postprocess
from ppcls.data import create_operators
44
from ppcls.engine import train as train_method
45
from ppcls.engine.train.utils import type_name
D
dongshuilong 已提交
46
from ppcls.engine import evaluation
D
dongshuilong 已提交
47 48 49
from ppcls.arch.gears.identity_head import IdentityHead


D
dongshuilong 已提交
50
class Engine(object):
D
dongshuilong 已提交
51
    def __init__(self, config, mode="train"):
D
dongshuilong 已提交
52
        assert mode in ["train", "eval", "infer", "export"]
D
dongshuilong 已提交
53 54
        self.mode = mode
        self.config = config
55 56 57
        self.eval_mode = self.config["Global"].get("eval_mode",
                                                   "classification")
        self.train_mode = self.config["Global"].get("train_mode", None)
58 59 60 61 62 63
        if "Head" in self.config["Arch"] or self.config["Arch"].get("is_rec",
                                                                    False):
            self.is_rec = True
        else:
            self.is_rec = False

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
        # set seed
        seed = self.config["Global"].get("seed", False)
        if seed or seed == 0:
            assert isinstance(seed, int), "The 'seed' must be a integer!"
            paddle.seed(seed)
            np.random.seed(seed)
            random.seed(seed)

        # init logger
        self.output_dir = self.config['Global']['output_dir']
        log_file = os.path.join(self.output_dir, self.config["Arch"]["name"],
                                f"{mode}.log")
        init_logger(log_file=log_file)
        print_config(config)

79
        # init train_func and eval_func
80 81 82
        assert self.eval_mode in [
            "classification", "retrieval", "adaface"
        ], logger.error("Invalid eval mode: {}".format(self.eval_mode))
83 84 85 86 87 88
        if self.train_mode is None:
            self.train_epoch_func = train_method.train_epoch
        else:
            self.train_epoch_func = getattr(train_method,
                                            "train_epoch_" + self.train_mode)
        self.eval_func = getattr(evaluation, self.eval_mode + "_eval")
89

90 91 92 93 94 95 96 97 98 99 100
        self.use_dali = self.config['Global'].get("use_dali", False)

        # for visualdl
        self.vdl_writer = None
        if self.config['Global'][
                'use_visualdl'] and mode == "train" and dist.get_rank() == 0:
            vdl_writer_path = os.path.join(self.output_dir, "vdl")
            if not os.path.exists(vdl_writer_path):
                os.makedirs(vdl_writer_path)
            self.vdl_writer = LogWriter(logdir=vdl_writer_path)

D
dongshuilong 已提交
101
        # set device
102 103 104 105 106
        assert self.config["Global"][
            "device"] in ["cpu", "gpu", "xpu", "npu", "mlu", "ascend"]
        self.device = paddle.set_device(self.config["Global"]["device"])
        logger.info('train with paddle {} and device {}'.format(
            paddle.__version__, self.device))
D
dongshuilong 已提交
107

108 109 110
        # gradient accumulation
        self.update_freq = self.config["Global"].get("update_freq", 1)

111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
        if "class_num" in config["Global"]:
            global_class_num = config["Global"]["class_num"]
            if "class_num" not in config["Arch"]:
                config["Arch"]["class_num"] = global_class_num
                msg = f"The Global.class_num will be deprecated. Please use Arch.class_num instead. Arch.class_num has been set to {global_class_num}."
            else:
                msg = "The Global.class_num will be deprecated. Please use Arch.class_num instead. The Global.class_num has been ignored."
            logger.warning(msg)
        #TODO(gaotingquan): support rec
        class_num = config["Arch"].get("class_num", None)
        self.config["DataLoader"].update({"class_num": class_num})
        self.config["DataLoader"].update({
            "epochs": self.config["Global"]["epochs"]
        })

126
        # build dataloader
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
        if self.mode == 'train':
            self.train_dataloader = build_dataloader(
                self.config["DataLoader"], "Train", self.device, self.use_dali)
            if self.config["DataLoader"].get('UnLabelTrain', None) is not None:
                self.unlabel_train_dataloader = build_dataloader(
                    self.config["DataLoader"], "UnLabelTrain", self.device,
                    self.use_dali)
            else:
                self.unlabel_train_dataloader = None

            self.iter_per_epoch = len(
                self.train_dataloader) - 1 if platform.system(
                ) == "Windows" else len(self.train_dataloader)
            if self.config["Global"].get("iter_per_epoch", None):
                # set max iteration per epoch mannualy, when training by iteration(s), such as XBM, FixMatch.
                self.iter_per_epoch = self.config["Global"].get(
                    "iter_per_epoch")
144 145 146 147 148
            if self.iter_per_epoch < self.update_freq:
                logger.warning(
                    "The arg Global.update_freq greater than iter_per_epoch and has been set to 1. This may be caused by too few of batches."
                )
                self.update_freq = 1
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
            self.iter_per_epoch = self.iter_per_epoch // self.update_freq * self.update_freq

        if self.mode == "eval" or (self.mode == "train" and
                                   self.config["Global"]["eval_during_train"]):
            if self.eval_mode in ["classification", "adaface"]:
                self.eval_dataloader = build_dataloader(
                    self.config["DataLoader"], "Eval", self.device,
                    self.use_dali)
            elif self.eval_mode == "retrieval":
                self.gallery_query_dataloader = None
                if len(self.config["DataLoader"]["Eval"].keys()) == 1:
                    key = list(self.config["DataLoader"]["Eval"].keys())[0]
                    self.gallery_query_dataloader = build_dataloader(
                        self.config["DataLoader"]["Eval"], key, self.device,
                        self.use_dali)
                else:
                    self.gallery_dataloader = build_dataloader(
                        self.config["DataLoader"]["Eval"], "Gallery",
                        self.device, self.use_dali)
                    self.query_dataloader = build_dataloader(
                        self.config["DataLoader"]["Eval"], "Query",
                        self.device, self.use_dali)
171 172

        # build loss
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
        if self.mode == "train":
            label_loss_info = self.config["Loss"]["Train"]
            self.train_loss_func = build_loss(label_loss_info)
            unlabel_loss_info = self.config.get("UnLabelLoss", {}).get("Train",
                                                                       None)
            self.unlabel_train_loss_func = build_loss(unlabel_loss_info)
        if self.mode == "eval" or (self.mode == "train" and
                                   self.config["Global"]["eval_during_train"]):
            loss_config = self.config.get("Loss", None)
            if loss_config is not None:
                loss_config = loss_config.get("Eval")
                if loss_config is not None:
                    self.eval_loss_func = build_loss(loss_config)
                else:
                    self.eval_loss_func = None
            else:
                self.eval_loss_func = None
190 191

        # build metric
192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
        if self.mode == 'train' and "Metric" in self.config and "Train" in self.config[
                "Metric"] and self.config["Metric"]["Train"]:
            metric_config = self.config["Metric"]["Train"]
            if hasattr(self.train_dataloader, "collate_fn"
                       ) and self.train_dataloader.collate_fn is not None:
                for m_idx, m in enumerate(metric_config):
                    if "TopkAcc" in m:
                        msg = f"Unable to calculate accuracy when using \"batch_transform_ops\". The metric \"{m}\" has been removed."
                        logger.warning(msg)
                        metric_config.pop(m_idx)
            self.train_metric_func = build_metrics(metric_config)
        else:
            self.train_metric_func = None

        if self.mode == "eval" or (self.mode == "train" and
                                   self.config["Global"]["eval_during_train"]):
            if self.eval_mode == "classification":
                if "Metric" in self.config and "Eval" in self.config["Metric"]:
                    self.eval_metric_func = build_metrics(self.config["Metric"]
                                                          ["Eval"])
                else:
                    self.eval_metric_func = None
            elif self.eval_mode == "retrieval":
                if "Metric" in self.config and "Eval" in self.config["Metric"]:
                    metric_config = self.config["Metric"]["Eval"]
                else:
                    metric_config = [{"name": "Recallk", "topk": (1, 5)}]
                self.eval_metric_func = build_metrics(metric_config)
        else:
            self.eval_metric_func = None
222

D
dongshuilong 已提交
223
        # build model
littletomatodonkey's avatar
littletomatodonkey 已提交
224
        self.model = build_model(self.config, self.mode)
225 226
        # set @to_static for benchmark, skip this by default.
        apply_to_static(self.config, self.model)
D
dongshuilong 已提交
227

T
Tingquan Gao 已提交
228
        # load_pretrain
229 230 231 232 233 234 235 236 237
        if self.config["Global"]["pretrained_model"] is not None:
            if self.config["Global"]["pretrained_model"].startswith("http"):
                load_dygraph_pretrain_from_url(
                    [self.model, getattr(self, 'train_loss_func', None)],
                    self.config["Global"]["pretrained_model"])
            else:
                load_dygraph_pretrain(
                    [self.model, getattr(self, 'train_loss_func', None)],
                    self.config["Global"]["pretrained_model"])
T
Tingquan Gao 已提交
238

239
        # build optimizer
240 241 242 243 244
        if self.mode == 'train':
            self.optimizer, self.lr_sch = build_optimizer(
                self.config["Optimizer"], self.config["Global"]["epochs"],
                self.iter_per_epoch // self.update_freq,
                [self.model, self.train_loss_func])
245 246

        # AMP training and evaluating
247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
        self.amp = "AMP" in self.config and self.config["AMP"] is not None
        self.amp_eval = False
        # for amp
        if self.amp:
            AMP_RELATED_FLAGS_SETTING = {'FLAGS_max_inplace_grad_add': 8, }
            if paddle.is_compiled_with_cuda():
                AMP_RELATED_FLAGS_SETTING.update({
                    'FLAGS_cudnn_batchnorm_spatial_persistent': 1
                })
            paddle.set_flags(AMP_RELATED_FLAGS_SETTING)

            self.scale_loss = self.config["AMP"].get("scale_loss", 1.0)
            self.use_dynamic_loss_scaling = self.config["AMP"].get(
                "use_dynamic_loss_scaling", False)
            self.scaler = paddle.amp.GradScaler(
                init_loss_scaling=self.scale_loss,
                use_dynamic_loss_scaling=self.use_dynamic_loss_scaling)

            self.amp_level = self.config['AMP'].get("level", "O1")
            if self.amp_level not in ["O1", "O2"]:
                msg = "[Parameter Error]: The optimize level of AMP only support 'O1' and 'O2'. The level has been set 'O1'."
                logger.warning(msg)
                self.config['AMP']["level"] = "O1"
                self.amp_level = "O1"

            self.amp_eval = self.config["AMP"].get("use_fp16_test", False)
            # TODO(gaotingquan): Paddle not yet support FP32 evaluation when training with AMPO2
            if self.mode == "train" and self.config["Global"].get(
                    "eval_during_train",
                    True) and self.amp_level == "O2" and self.amp_eval == False:
                msg = "PaddlePaddle only support FP16 evaluation when training with AMP O2 now. "
                logger.warning(msg)
                self.config["AMP"]["use_fp16_test"] = True
                self.amp_eval = True

282 283 284 285 286 287 288 289 290 291 292
            if self.mode == "train":
                self.model, self.optimizer = paddle.amp.decorate(
                    models=self.model,
                    optimizers=self.optimizer,
                    level=self.amp_level,
                    save_dtype='float32')
            elif self.amp_eval:
                self.model = paddle.amp.decorate(
                    models=self.model,
                    level=self.amp_level,
                    save_dtype='float32')
293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316

            if self.mode == "train" and len(self.train_loss_func.parameters(
            )) > 0:
                self.train_loss_func = paddle.amp.decorate(
                    models=self.train_loss_func,
                    level=self.amp_level,
                    save_dtype='float32')

        # build EMA model
        self.ema = "EMA" in self.config and self.mode == "train"
        if self.ema:
            self.model_ema = ExponentialMovingAverage(
                self.model, self.config['EMA'].get("decay", 0.9999))

        # check the gpu num
        world_size = dist.get_world_size()
        self.config["Global"]["distributed"] = world_size != 1
        if self.mode == "train":
            std_gpu_num = 8 if isinstance(
                self.config["Optimizer"],
                dict) and self.config["Optimizer"]["name"] == "AdamW" else 4
            if world_size != std_gpu_num:
                msg = f"The training strategy provided by PaddleClas is based on {std_gpu_num} gpus. But the number of gpu is {world_size} in current training. Please modify the stategy (learning rate, batch size and so on) if use this config to train."
                logger.warning(msg)
317 318

        # for distributed
319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345
        if self.config["Global"]["distributed"]:
            dist.init_parallel_env()
            self.model = paddle.DataParallel(self.model)
            if self.mode == 'train' and len(self.train_loss_func.parameters(
            )) > 0:
                self.train_loss_func = paddle.DataParallel(
                    self.train_loss_func)

            # set different seed in different GPU manually in distributed environment
            if seed is None:
                logger.warning(
                    "The random seed cannot be None in a distributed environment. Global.seed has been set to 42 by default"
                )
                self.config["Global"]["seed"] = seed = 42
            logger.info(
                f"Set random seed to ({int(seed)} + $PADDLE_TRAINER_ID) for different trainer"
            )
            paddle.seed(int(seed) + dist.get_rank())
            np.random.seed(int(seed) + dist.get_rank())
            random.seed(int(seed) + dist.get_rank())

        # build postprocess for infer
        if self.mode == 'infer':
            self.preprocess_func = create_operators(self.config["Infer"][
                "transforms"])
            self.postprocess_func = build_postprocess(self.config["Infer"][
                "PostProcess"])
D
dongshuilong 已提交
346

347 348 349 350 351 352 353 354
    def train(self):
        assert self.mode == "train"
        print_batch_step = self.config['Global']['print_batch_step']
        save_interval = self.config["Global"]["save_interval"]
        best_metric = {
            "metric": -1.0,
            "epoch": 0,
        }
355
        ema_module = None
356 357 358
        if self.ema:
            best_metric_ema = 0.0
            ema_module = self.model_ema.module
359 360 361 362 363 364 365 366 367 368 369
        # key:
        # val: metrics list word
        self.output_info = dict()
        self.time_info = {
            "batch_cost": AverageMeter(
                "batch_cost", '.5f', postfix=" s,"),
            "reader_cost": AverageMeter(
                "reader_cost", ".5f", postfix=" s,"),
        }
        # global iter counter
        self.global_step = 0
370 371 372 373 374 375 376

        if self.config.Global.checkpoints is not None:
            metric_info = init_model(self.config.Global, self.model,
                                     self.optimizer, self.train_loss_func,
                                     ema_module)
            if metric_info is not None:
                best_metric.update(metric_info)
Y
Yang Nie 已提交
377 378 379
            if hasattr(self.train_dataloader.batch_sampler, "set_epoch"):
                self.train_dataloader.batch_sampler.set_epoch(best_metric[
                    "epoch"])
380 381 382 383

        for epoch_id in range(best_metric["epoch"] + 1,
                              self.config["Global"]["epochs"] + 1):
            acc = 0.0
384 385 386
            # for one epoch train
            self.train_epoch_func(self, epoch_id, print_batch_step)

387 388
            if self.use_dali:
                self.train_dataloader.reset()
389 390
            metric_msg = ", ".join(
                [self.output_info[key].avg_info for key in self.output_info])
391 392
            logger.info("[Train][Epoch {}/{}][Avg]{}".format(
                epoch_id, self.config["Global"]["epochs"], metric_msg))
393 394
            self.output_info.clear()

395 396 397
            # eval model and save model if possible
            start_eval_epoch = self.config["Global"].get("start_eval_epoch",
                                                         0) - 1
398 399
            if self.config["Global"][
                    "eval_during_train"] and epoch_id % self.config["Global"][
400
                        "eval_interval"] == 0 and epoch_id > start_eval_epoch:
401 402 403 404 405 406 407 408 409 410 411
                acc = self.eval(epoch_id)

                # step lr (by epoch) according to given metric, such as acc
                for i in range(len(self.lr_sch)):
                    if getattr(self.lr_sch[i], "by_epoch", False) and \
                            type_name(self.lr_sch[i]) == "ReduceOnPlateau":
                        self.lr_sch[i].step(acc)

                if acc > best_metric["metric"]:
                    best_metric["metric"] = acc
                    best_metric["epoch"] = epoch_id
412 413 414
                    save_load.save_model(
                        self.model,
                        self.optimizer,
415
                        best_metric,
416 417 418
                        self.output_dir,
                        ema=ema_module,
                        model_name=self.config["Arch"]["name"],
419
                        prefix="best_model",
420
                        loss=self.train_loss_func,
421 422 423 424 425 426 427 428 429 430 431
                        save_student_model=True)
                logger.info("[Eval][Epoch {}][best metric: {}]".format(
                    epoch_id, best_metric["metric"]))
                logger.scaler(
                    name="eval_acc",
                    value=acc,
                    step=epoch_id,
                    writer=self.vdl_writer)

                self.model.train()

432 433
                if self.ema:
                    ori_model, self.model = self.model, ema_module
434 435
                    acc_ema = self.eval(epoch_id)
                    self.model = ori_model
436
                    ema_module.eval()
437 438 439

                    if acc_ema > best_metric_ema:
                        best_metric_ema = acc_ema
440 441 442 443 444 445 446 447 448 449
                        save_load.save_model(
                            self.model,
                            self.optimizer,
                            {"metric": acc_ema,
                             "epoch": epoch_id},
                            self.output_dir,
                            ema=ema_module,
                            model_name=self.config["Arch"]["name"],
                            prefix="best_model_ema",
                            loss=self.train_loss_func)
450 451 452 453 454 455 456 457 458 459
                    logger.info("[Eval][Epoch {}][best metric ema: {}]".format(
                        epoch_id, best_metric_ema))
                    logger.scaler(
                        name="eval_acc_ema",
                        value=acc_ema,
                        step=epoch_id,
                        writer=self.vdl_writer)

            # save model
            if save_interval > 0 and epoch_id % save_interval == 0:
460 461 462 463 464 465 466 467 468
                save_load.save_model(
                    self.model,
                    self.optimizer, {"metric": acc,
                                     "epoch": epoch_id},
                    self.output_dir,
                    ema=ema_module,
                    model_name=self.config["Arch"]["name"],
                    prefix="epoch_{}".format(epoch_id),
                    loss=self.train_loss_func)
469
            # save the latest model
470 471 472 473 474 475 476 477 478
            save_load.save_model(
                self.model,
                self.optimizer, {"metric": acc,
                                 "epoch": epoch_id},
                self.output_dir,
                ema=ema_module,
                model_name=self.config["Arch"]["name"],
                prefix="latest",
                loss=self.train_loss_func)
479 480 481 482 483 484 485 486 487 488 489 490

        if self.vdl_writer is not None:
            self.vdl_writer.close()

    @paddle.no_grad()
    def eval(self, epoch_id=0):
        assert self.mode in ["train", "eval"]
        self.model.eval()
        eval_result = self.eval_func(self, epoch_id)
        self.model.train()
        return eval_result

D
dongshuilong 已提交
491 492 493
    @paddle.no_grad()
    def infer(self):
        assert self.mode == "infer" and self.eval_mode == "classification"
P
parap1uie-s 已提交
494
        results = []
495 496
        total_trainer = dist.get_world_size()
        local_rank = dist.get_rank()
D
dongshuilong 已提交
497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
        image_list = get_image_list(self.config["Infer"]["infer_imgs"])
        # data split
        image_list = image_list[local_rank::total_trainer]

        batch_size = self.config["Infer"]["batch_size"]
        self.model.eval()
        batch_data = []
        image_file_list = []
        for idx, image_file in enumerate(image_list):
            with open(image_file, 'rb') as f:
                x = f.read()
            for process in self.preprocess_func:
                x = process(x)
            batch_data.append(x)
            image_file_list.append(image_file)
            if len(batch_data) >= batch_size or idx == len(image_list) - 1:
                batch_tensor = paddle.to_tensor(batch_data)
514 515

                if self.amp and self.amp_eval:
G
gaotingquan 已提交
516
                    with paddle.amp.auto_cast(level=self.amp_level):
517 518 519
                        out = self.model(batch_tensor)
                else:
                    out = self.model(batch_tensor)
G
gaotingquan 已提交
520

D
dongshuilong 已提交
521 522
                if isinstance(out, list):
                    out = out[0]
littletomatodonkey's avatar
littletomatodonkey 已提交
523 524
                if isinstance(out, dict) and "Student" in out:
                    out = out["Student"]
525 526 527
                if isinstance(out, dict) and "logits" in out:
                    out = out["logits"]
                if isinstance(out, dict) and "output" in out:
W
dbg  
weishengyu 已提交
528
                    out = out["output"]
P
parap1uie-s 已提交
529

G
gaotingquan 已提交
530 531 532
                result = self.postprocess_func(out, image_file_list)
                logger.info(result)
                results.extend(result)
D
dongshuilong 已提交
533 534
                batch_data.clear()
                image_file_list.clear()
P
parap1uie-s 已提交
535
        return results
D
dongshuilong 已提交
536 537 538

    def export(self):
        assert self.mode == "export"
Z
zhiboniu 已提交
539 540
        use_multilabel = self.config["Global"].get(
            "use_multilabel",
C
cuicheng01 已提交
541
            False) or "ATTRMetric" in self.config["Metric"]["Eval"][0]
C
cuicheng01 已提交
542
        model = ExportModel(self.config["Arch"], self.model, use_multilabel)
543 544 545 546 547 548 549 550 551
        if self.config["Global"]["pretrained_model"] is not None:
            if self.config["Global"]["pretrained_model"].startswith("http"):
                load_dygraph_pretrain_from_url(
                    model.base_model,
                    self.config["Global"]["pretrained_model"])
            else:
                load_dygraph_pretrain(
                    model.base_model,
                    self.config["Global"]["pretrained_model"])
D
dongshuilong 已提交
552 553

        model.eval()
G
gaotingquan 已提交
554

555
        # for re-parameterization nets
H
HydrogenSulfate 已提交
556
        for layer in self.model.sublayers():
557 558 559
            if hasattr(layer, "re_parameterize") and not getattr(layer,
                                                                 "is_repped"):
                layer.re_parameterize()
G
gaotingquan 已提交
560

D
dongshuilong 已提交
561 562
        save_path = os.path.join(self.config["Global"]["save_inference_dir"],
                                 "inference")
littletomatodonkey's avatar
littletomatodonkey 已提交
563 564 565 566 567 568 569 570 571 572 573 574

        model = paddle.jit.to_static(
            model,
            input_spec=[
                paddle.static.InputSpec(
                    shape=[None] + self.config["Global"]["image_shape"],
                    dtype='float32')
            ])
        if hasattr(model.base_model,
                   "quanter") and model.base_model.quanter is not None:
            model.base_model.quanter.save_quantized_model(model,
                                                          save_path + "_int8")
D
dongshuilong 已提交
575 576
        else:
            paddle.jit.save(model, save_path)
G
gaotingquan 已提交
577 578 579
        logger.info(
            f"Export succeeded! The inference model exported has been saved in \"{self.config['Global']['save_inference_dir']}\"."
        )
D
dongshuilong 已提交
580 581


W
dbg  
weishengyu 已提交
582
class ExportModel(TheseusLayer):
D
dongshuilong 已提交
583 584 585 586
    """
    ExportModel: add softmax onto the model
    """

C
cuicheng01 已提交
587
    def __init__(self, config, model, use_multilabel):
D
dongshuilong 已提交
588 589 590 591 592 593 594 595 596 597 598 599
        super().__init__()
        self.base_model = model
        # we should choose a final model to export
        if isinstance(self.base_model, DistillationModel):
            self.infer_model_name = config["infer_model_name"]
        else:
            self.infer_model_name = None

        self.infer_output_key = config.get("infer_output_key", None)
        if self.infer_output_key == "features" and isinstance(self.base_model,
                                                              RecModel):
            self.base_model.head = IdentityHead()
C
cuicheng01 已提交
600 601
        if use_multilabel:
            self.out_act = nn.Sigmoid()
D
dongshuilong 已提交
602
        else:
C
cuicheng01 已提交
603 604 605 606
            if config.get("infer_add_softmax", True):
                self.out_act = nn.Softmax(axis=-1)
            else:
                self.out_act = None
D
dongshuilong 已提交
607 608 609 610 611 612 613 614 615 616 617 618 619 620 621

    def eval(self):
        self.training = False
        for layer in self.sublayers():
            layer.training = False
            layer.eval()

    def forward(self, x):
        x = self.base_model(x)
        if isinstance(x, list):
            x = x[0]
        if self.infer_model_name is not None:
            x = x[self.infer_model_name]
        if self.infer_output_key is not None:
            x = x[self.infer_output_key]
C
cuicheng01 已提交
622
        if self.out_act is not None:
wc晨曦's avatar
wc晨曦 已提交
623 624
            if isinstance(x, dict):
                x = x["logits"]
C
cuicheng01 已提交
625
            x = self.out_act(x)
D
dongshuilong 已提交
626
        return x