distillationloss.py 5.6 KB
Newer Older
littletomatodonkey's avatar
littletomatodonkey 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
#copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.

import paddle
import paddle.nn as nn

from .celoss import CELoss
from .dmlloss import DMLLoss
from .distanceloss import DistanceLoss
21
from .rkdloss import RKdAngle, RkdDistance
littletomatodonkey's avatar
littletomatodonkey 已提交
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71


class DistillationCELoss(CELoss):
    """
    DistillationCELoss
    """

    def __init__(self,
                 model_name_pairs=[],
                 epsilon=None,
                 key=None,
                 name="loss_ce"):
        super().__init__(epsilon=epsilon)
        assert isinstance(model_name_pairs, list)
        self.key = key
        self.model_name_pairs = model_name_pairs
        self.name = name

    def forward(self, predicts, batch):
        loss_dict = dict()
        for idx, pair in enumerate(self.model_name_pairs):
            out1 = predicts[pair[0]]
            out2 = predicts[pair[1]]
            if self.key is not None:
                out1 = out1[self.key]
                out2 = out2[self.key]
            loss = super().forward(out1, out2)
            for key in loss:
                loss_dict["{}_{}_{}".format(key, pair[0], pair[1])] = loss[key]
        return loss_dict


class DistillationGTCELoss(CELoss):
    """
    DistillationGTCELoss
    """

    def __init__(self,
                 model_names=[],
                 epsilon=None,
                 key=None,
                 name="loss_gt_ce"):
        super().__init__(epsilon=epsilon)
        assert isinstance(model_names, list)
        self.key = key
        self.model_names = model_names
        self.name = name

    def forward(self, predicts, batch):
        loss_dict = dict()
littletomatodonkey's avatar
littletomatodonkey 已提交
72
        for name in self.model_names:
littletomatodonkey's avatar
littletomatodonkey 已提交
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
            out = predicts[name]
            if self.key is not None:
                out = out[self.key]
            loss = super().forward(out, batch)
            for key in loss:
                loss_dict["{}_{}".format(key, name)] = loss[key]
        return loss_dict


class DistillationDMLLoss(DMLLoss):
    """
    """

    def __init__(self,
                 model_name_pairs=[],
88
                 act="softmax",
littletomatodonkey's avatar
littletomatodonkey 已提交
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
                 key=None,
                 name="loss_dml"):
        super().__init__(act=act)
        assert isinstance(model_name_pairs, list)
        self.key = key
        self.model_name_pairs = model_name_pairs
        self.name = name

    def forward(self, predicts, batch):
        loss_dict = dict()
        for idx, pair in enumerate(self.model_name_pairs):
            out1 = predicts[pair[0]]
            out2 = predicts[pair[1]]
            if self.key is not None:
                out1 = out1[self.key]
                out2 = out2[self.key]
            loss = super().forward(out1, out2)
            if isinstance(loss, dict):
                for key in loss:
                    loss_dict["{}_{}_{}_{}".format(key, pair[0], pair[1],
                                                   idx)] = loss[key]
            else:
                loss_dict["{}_{}".format(self.name, idx)] = loss
        return loss_dict


class DistillationDistanceLoss(DistanceLoss):
    """
    """

    def __init__(self,
                 mode="l2",
                 model_name_pairs=[],
                 key=None,
                 name="loss_",
                 **kargs):
        super().__init__(mode=mode, **kargs)
        assert isinstance(model_name_pairs, list)
        self.key = key
        self.model_name_pairs = model_name_pairs
129
        self.name = name + mode
littletomatodonkey's avatar
littletomatodonkey 已提交
130 131 132 133 134 135 136 137 138 139 140 141 142

    def forward(self, predicts, batch):
        loss_dict = dict()
        for idx, pair in enumerate(self.model_name_pairs):
            out1 = predicts[pair[0]]
            out2 = predicts[pair[1]]
            if self.key is not None:
                out1 = out1[self.key]
                out2 = out2[self.key]
            loss = super().forward(out1, out2)
            for key in loss:
                loss_dict["{}_{}_{}".format(self.name, key, idx)] = loss[key]
        return loss_dict
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174


class DistillationRKDLoss(nn.Layer):
    def __init__(self,
                 target_size=None,
                 model_name_pairs=(["Student", "Teacher"], ),
                 student_keepkeys=[],
                 teacher_keepkeys=[]):
        super().__init__()
        self.student_keepkeys = student_keepkeys
        self.teacher_keepkeys = teacher_keepkeys
        self.model_name_pairs = model_name_pairs
        assert len(self.student_keepkeys) == len(self.teacher_keepkeys)

        self.rkd_angle_loss = RKdAngle(target_size=target_size)
        self.rkd_dist_loss = RkdDistance(target_size=target_size)

    def __call__(self, predicts, batch):
        loss_dict = {}
        for m1, m2 in self.model_name_pairs:
            for idx, (
                    student_name, teacher_name
            ) in enumerate(zip(self.student_keepkeys, self.teacher_keepkeys)):
                student_out = predicts[m1][student_name]
                teacher_out = predicts[m2][teacher_name]

                loss_dict[f"loss_angle_{idx}_{m1}_{m2}"] = self.rkd_angle_loss(
                    student_out, teacher_out)
                loss_dict[f"loss_dist_{idx}_{m1}_{m2}"] = self.rkd_dist_loss(
                    student_out, teacher_out)

        return loss_dict