distillationloss.py 4.3 KB
Newer Older
littletomatodonkey's avatar
littletomatodonkey 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
#copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.

import paddle
import paddle.nn as nn

from .celoss import CELoss
from .dmlloss import DMLLoss
from .distanceloss import DistanceLoss


class DistillationCELoss(CELoss):
    """
    DistillationCELoss
    """

    def __init__(self,
                 model_name_pairs=[],
                 epsilon=None,
                 key=None,
                 name="loss_ce"):
        super().__init__(epsilon=epsilon)
        assert isinstance(model_name_pairs, list)
        self.key = key
        self.model_name_pairs = model_name_pairs
        self.name = name

    def forward(self, predicts, batch):
        loss_dict = dict()
        for idx, pair in enumerate(self.model_name_pairs):
            out1 = predicts[pair[0]]
            out2 = predicts[pair[1]]
            if self.key is not None:
                out1 = out1[self.key]
                out2 = out2[self.key]
            loss = super().forward(out1, out2)
            for key in loss:
                loss_dict["{}_{}_{}".format(key, pair[0], pair[1])] = loss[key]
        return loss_dict


class DistillationGTCELoss(CELoss):
    """
    DistillationGTCELoss
    """

    def __init__(self,
                 model_names=[],
                 epsilon=None,
                 key=None,
                 name="loss_gt_ce"):
        super().__init__(epsilon=epsilon)
        assert isinstance(model_names, list)
        self.key = key
        self.model_names = model_names
        self.name = name

    def forward(self, predicts, batch):
        loss_dict = dict()
        for idx, name in enumerate(self.model_names):
            out = predicts[name]
            if self.key is not None:
                out = out[self.key]
            loss = super().forward(out, batch)
            for key in loss:
                loss_dict["{}_{}".format(key, name)] = loss[key]
        return loss_dict


class DistillationDMLLoss(DMLLoss):
    """
    """

    def __init__(self,
                 model_name_pairs=[],
                 act=None,
                 key=None,
                 name="loss_dml"):
        super().__init__(act=act)
        assert isinstance(model_name_pairs, list)
        self.key = key
        self.model_name_pairs = model_name_pairs
        self.name = name

    def forward(self, predicts, batch):
        loss_dict = dict()
        for idx, pair in enumerate(self.model_name_pairs):
            out1 = predicts[pair[0]]
            out2 = predicts[pair[1]]
            if self.key is not None:
                out1 = out1[self.key]
                out2 = out2[self.key]
            loss = super().forward(out1, out2)
            if isinstance(loss, dict):
                for key in loss:
                    loss_dict["{}_{}_{}_{}".format(key, pair[0], pair[1],
                                                   idx)] = loss[key]
            else:
                loss_dict["{}_{}".format(self.name, idx)] = loss
        return loss_dict


class DistillationDistanceLoss(DistanceLoss):
    """
    """

    def __init__(self,
                 mode="l2",
                 model_name_pairs=[],
                 key=None,
                 name="loss_",
                 **kargs):
        super().__init__(mode=mode, **kargs)
        assert isinstance(model_name_pairs, list)
        self.key = key
        self.model_name_pairs = model_name_pairs
        self.name = name + "_l2"

    def forward(self, predicts, batch):
        loss_dict = dict()
        for idx, pair in enumerate(self.model_name_pairs):
            out1 = predicts[pair[0]]
            out2 = predicts[pair[1]]
            if self.key is not None:
                out1 = out1[self.key]
                out2 = out2[self.key]
            loss = super().forward(out1, out2)
            for key in loss:
                loss_dict["{}_{}_{}".format(self.name, key, idx)] = loss[key]
        return loss_dict